## C.C.Tatham \& Associates Ltd.

## Consulting Engineers

# 3879 TOWN LINE SUBDIVISION <br> Township of Severn 

Traffic Review

## TABLE OF CONTENTS

1 Introduction ..... 1
2 Existing Conditions ..... 2
2.1 Road Network ..... 2
2.2 Existing Traffic Volumes ..... 3
2.3 Existing Traffic Operations ..... 3
3 Proposed Development ..... 5
3.1 Site Location ..... 5
3.2 Proposed Development ..... 5
$3.3 \quad$ Site Access ..... 5
3.4 Parking ..... 5
3.5 Site Traffic ..... 5
4 Transportation Impacts ..... 7
4.1 Future Horizon Year ..... 7
4.2 Future Traffic Volumes ..... 7
4.3 Future Traffic Operations ..... 7
4.4 Turn Lane Requirements ..... 9
4.5 Sight Line Assessment ..... 9
Summary ..... 10

## APPENDICES

Appendix A: Traffic CountsAppendix B: Existing OperationsAppendix C: Future Operations
LIST OF TABLES
Table 1: Intersection Operations - 2017 Conditions ..... 4
Table 2: Road Section Operations - 2017 Conditions ..... 4
Table 3: Trip Generation ..... 6
Table 4: Intersection Operations - 2022 Conditions ..... 8
Table 5: Road Section Operations - 2022 Conditions ..... 8
LIST OF FIGURES
Figure 1: Site Location ..... 11
Figure 2: Area Road Network ..... 12
Figure 3: 2017 Traffic Volumes ..... 15
Figure 4: Draft Plan of Subdivision ..... 16
Figure 5: Site Generated Traffic ..... 17
Figure 6: 2022 Total Traffic Volumes ..... 18
Figure 7: Highway 12 Sight Lines ..... 19

## Introduction

C.C. Tatham \& Associates Ltd. was retained by High Level Construction to review the proposed 19unit residential subdivision development from a transportation perspective, addressing the parking supply, site traffic volumes, site access operations and the potential impacts to the adjacent road network.

The development site is located at 3879 Town Line in the Township of Severn. The site has an area of 10.6 hectares ( 26 acres) with approximately 90 metres of frontage on Town Line. The property is bordered by Town Line to the west, Millwood Road residences to the north and open space to the east and south. The site location is illustrated in Figure 1.

## 2 Existing Conditions

This chapter will describe the road network, traffic volumes and operations for the existing conditions.

### 2.1 Road Network

The road network to be addressed by this study consists of Town Line, Old Coldwater Road and Highway 12, and the following intersections:

- Highway 12 with Town Line; and
- Old Coldwater Road with Town Line.

Photographs of the road system are provided in Figure 2.

## Road Sections

In the vicinity of the subject site, Highway 12 is a provincial highway with one travel lane in each direction. The alignment of the road is relatively flat with a slight horizontal curvature. The posted speed limit on the highway is $80 \mathrm{~km} / \mathrm{h}$. The assumed planning capacity of Highway 12 is 1100 vehicles per hour per lane, given its provincial highway classification.

Town Line is a local Township of Severn road, providing an approximate 6.5 metre driving platform (hard surfaced) with minimal gravel shoulders which are primarily overgrown. The alignment of the road is relatively straight and flat through the immediate study area and across the frontage of the development parcel. The posted speed limit on Town Line is $50 \mathrm{~km} / \mathrm{h}$ in the study area. Town Line is a boundary road between the Townships of Severn and Oro-Medonte. The assumed planning capacity for a road reflective of Town Line is 400 vphpl .

Old Coldwater Road is a local Township of Oro-Medonte road, providing an approximate width of 5 to 6 metres. While Old Coldwater continues north approximately 1.15 kilometres where it connects with Highway 12, the road is marked as "Dead End" at either end as it is not winter maintained in its entirety. Old Coldwater Road serves 3 to 4 residences and 2 industrial buildings (albeit 1 has its primary access via Highway 12) While not posted, the speed limit on Old Coldwater Road would be $50 \mathrm{~km} / \mathrm{h}$ also.

## Key Intersections

The intersection of Highway 12 with Town Line is a 3-leg intersection with stop control on Town Line. There is a separate right turn taper (approximately 60 metres in length) on the north approach, in addition to the through lane. The remaining legs both have single shared lane approaches.

The intersection of Old Coldwater Road with Town Line is also a 3-leg intersection, under stop control on Old Coldwater Road. Each approach provides a single shared approach lane.

As indicated in Figure 2, the intersections are approximately 25 metres apart, measured centre of intersection to centre of intersection.

### 2.2 Existing Traffic Volumes

To determine existing traffic volumes, traffic counts were conducted at the intersection of Highway 12 with Town Line on September 7, 2017 during the AM and PM peak hour periods (7:00 to 9:00 and $16: 00$ to 18:00). The traffic count details are provided in Appendix A, whereas the associated peak hour volumes are illustrated in Figure 3. While the turning volumes to/from Old Coldwater Road were not specifically counted, the overall volumes on Coldwater Road were. Over the 4-hour count period, 13 vehicles were observed on Old Coldwater road. As such, the majority of volumes turning to/from Highway 12 via Town Line are destined to continue along Town Line.

Given the seasonal nature of the area, consideration has been given to summer traffic volumes. As per published MTO average annual daily traffic (AADT) and summer average daily traffic (SADT) traffic volumes for the adjacent section of Highway 12 over the 5-year period 2011 to 2016 (2016 data is the most current data available), a summer factor of $15 \%$ has been considered (ie. the September traffic volumes on Highway 12 have been increased 15\%). Given the local nature of both Town Line and Old Coldwater Road, no adjustments have been made to traffic volumes on these roads. The resulting 2017 summer traffic estimates are also provided in Figure 3. It is noted that the summer volumes have been carried through the analysis to reflect the most conservative approach.

### 2.3 Existing Traffic Operations

## Intersection Operations

The assessment of existing conditions provides the baseline from which the future operations (ie. with the subject development) can be assessed. The capacity, and hence operations, of a road system is effectively dictated by its intersections. As such, the analysis focused on the intersection of Highway 12 with Town Lines. The analysis is based on the 2017 traffic volumes, the existing configuration and intersection control and procedures outlined in the 2000 Highway Capacity Manual ${ }^{1}$ (using Synchro v. 9 software). The review considers the average delay (measured in seconds), level of service (LOS) and volume to capacity $(\mathrm{v} / \mathrm{c})$ for the critical stop controlled movements. A summary of the analyses is provided in Table 1. Level of service A corresponds to the best operating condition with minimal delays whereas level of service F corresponds to poor operations resulting from high intersection delays. A v/c ratio of less than 1.0 indicates the intersection movement/approach is operating at less than capacity while a v/c equal to or greater than 1.0 indicates capacity has been reached. Detailed operations worksheets for the existing traffic conditions are included in Appendix B.

[^0]Table 1: Intersection Operations - 2017 Conditions

| Intersection and Movement |  | Control | Weekday AM Peak Hour |  |  | Weekday PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | delay | LOS | v/c | delay | LOS | v/c |
| Highway 12 \& Town Line | WB |  | stop | 24 | C | 0.39 | 23 | C | 0.25 |

Based on the existing volumes, the subject intersection provides good levels of service (LOS C) during both peak hours, with average delays. As such, no improvements are required to support the existing conditions.

## Road Section Operations

As previously noted, the following lane capacities have been assumed for the adjacent road network:

- Highway 12: 1100 vphpl (highway); and
- Town Line: 400 vphpl (local road)

The existing road section capacity operations are summarized in Table 2 (the analysis considers the peak hour peak directional volumes and the above noted assumed planning capacities).

Table 2: Road Section Operations - 2017 Conditions

|  <br> Lanes per Direction | Capacity ${ }^{1}$ | Traffic Volumes |  | Volume to Capacity |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NB/EB | SB/WB | NB/EB | SB/WB |
| Highway 12 | 1 | 1100 | 629 | 657 | 0.57 | 0.60 |
| Town Line | 1 | 400 | 140 | 111 | 0.35 | 0.28 |

${ }^{1}$ Capacity reflects vehicles per direction per hour
As indicated, the road network is operating at $60 \%$ of capacity or less (i.e. $\mathrm{v} / \mathrm{c} \leq 0.60$ ), thus indicating that the network has reserve capacity (even with consideration for summer volumes). No improvements are recommended to address capacity under existing conditions.

## 3 Proposed Development

## $3.1 \quad$ Site Location

As illustrated in Figure 1, the proposed development site is located at 3879 Town Line in the Township of Severn.

### 3.2 Proposed Development

The proposed development will consist of the following:

- 19 single family homes;
- a 1.08 hectare (2.67 acre) stormwater management block; and
- a 2.57 hectare ( 6.35 acre) open space block.

A draft plan of subdivision is provided in Figure 4.

### 3.3 Site Access

A single road access to Town Line (Street A) will be provided within a 20 metre right-of-way, which is intended to become a Township of Severn road upon assumption. The intersection with Street A will be approximately 100 metres north of the Town Line intersection with Highway 12 (measured centre to centre).

### 3.4 Parking

Parking provisions will be provided in accordance with the Township requirements for each residential lot (between driveway and garage parking).

### 3.5 Site Traffic

## Trip Generation

The number of vehicle trips to be generated by the proposed residential development has been determined based on the development size, land use and trip generation rates provided in the ITE Trip Generation Manual, 9th Edition. Based on the proposed residential use, the single family detached (ITE code 210) land-use has been applied to development. The associated trip rates and trip estimates are provided in Table 3. The rates represent the weekday AM and PM peak hour of the adjacent street.

## Table 3: Trip Generation

| Land Use | ratel <br> estimate | Weekday <br> AM Peak Hour |  |  | Weekday <br> PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | Out | Total | In | Out | Total |  |
| single family <br> detached units <br> (ITE code 210) | units | 0.19 | 0.56 | 0.75 | 0.63 | 0.37 | 1.00 |

As indicated, the proposed development is expected to generate 14 trips during the weekday AM peak hour and 19 trips during the weekday PM peak hour.

## Trip Distribution \& Assignment

Given the proximity of the site to Highway 12, and to consider the maximum increase in traffic volumes on Highway 12, all site traffic is assumed to travel to/from Highway 12 (as opposed to/from the north via Town Line). The distribution along Highway 12 is premised on the existing travel patterns realized through the intersection count (namely, the majority of travel is destined to/from the south towards the City of Orillia and/or Highway 11).

The resulting site generated traffic volumes assigned to the road network are illustrated in Figure 5.

## 4 Transportation Impacts

### 4.1 Future Horizon Year

Given the limited number of residential units to be constructed, a 5 -year horizon (2022) has been considered to assess the transportation impacts. While it is typical that a comprehensive traffic impact study consider 5 and 10 year horizons beyond full build-out, such is not considered necessary for this review given the limited traffic volumes.

### 4.2 Future Traffic Volumes

The 2022 future traffic volumes are based on the 2017 summer volumes, adjusted to consider anticipated growth in the area and the site traffic associated with the subject development.

## Assumed Growth

As per the Highway 12 historic traffic volumes, summer traffic volumes have not realized a net increase over the 10-year period 2006 to 2016; in many years, the volumes decreased, to be followed by an increase in the next year. Similar patterns have occurred over the more recent years as well.

To ensure a conservative approach, an annual growth rate of $2 \%$ on Highway 12 has been assumed, which was also applied to those volumes on Town Line. This translates to a $10 \%$ increase in volumes over the 5 -year planning horizon assumed. The corresponding background traffic volumes (withouth the subject development) are provided in Figure 6.

## 2022 Total Traffic Volumes

The 2022 future total traffic volumes (2022 background volumes + site volumes) are also illustrated in Figure 6.

### 4.3 Future Traffic Operations

### 4.3.1 Intersection Operations

The operations of the Highway 12 intersection with Town Line were again investigated to consider the impact of the additional trips generated by the proposed development. The results of the operational review are provided in Table 4 whereas detailed worksheets are provided in Appendix C.

As indicated, the intersection will continue to offer acceptable levels of service (LOS D) with average delays of 33 seconds or less during the peak hours. As such, no intersection improvements are required to accommodate the proposed development.

Table 4: Intersection Operations - 2022 Conditions

| Intersection and Movement |  | Control | Weekday AM Peak Hour |  |  | Weekday PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | delay | LOS | v/c | delay | LOS | v/c |
| Highway 12 \& Town Line | WB |  | stop | 33 | D | 0.54 | 29 | D | 0.35 |

### 4.3.2 Road Section Operations

The road section capacity operations have been reviewed based on the projected 2022 volumes and the assumed capacity of the existing road network, the results of which are summarized in Table 5.

Table 5: Road Section Operations - 2022 Conditions

|  <br> Lanes per Direction | Capacity ${ }^{1}$ | Traffic Volumes |  | Volume to Capacity |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NB/EB | SB/WB | NB/EB | SB/WB |  |
| Highway 12 | 1 | 1100 | 706 | 737 | 0.64 | 0.67 |
| Town Line | 1 | 400 | 167 | 134 | 0.42 | 0.33 |

${ }^{1}$ Capacity reflects vehicles per direction per hour
As noted, the study area road network is expected to operate at $67 \%$ of capacity or less (ie. v/c $\leq 0.67$ ) given the projected total volumes. Thus the road network has considerable excess reserve capacity to accommodate additional traffic volumes. No improvements are required to increase the road section capacity to accommodate the additional traffic associated with the proposed development.

### 4.3.3 Access Operations

In terms of the access operations, given the limited volumes to/from Street A coupled with the reduced volumes on Town Line, intersection operations will be acceptable.

Give the proximity of the Street A intersection to that of Highway 12, the presence of traffic queues on Town Line at Highway 12 have also been considered (in that a significant queue could impede exit from Street A). Based on the 2022 traffic operations (as per the worksheets provided in Appendix C), the following queues are realized:

- AM peak hour westbound queue: 22 metres (approximately 3 vehicles); and
- PM peak hour westbound queue: 11 metres (approximately 1.5 vehicles).

As previously noted, the intersections are approximately 100 metres apart (centre to centre), which thus affords a separation distance to accommodate traffic queues of approximately 80 metres. As such, the noted queues can be accommodated without implications to the Street A intersection.

### 4.4 Turn Lane Requirements

The volumes accessing the site are not such that would impede through traffic or cause undue safety concerns on Town Line or Highway 12. Exclusive turn lanes are neither recommended nor warranted to accommodate the projected site volumes.

### 4.5 Sight Line Assessment

Based on MTO geometric design standards, the minimum stopping sight distance requirements are as follows:

- 85 metres for a $60 \mathrm{~km} / \mathrm{h}$ design speed (posted $50 \mathrm{~km} / \mathrm{h}+10 \mathrm{~km} / \mathrm{h}$ for lower speed roads); and
- 185 metres for a $100 \mathrm{~km} / \mathrm{h}$ design speed (posted $80 \mathrm{~km} / \mathrm{h}+20 \mathrm{~km} / \mathrm{h}$ for higher speed roads).

The above provide sufficient distances for an approaching motorist travelling at the design speed to observe a stationary hazard in the road (ie. a vehicle stopped to completed a turn) and bring their vehicle to a complete stop prior to the hazard.

At the Street A intersection with Town Line, sight lines to/from the north exceed the 85 metre requirement given the relatively straight and flat alignment of Town Line. To/from the south, the intersection at Highway 12 is visible. Given the proximity of the intersections, it must also be recognized that those approaching Street A from Highway 12 are not likely to be travelling at $50 \mathrm{~km} / \mathrm{h}$ having just passed through the intersection.

At the Town Line intersection with Highway 12 (which is an existing intersection), sight lines of 185 metres and greater are available in both directions (the limit of the 185 metre requirement is illustrated in Figure 7).

As such, no improvements to address sight line constraints are required.

This review has addressed the transportation impacts associated with the proposed residential subdivision to be located at 3879 Town Line in the Township of Severn. The development will consist of 19 detached residential dwellings. Upon full build-out, the development is expected to generate 14 new trips during the weekday AM peak hour and 19 new trips during the weekday PM peak hour, which is not considered significant.

In addressing the study area traffic operations, the key intersection of Highway 12 with Town Line will continue to provide acceptable operating conditions with consideration for future growth, including that of the subject site. With respect to road section operations, the adjacent road network is expected to operate at $67 \%$ or less of its capacity given the projected total volumes. As such, no improvements to the road network or the key intersection are considered necessary to accommodate the volumes generated by the site. Furthermore, the road network and study area intersection have excess capacity to accommodate additional future growth within the area.

In considering the relatively low trip generation of the site and the excess reserve capacity on Town Line, the site access intersection (Street A with Town Line) is expected to offer good operations.

The available sight lines were reviewed at the proposed site access and at the Town Line intersection with Highway 12 to ensure that adequate sight distances are provided with respect to MTO design requirements. In all instances, the sight lines were found to exceed the minimum sight distance requirements and therefore no improvements are required to address such.

© C.C. Tatham \& Associates Ltd.
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and C.C. Tatham \& Associates Ltd. undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of C.C. Tatham \& Associates Ltd.



3879 Town Line Subdivision, Traffic Review
Area Road Network


3879 Town Line Subdivision, Traffic Review
Figure
Area Road Network
2b


Looking west along Town Line to Old Coldwater Road and Highway 12


2017 Traffic Counts
Date: Sept 7, 2017
Peaks: $7: 30$ to $8: 30$ \& 16:45 to 17:45


Highway 12

## 2017 Summer Counts


C.C.Tatham \& Associates Ltd.

Consulting Engineers


Highway 12

## Site Volumes



Highway 12

## 2022 Background Volumes

| annual growth | $2 \%$ |
| :--- | ---: |
| growth factor | 1.10 |



## 2022 Total Volumes

(Background + Site Volumes)


3879 Town Line Subdivision, Traffic Review
Highway 12 Sight Lines

Figure
7

APPENDIX A: TRAFFIC COUNTS

| GENERAL INFORMATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Surveyor Name | Dillon Bickell | Jurisdiction/Date | Marchmont | Sept 7, 2017 |
| Weather Conditions | Sunny, Clear | Major Street | Highway 12 | N -S |
| Project Name | 3879 Town Line Subdivision | Minor Street | Town Line | E-W |
| Project Number | 315836 | Intersection Control | stop control |  |
| Additional Comments | Old Coldwater Road intersects Town Line just east of Highway 12 intersection |  |  |  |



| GENERAL INFORMATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Surveyor Name | Dillon Bickell | Jurisdiction/Date | Marchmont | Sept 7, 2017 |
| Weather Conditions | Sunny, Clear | Major Street | Highway 12 | $\mathrm{N}-\mathrm{S}$ |
| Project Name | 3879 Town Line Subdivision | Minor Street | Town Line | E-W |
| Project Number | 315836 | Intersection Control | stop control |  |
| Additional Comments | Old Coldwater Road intersects Town Line just east of Highway 12 intersection |  |  |  |



Provincial
Highways

Traffic Volumes
1988-2016
King's Highways / Secondary Highways / Tertiary Roads

## Ministry Contact:

Traffic Office (905)-704-2960

## Abstract:

This annual publication contains averaged traffic volume information and accident rate information for each of the sections of highway under MTO jurisdiction.

## Key Words:

Annual Average Daily Traffic volume (AADT), Summer Average Daily Traffic volume (SADT), Summer Average Weekday Traffic volume (SAWDT), Winter Average Daily Traffic volume (WADT), Accident Rate (AR)

## INTRODUCTION

This publication contains information pertaining to traffic volumes on roads under Provincial jurisdiction as of December 31, 2016. The publication is divided into two parts.

## OVERALL SYSTEM SUMMARIES

The information in this section is included for policy analysis and program planning purposes. It includes summaries about the overall Provincial Highways system. The system indicators are developed from travel experience, accident data and highway geometrics.

## TRAFFIC VOLUME INFORMATION

A detailed listing outlining the 26 year history (1988-2013) of traffic volumes on Provincial Highways (King's, Secondary, Tertiary Roads and the 7000 series highways) is provided.

The highway network is divided into approximately 1831 sections for reporting purposes. Seasonal traffic volume variations are estimated for each section reported. Although local conditions cause variations in the volume within the sections, the volumes shown are considered to adequately represent the section.

On highways that overlap another highway, for instance Highway 35 and Highway 115, the volume information is referenced to the lower number highway. When an overlap occurs between a freeway and non-freeway, reference is made to the freeway route number. The freeways are Highway 400 to Highway 427 and the QEW.

The following are definitions to reading the listings:
Location Description: A statement identifying the start or ending point of a section. Some frequently used abbreviations include:

| BDY | boundary |
| :--- | :--- |
| BR | bridge |
| C | concession |
| CTY | county |
| DIST | district |
| KM | kilometres |
| AVE | avenue |
| REG | regional |
| HWY | highway |
| IC | interchange |
| JCT | junction |
| L | lot |
| LN | line |
| LTS | limits |
| NA | non assumed* |
| OH | overhead |
| OP | overpass |
| PKWY | parkway |
| R | river |
| RD | road |
| ST | street |
| TWP | township |
| UP | underpass |

*Non Assumed - indicates that the roadway is not under provincial jurisdiction therefore contact the corresponding regional municipality for traffic volume information.

## Distance (KM)

The length of the section in kilometres reported to one decimal place.

## Pattern Type

One of 14 pattern types that represent the seasonal variation of the traffic flow on the section indicated. A graphical presentation of these pattern types has been included on the following page.

The 14 pattern types represent the traffic flow variation on the whole network. They include:

## Variation Types

|  | UC | urban commuter |
| :--- | :--- | :--- |
| LOW | SC | suburban commuter |
|  | C | commuter |
|  | IC | intermediate commuter |
|  | CR | commuter recreation |
|  | IR | intermediate recreation |
|  | CTR | commuter tourist recreation |
|  | IT | intermediate tourist |
|  | LT | low tourist |
|  | T | tourist |
|  | HT | high tourist |
|  | LR | low recreation |
|  | R | recreation |
|  | HR | high recreation |
|  | UNKN | unknown |
|  |  |  |
|  | UNCL | unclassified |
|  |  |  |

The first three are generally referred to as Low Variation Curves (or commuter travel); the next five as Intermediate Variation Curves
(a blend of all types of traffic); and the last six as High Variation Curves. For the last group, the first three represent tourist travel and the second three, recreational travel; this sub-grouping is distinguished by the relationship of weekend to weekday traffic.

There are two additional codes in the pattern type column. "UNC" indicates that the AADT was calculated using adjustment factors from an unclassified (i.e. new) permanent counting station. "NEW" indicates that this is a new volume section and there is insufficient data to assign a pattern type.

## AADT

Annual Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January $1^{\text {st }}$ to December $31^{\text {st }}$.

## SADT

Summer Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period July $1^{\text {st }}$ to August $31^{\text {st }}$ including weekends.

## SAWDT

Summer Average Weekday Traffic; defined as the average twenty four hour, two way traffic for the period July $1^{\text {st }}$ to August $31^{\text {st }}$, excluding weekends.

## WADT

Winter Average Daily Traffic; defined as the average twenty four hour, two way traffic for the period January $1^{\text {st }}$ to March $31^{\text {st }}$, plus December $1^{\text {st }}$ to December 31 $1^{\text {st }}$, including weekends.

| Highway | Location Description | Dist. <br> (KM) | Year | Pattern Type | AADT | SADT | SAWDT | WADT | AR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2000 | CR | 16,200 | 21,700 | 21,900 | 12,200 | 2.0 |
|  |  |  | 2001 | CR | 16,700 | 22,400 | 22,500 | 12,500 | 2.5 |
|  |  |  | 2002 | CR | 18,800 | 27,400 | 26,000 | 13,000 | 2.1 |
|  |  |  | 2003 | CR | 18,200 | 26,600 | 25,300 | 12,600 | 1.3 |
|  |  |  | 2004 | CR | 19,000 | 27,300 | 26,000 | 13,200 | 3.0 |
|  |  |  | 2005 | CR | 19,500 | 25,900 | 26,100 | 14,700 | 2.8 |
|  |  |  | 2006 | CR | 20,400 | 27,900 | 27,200 | 15,000 | 1.6 |
|  |  |  | 2007 | CR | 20,800 | 25,200 | 25,200 | 17,500 | 1.7 |
|  |  |  | 2008 | CR | 21,900 | 26,500 | 26,300 | 18,500 | 3.0 |
|  |  |  | 2009 | CR | 22,000 | 26,500 | 25,500 | 18,600 | 1.8 |
|  |  |  | 2010 | CR | 23,400 | 28,000 | 27,100 | 19,800 | 1.3 |
|  |  |  | 2011 | CR | 20,000 | 23,400 | 23,600 | 17,800 | N/A |
|  |  |  | 2012 | CR | 24,000 | 28,800 | 28,300 | 20,400 | N/A |
|  |  |  | 2013 | CR | 19,500 | 23,400 | 24,000 | 16,600 | N/A |
|  |  |  | 2014 | CR | 19,900 | 23,500 | 23,300 | 16,900 | N/A |
|  |  |  | 2015 | CR | 21,400 | 25,300 | 25,000 | 18,200 | N/A |
|  |  |  | 2016 | CR | 21,900 | 25,800 | 25,600 | 18,600 | N/A |
| 12 | S JCT HWY 11-ORILLIA BYPASS (OVERLAP HWY 11) | 2.3 |  |  |  |  |  |  |  |
| 12 | N JCT HWY 11 - COLDWATER RD-ORILLIA | 3.1 | 1988 | IC | 10,000 | 11,500 | 11,200 | 8,700 | 1.3 |
|  |  |  | 1989 | IC | 10,500 | 12,000 | 11,800 | 9,300 | 1.1 |
|  |  |  | 1990 | IC | 10,700 | 13,300 | 12,600 | 9,300 | 0.6 |
|  |  |  | 1991 | IC | 11,000 | 13,800 | 13,700 | 9,500 | 0.5 |
|  |  |  | 1992 | IC | 11,200 | 13,700 | 13,300 | 9,700 | 0.4 |
|  |  |  | 1993 | IC | 11,300 | 14,200 | 13,600 | 9,600 | 0.6 |
|  |  |  | 1994 | IC | 11,600 | 14,800 | 14,200 | 9,800 | 1.0 |
|  |  |  | 1995 | IC | 11,900 | 15,200 | 14,600 | 10,000 | 1.4 |
|  |  |  | 1996 | IC | 12,000 | 15,400 | 14,800 | 10,100 | 0.9 |
|  |  |  | 1997 | IC | 12,500 | 16,000 | 15,400 | 10,500 | 0.6 |
|  |  |  | 1998 | IC | 12,800 | 16,300 | 15,600 | 10,800 | 0.8 |
|  |  |  | 1999 | IC | 13,600 | 17,100 | 16,500 | 11,500 | 0.8 |
|  |  |  | 2000 | IC | 13,700 | 17,300 | 16,600 | 11,600 | 0.7 |
|  |  |  | 2001 | IC | 14,100 | 17,800 | 17,100 | 11,800 | 1.0 |
|  |  |  | 2002 | IC | 14,500 | 18,300 | 17,500 | 12,200 | 1.2 |


| Highway | Location Description | Dist. <br> (KM) | Year | Pattern <br> Type | AADT | SADT | SAWDT | WADT | AR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2003 | IC | 14,900 | 18,800 | 18,000 | 12,700 | 1.1 |
|  |  |  | 2004 | IC | 15,000 | 18,600 | 17,900 | 12,700 | 1.1 |
|  |  |  | 2005 | IC | 14,800 | 18,300 | 17,600 | 12,600 | 0.9 |
|  |  |  | 2006 | IC | 16,000 | 17,800 | 17,900 | 14,200 | 1.6 |
|  |  |  | 2007 | IC | 15,300 | 17,000 | 17,500 | 13,500 | 1.2 |
|  |  |  | 2008 | IC | 15,900 | 17,600 | 17,000 | 14,000 | 1.2 |
|  |  |  | 2009 | IC | 13,800 | 15,300 | 15,400 | 12,200 | 1.4 |
|  |  |  | 2010 | IC | 16,100 | 17,800 | 18,000 | 14,300 | 0.9 |
|  |  |  | 2011 | IC | 16,400 | 18,000 | 18,700 | 14,700 | N/A |
|  |  |  | 2012 | IC | 16,600 | 18,500 | 17,800 | 14,800 | N/A |
|  |  |  | 2013 | IC | 16,900 | 18,800 | 18,600 | 15,000 | N/A |
|  |  |  | 2014 | IC | 17,200 | 19,000 | 18,900 | 15,300 | N/A |
|  |  |  | 2015 | IC | 17,400 | 19,300 | 19,100 | 15,500 | N/A |
|  |  |  | 2016 | IC | 17,700 | 19,600 | 19,400 | 15,700 | N/A |
| 12 | WAINMAN LINE(N)-ORO-MEDONTE LINE 15 NORTH (S) | 2.5 | 1988 | IC | 8,100 | 9,300 | 9,100 | 7,100 | 1.3 |
|  |  |  | 1989 | IC | 8,500 | 9,700 | 9,600 | 7,500 | 1.1 |
|  |  |  | 1990 | IC | 9,150 | 11,400 | 10,700 | 7,900 | 1.2 |
|  |  |  | 1991 | IC | 9,400 | 11,800 | 11,700 | 8,100 | 1.3 |
|  |  |  | 1992 | IC | 9,700 | 11,900 | 11,500 | 8,400 | 0.8 |
|  |  |  | 1993 | IC | 10,100 | 12,600 | 12,100 | 8,500 | 0.7 |
|  |  |  | 1994 | IC | 10,000 | 12,800 | 12,200 | 8,450 | 0.8 |
|  |  |  | 1995 | IC | 10,300 | 13,200 | 12,700 | 8,700 | 0.5 |
|  |  |  | 1996 | IC | 10,600 | 13,600 | 13,000 | 8,950 | 0.5 |
|  |  |  | 1997 | IC | 10,900 | 13,500 | 12,900 | 9,250 | 0.6 |
|  |  |  | 1998 | IC | 11,200 | 13,700 | 13,100 | 9,500 | 0.5 |
|  |  |  | 1999 | IC | 10,900 | 13,400 | 12,800 | 9,250 | 0.6 |
|  |  |  | 2000 | IC | 11,400 | 14,000 | 13,400 | 9,650 | 0.9 |
|  |  |  | 2001 | IC | 11,600 | 14,300 | 13,600 | 11,600 | 0.3 |
|  |  |  | 2002 | IC | 11,800 | 14,500 | 13,800 | 10,000 | 1.0 |
|  |  |  | 2003 | IC | 12,000 | 14,800 | 14,000 | 10,200 | 0.9 |
|  |  |  | 2004 | IC | 12,200 | 14,900 | 14,300 | 10,300 | 0.9 |
|  |  |  | 2005 | IC | 12,400 | 15,000 | 14,500 | 10,400 | 0.8 |
|  |  |  | 2006 | IC | 12,600 | 15,300 | 14,700 | 10,600 | 1.0 |


| Highway | Location Description | Dist. <br> (KM) | Year | Pattern <br> Type | AADT | SADT | SAWDT | WADT | AR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2007 | IC | 12,800 | 15,500 | 15,500 | 10,800 | 0.7 |
|  |  |  | 2008 | IC | 13,000 | 15,700 | 15,600 | 11,000 | 1.1 |
|  |  |  | 2009 | IC | 13,200 | 15,900 | 15,300 | 11,200 | 0.6 |
|  |  |  | 2010 | IC | 13,400 | 16,100 | 15,500 | 11,300 | 0.7 |
|  |  |  | 2011 | IC | 13,000 | 15,200 | 15,300 | 11,500 | N/A |
|  |  |  | 2012 | IC | 13,700 | 16,400 | 16,100 | 11,600 | N/A |
|  |  |  | 2013 | IC | 13,900 | 16,700 | 17,100 | 11,800 | N/A |
|  |  |  | 2014 | IC | 14,000 | 15,600 | 15,400 | 12,500 | N/A |
|  |  |  | 2015 | IC | 14,300 | 15,900 | 15,700 | 12,700 | N/A |
|  |  |  | 2016 | IC | 14,500 | 16,000 | 15,900 | 12,900 | N/A |
| 12 | DIVISION RD W (N) | 10.6 | 1988 | C | 5,450 | 6,300 | 6,100 | 4,750 | 0.8 |
|  |  |  | 1989 | C | 5,700 | 6,500 | 6,400 | 5,000 | 1.4 |
|  |  |  | 1990 | C | 5,950 | 8,600 | 8,300 | 4,300 | 1.1 |
|  |  |  | 1991 | C | 6,100 | 8,500 | 8,200 | 4,500 | 0.8 |
|  |  |  | 1992 | C | 6,300 | 8,700 | 8,500 | 4,850 | 0.7 |
|  |  |  | 1993 | C | 6,550 | 8,200 | 7,900 | 5,500 | 0.6 |
|  |  |  | 1994 | C | 6,750 | 8,650 | 8,250 | 5,700 | 0.8 |
|  |  |  | 1995 | C | 7,000 | 8,950 | 8,600 | 5,900 | 0.8 |
|  |  |  | 1996 | C | 7,300 | 9,350 | 9,000 | 6,150 | 0.7 |
|  |  |  | 1997 | C | 7,450 | 9,550 | 9,150 | 6,300 | 0.8 |
|  |  |  | 1998 | C | 7,650 | 9,700 | 9,350 | 6,450 | 0.5 |
|  |  |  | 1999 | C | 7,700 | 9,700 | 9,300 | 6,500 | 0.8 |
|  |  |  | 2000 | C | 7,850 | 9,900 | 9,500 | 6,600 | 0.8 |
|  |  |  | 2001 | C | 8,000 | 10,100 | 9,700 | 6,700 | 0.6 |
|  |  |  | 2002 | C | 8,050 | 10,200 | 9,750 | 6,800 | 1.0 |
|  |  |  | 2003 | C | 8,950 | 11,300 | 10,800 | 7,600 | 0.6 |
|  |  |  | 2004 | C | 9,900 | 12,300 | 11,800 | 8,400 | 0.3 |
|  |  |  | 2005 | C | 11,500 | 14,200 | 13,700 | 9,750 | 0.5 |
|  |  |  | 2006 | C | 9,500 | 11,800 | 11,300 | 8,050 | 0.4 |
|  |  |  | 2007 | C | 9,750 | 10,800 | 11,200 | 8,600 | 0.4 |
|  |  |  | 2008 | C | 9,950 | 11,000 | 10,700 | 8,750 | 0.7 |
|  |  |  | 2009 | C | 10,200 | 11,300 | 11,400 | 9,050 | 0.4 |
|  |  |  | 2010 | C | 9,000 | 11,000 | 10,500 | 7,650 | 0.3 |


| Highway | Location Description | Dist. <br> (KM) | Year | Pattern <br> Type | AADT | SADT | SAWDT | WADT | AR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2011 | C | 8,000 | 9,750 | 9,350 | 6,800 | N/A |
|  |  |  | 2012 | C | 10,300 | 12,400 | 12,300 | 8,750 | N/A |
|  |  |  | 2013 | C | 9,250 | 11,300 | 11,700 | 7,850 | N/A |
|  |  |  | 2014 | C | 10,400 | 11,400 | 11,100 | 9,350 | N/A |
|  |  |  | 2015 | C | 9,500 | 10,500 | 10,200 | 8,550 | N/A |
|  |  |  | 2016 | C | 10,500 | 11,600 | 11,300 | 9,450 | N/A |
| 12 | SIMCOE RD 19-MOONSTONE RD(S)/STAGECOACH RD(N) | 3.2 | 1988 | CTR | 3,900 | 5,000 | 4,750 | 3,250 | 0.7 |
|  |  |  | 1989 | CTR | 3,950 | 5,000 | 4,750 | 3,350 | 0.9 |
|  |  |  | 1990 | CTR | 4,000 | 5,800 | 5,500 | 2,900 | 0.2 |
|  |  |  | 1991 | CTR | 4,150 | 5,800 | 5,600 | 3,050 | 1.0 |
|  |  |  | 1992 | CTR | 4,200 | 5,800 | 5,600 | 3,200 | 0.6 |
|  |  |  | 1993 | CTR | 4,400 | 5,500 | 5,300 | 3,700 | 1.4 |
|  |  |  | 1994 | CTR | 4,600 | 5,900 | 5,600 | 3,900 | 0.9 |
|  |  |  | 1995 | CTR | 4,750 | 6,100 | 5,850 | 4,000 | 0.5 |
|  |  |  | 1996 | CTR | 4,900 | 6,250 | 6,050 | 4,150 | 0.9 |
|  |  |  | 1997 | CTR | 5,000 | 6,400 | 6,150 | 4,200 | 1.2 |
|  |  |  | 1998 | CTR | 5,150 | 6,550 | 6,300 | 4,350 | 0.2 |
|  |  |  | 1999 | CTR | 5,300 | 6,700 | 6,400 | 4,450 | 0.2 |
|  |  |  | 2000 | CTR | 5,450 | 6,850 | 6,600 | 4,600 | 0.5 |
|  |  |  | 2001 | CTR | 5,550 | 7,000 | 6,700 | 4,650 | 0.6 |
|  |  |  | 2002 | CTR | 5,700 | 7,200 | 6,900 | 4,800 | 0.5 |
|  |  |  | 2003 | CTR | 5,850 | 7,350 | 7,100 | 4,950 | 0.4 |
|  |  |  | 2004 | CTR | 6,000 | 7,450 | 7,150 | 5,100 | 1.0 |
|  |  |  | 2005 | CTR | 6,100 | 7,550 | 7,250 | 5,150 | 0.4 |
|  |  |  | 2006 | CTR | 6,050 | 7,500 | 7,200 | 5,150 | 0.6 |
|  |  |  | 2007 | CTR | 6,200 | 7,700 | 7,600 | 5,250 | 1.0 |
|  |  |  | 2008 | CTR | 6,300 | 7,800 | 7,650 | 5,350 | 1.4 |
|  |  |  | 2009 | CTR | 6,400 | 7,850 | 7,550 | 5,450 | 1.2 |
|  |  |  | 2010 | CTR | 6,200 | 6,850 | 6,900 | 5,500 | 0.3 |
|  |  |  | 2011 | CTR | 6,650 | 7,300 | 7,550 | 5,950 | N/A |
|  |  |  | 2012 | CTR | 6,750 | 7,500 | 7,200 | 6,000 | N/A |
|  |  |  | 2013 | CTR | 6,850 | 7,600 | 7,550 | 6,100 | N/A |
|  |  |  | 2014 | CTR | 6,950 | 7,750 | 7,650 | 6,200 | N/A |

## APPENDIX B:

## EXISTING OPERATIONS




APPENDIX C: FUTURE OPERATIONS




[^0]:    ${ }^{1}$ Highway Capacity Manual. Transportation Research Board, Washington DC, 2010.

