

GEOTECHNICAL/HYDROGEOLOGICAL INVESTIGATION PROPOSED EXPANSION OF MELVILLE COURT SUBDIVISION ORO-MEDONTE, ONTARIO

for

DONCOR DEVELOPMENTS INC.

PETO MacCALLUM LTD. 19 CHURCHILL DRIVE BARRIE, ONTARIO L4N 8Z5 PHONE: (705) 734-3900 FAX: (705) 734-9911 EMAIL: barrie@petomaccallum.com

Distribution: 1 cc: Doncor Developments Inc. (email only) 1 cc: PML Barrie PML Ref.: 21BF010 Report: 1 June 2021 June 7, 2021

PML Ref.: 21BF010 Report: 1

Mr. Rod Miskey DonCor Developments Inc. c/o Mr. Marty Veenstra 1004 Line 4 North Oro-Medonte, Ontario L0L 2L0

Dear Mr. Miskey

Geotechnical/Hydrogeological Investigation Proposed Expansion of Melville Court Subdivision <u>Oro-Medonte, Ontario</u>

Peto MacCallum Ltd. (PML) is pleased to present the results of the Geotechnical/Hydrogeological investigation recently completed at the above noted project site. Authorization for the work described in this report was provided by Mr. R. Miskey in the signed engineering services agreement dated February 8, 2021.

eto MacCallum Ltd

CONSULTING ENGINEERS

It is planned to expand the subdivision on Melville Court in the Township of Oro-Medonte. There are existing residential lots on the south side of Melville Court. The proposed expansion will add fourteen residential lots on the north side of Melville Court and two more lots off of Line 5. The land is currently being utilized for agricultural purposes with a treed area at the east end along Line 5. Full-depth basements are being planned and each lot will have a septic system and a well.

The purpose of this investigation was to assess the subsurface conditions at the site, and based on this information, provide comments and Geotechnical engineering recommendations for earthworks, building foundations and basements, and paraments for septic design. Hydrogeological recommendations include a preliminary water balance, desktop domestic well assessment, ground water flow direction and gradient, and assessment of ground water quality for septic design and sizing of lots.

Four boreholes were advanced across the site. Topsoil was encountered over varying units of till, silty sand to sandy silt, or sand units. Ground water was encountered within 1.0 m in the east of the site.

Typical construction methods should be applicable for the site, and full depth basements can be constructed, however high ground water table on the east side of the site will force a grade raise, if basements are still being considered.

We trust the information in this report is sufficient for your present purpose. If you have any questions, please do not hesitate to call our office.

Sincerely

Peto MacCallum Ltd.

Geoffrey R. White, P.Eng. Director Manager, Geotechnical Services

AK/GRW:tc

19 Churchill Drive, Barrie, Ontario L4N 8Z5 Tel: (705) 734-3900 Fax: (705) 734-9911 E-mail: barrie@petomaccallum.com BARRIE, COLLINGWOOD, HAMILTON, KITCHENER, LONDON, TORONTO

TABLE OF CONTENTS

1.	INTF	RODUCTION	1
2.	INVE	ESTIGATION PROCEDURES	2
	2.1	Geotechnical Investigation	2
	2.2	Hydrogeological Investigation. 2.2.1 Ground Water Sampling	
	2.3	Geoenvironmental Investigation	4
3.	SITE	E SETTING	4
	3.1	Physiography and Topography	4
	3.2	Drainage and Surface Water Flow	4
4.	GEC	DLOGY AND SUBSURFACE CONDITIONS	5
	4.1	Geology	5
	4.2	Subsurface Conditions	5
		4.2.1 Soil	
_	050	4.2.2 Ground Water	
5.	GEC	DTECHNICAL ENGINEERING CONSIDERATIONS	
	5.1	General	7
	5.2	Site Grading and Engineered Fill	
	5.3	Foundations	9
	5.4	Basement Walls and Floor Slabs	10
	5.5	Excavation and Ground Water Control	11
	5.6	Geotechnical Review and Construction Inspection and Testing	12
6.	HYD	ROGEOLOGICAL CONSIDERATIONS	13
	6.1	Aquifers and Local Ground Water Use	13
	6.2	Septic System Considerations 6.2.1 Grain Size Distribution	
	6.3	Ground Water Sample Chemical Test Results	15
	6.4	Preliminary Water Balance 6.4.1 Climate	

		6.4.2 Water Balance: Pre-Development	16
		6.4.3 Water Balance: Post Development	17
	6.5	Development Considerations	18
		6.5.1 Ground Water Recharge Management	18
		Mitigation Measures, Opportunities and Constraints	18
7.	GEC	DENVIRONMENTAL CONSIDERATIONS	19
	7.1	General	19
	7.2	Chemical Testing Protocols	19
	7.3	Site Condition Standards	20
	7.4	Analytical Findings and Conclusions	21
		7.4.1 On-Site Reuse	21
		7.4.2 Off-Site Reuse/Disposal	21
8.	CLO	SURE	23

- Table 1 Water Budget Summary (Using Thornthwaite Empirical Approach)
- Table 2A Water Budget Pre-Development
- Table 2B Water Budget Post-Development
- Table 2C Water Budget Summary (comparison)
- Figures 1 to 3 Grain Size Distribution Results

Figure 4 – General Recommendations Regarding Drainage and Backfill Requirements for Basement Walls and Floor Slab Construction

- List of Abbreviations
- Log of Borehole/Monitoring Well Nos. 1 to 4
- Drawing 1 Borehole/Monitoring Well Location Plan
- Appendix A Statement of Limitations
- Appendix B Engineered Fill
- Appendix C MECP Water Well Records
- Appendix D Certificates of Analyses for Chemical Testing Ground Water
- Appendix E Certificates of Analyses for Chemical Testing Soil

1. INTRODUCTION

Peto MacCallum Ltd. (PML) is pleased to present the results of the Geotechnical/Hydrogeological investigation recently completed at the above noted project site. Authorization for the work described in this report was provided by Mr. R. Miskey in the signed engineering services agreement dated February 8, 2021.

It is planned to expand the subdivision on Melville Court in the Township of Oro-Medonte. There are existing residential lots on the south side of Melville Court. The proposed expansion will add fourteen residential lots on the north side of Melville Court and two more lots off of Line 5. The land is currently being utilized for agricultural purposes with a treed area at the east end along Line 5. Full-depth basements are being planned and each lot will have a septic system and a well.

The purpose of this investigation was to assess the subsurface conditions at the site, and based on this information, provide comments and Geotechnical engineering recommendations for earthworks, building foundations and basements, and paraments for septic design. Hydrogeological recommendations include a preliminary water balance, desktop domestic well assessment, ground water flow direction and gradient, and assessment of ground water quality for septic design and sizing of lots.

The comments and recommendations provided in this report are based on the site conditions at the time of the investigation, and are applicable only to the proposed works as addressed in the report. Any changes in the proposed plans will require review by PML to re-assess the validity of the report, and may require modified recommendations, additional investigation and/or analysis.

This report is subject to the Statement of Limitations that is included in Appendix A and must be read in conjunction with the report.

2. INVESTIGATION PROCEDURES

2.1 Geotechnical Investigation

The Geotechnical field work for this investigation consisted of Boreholes 1 to 4, advanced on March 3, 2021, extending to 5.0 to 6.5 m depth. Borehole locations are shown on Drawing 1, appended.

PML laid out the boreholes in the field. The ground surface elevation at the borehole locations was obtained with a Sokkia SHC5000 Global Navigation Satellite System (GNSS). Vertical and horizontal accuracy of this unit are 0.1 and 0.5 m, respectively. All elevations in this report are geodetic and expressed in metres.

Co-ordination for clearances of underground utilities was provided by PML. The boreholes were drilled cognizant of the underground utilities.

The boreholes were advanced using continuous flight hollow stem augers, powered by a track mounted D-50 drill rig, equipped with an automatic hammer, supplied and operated by a specialist drilling contractor, working under the full-time supervision of a member of PMLs engineering staff.

Where topsoil was encountered at the surface, the thickness was measured in hand dug divots.

Representative samples of the overburden were recovered at frequent depth intervals for identification purposes using a conventional 51 mm OD split spoon sampler. The sample excluded particles larger than 38 mm. Standard penetration tests were carried out simultaneously with the sampling operations to assess the strength characteristics of the subsoil. The ground water conditions in the boreholes were assessed during drilling by visual examination of the soil samples, the sampler, and drill rods as the samples were retrieved, and measurement of the water level in the open boreholes, if any.

Monitoring wells, comprised of 50 mm diameter PVC pipe with a 1.5 m long screen at the bottom, filter sand, bentonite seal and stick-up protective casing, was installed in four boreholes to permit ground water level monitoring. The details of the monitoring well installation are shown on the applicable Log of Borehole sheets. It should be noted that the well becomes the property of the

Owner and will have to be decommissioned by the Owner in accordance with O.Reg. 903. PML would be pleased to assist, if requested.

PML is currently conducting a six-month water level monitoring program. Results will be provided in a separate letter.

All recovered samples were returned to our laboratory for detailed examination and moisture content determinations. Grain size analyses were carried out on four samples of the major soil units. The laboratory test results are provided on Figures 1 to 3, appended.

Geotechnical engineering considerations are addressed in Section 5.

2.2 <u>Hydrogeological Investigation</u>

2.2.1 Ground Water Sampling

PML returned to site March 30, 2021 to retrieve one representative ground water sample from the monitoring well in Borehole 3. The ground water sample was obtained after well development, which consisted of removing an equivalent of about ten times the well volume. The ground water sample was collected and submitted for chemical testing as described below. The ground water sample was kept cool with ice in a cooler until delivery to the laboratory for analysis.

The ground water sample was delivered to Caduceon Environmental Laboratories (Caduceon) for chemical analyses. Caduceon Laboratories is accredited by The Standards Council of Canada (SCC) and CALA.

The ground water sample was submitted for chemical analysis of nitrate/nitrite and phosphorous.

The Chain-of-Custody Record and the laboratory certificates of analyses are discussed further in Section 6.3.

Hydrogeological considerations are addressed in Section 6.

2.3 <u>Geoenvironmental Investigation</u>

A limited chemical testing program was carried out to check the geoenvironmental quality of the site soils in order to provide comments regarding on-site reuse or off-site disposal options for excess excavated soil.

The Chain-of-Custody Record and the laboratory certificates of analyses are discussed further in Section 7.

3. SITE SETTING

The site is rectangular in shape and is approximately 6.5 ha in size. The site is located to the north of the existing Melville Court subdivision. The site is currently vacant with residential properties to the south, west and east, and agricultural land use to the north.

3.1 **Physiography and Topography**

The site is located within the physiographic region known as the Simcoe Uplands comprising till plains (Chapman and Putnam, 1984).

The borehole elevations indicate about 6.0 m of relief across the site, with elevations ranging from 290.1 to 296.0, gently sloping down from the west to the east.

3.2 Drainage and Surface Water Flow

There are no apparent water courses on-site. A tributary of Shelswell's Creek lies approximately 650 m south of the site and flows towards the south to Lake Simcoe. Surface drainage on the site is expected to follow the topography (east) towards Line 5 and regional surface drainage and ground water flow is believed to be to the south towards Lake Simcoe.

4. <u>GEOLOGY AND SUBSURFACE CONDITIONS</u>

4.1 Geology

Bedrock below the overburden is mapped as limestone, dolostone, shale, arkose, and sandstone of the Simcoe Group from the Middle Ordovian period of the Paleozoic era of the Phanerzoic eon. Bedrock is anticipated at depths greater than 90 m based on the Ontario Division of Mines preliminary Map P.980 Drift Thickness Series for the Barrie Area.

4.2 Subsurface Conditions

Reference is made to the appended Log of Borehole sheets for details of the subsurface conditions, including topsoil thicknesses, soil classifications, inferred stratigraphy and thicknesses, Standard Penetration test N Values (N Values, blows per 300 mm penetration of the split spoon sampler), well installation details, ground water level observations, and the results of laboratory moisture content determinations.

Due to the soil sampling procedures and the limited size of samples, the depth/elevation demarcations on the borehole logs must be viewed as "transitional" zones, and cannot be construed as exact geologic boundaries between layers. PML should be retained to assist in defining the geological boundaries in the field during construction, if required.

Topsoil was encountered overlying till, sand and silt and/or sand units. A description of the distribution of the subsurface conditions encountered is provided below.

4.2.1 <u>Soil</u>

Topsoil was present at the surface of all boreholes, ranging from 220 to 280 mm in thickness.

A silt and sand unit was encountered beneath the topsoil in Boreholes 1, 3, and 4, extending to 0.76 to 2.9 m depth (elevation 289.34 to 293.1). A sample of the unit was submitted for grain size analysis and the results are presented on Figure 1, appended. The unit ranged from very loose to very dense with N Values of 3 to greater than 50. The unit was moist with moisture contents of 6 to 17%.

A sand layer was encountered beneath the silt and sand unit in Boreholes 3 and 4, extending to 4.8 m to the 6.5 m depth of exploration, respectively. Sand was below the till in Borehole 1 to the 6.0 m depth of exploration. Two layers of sand were encountered in Borehole 2 from below the topsoil to 2.1 m depth (elevation 289.1) and from 4.0 m depth to 5.0 m depth of exploration. Two samples of the unit were submitted for grain size analysis and the results are presented on Figure 2, appended. The sand was loose to very dense with N Values of 4 to 73 and moist to wet, with moisture contents of 5 to 27%.

A till deposit was encountered in Boreholes 1, 2, and 3, beneath the silt and sand, or sand units. The unit extended to 2.1 to 4.0 m depth (287.2 to 286.0), or to the 6.5 m depth of exploration. A sample of the unit was submitted for grain size analysis, and the results are presented on Figure 3, appended. The matrix consisted of a silty sand with trace gravel and trace clay. Cobbles and boulders were noted during drilling. The unit was compact to very dense, with N Values of 12 to 92, and moist with moisture contents of 9 to 15%.

4.2.2 Ground Water

The first water strike (ground water first encountered during drilling), the ground water/wet cave levels measured in the boreholes upon completion of augering, and ground water level measured in the wells following completion are summarized in the table below, on a borehole by borehole basis.

BOREHOLE /	FIRST STRIKE DURING	UPON COMPLETION	WATER LEVEL IN WELL DEPTH (m) / ELEVATION			
MONITORING WELL	DRILLING DEPTH (m) / ELEVATION	OF AUGERING DEPTH (m) / ELEVATION	2021-03-30	2021-05-20		
1	3.1 / 287.0	5.2 / 284.9	0.9 / 289.2	1.3 / 288.8		
2	2.1 / 289.1	No water				
3	2.1 / 291.3	6.0 / 287.4	4.3 / 289.1	4.2 / 289.2		
4	1.7 / 294.3	6.0 / 290.0	Dry	Dry		

The regional ground water table is believed to be below the depth of exploration. Local perched water in the sand and silt/sand/silty sand till stabilized at 0.9 to 4.3 m below existing grade, corresponding to elevation 288.8 to 289.2. It is noted that a ground water monitoring program is on-going, additional ground water monitoring results will be reported separately.

The perched ground water flow direction is towards the east towards Line 5 with a gradient of 0.2%; however, based on source water protection mapping in the area it is anticipated that that regional ground water flow direction is towards the southeast to Lake Simcoe.

Ground water levels will fluctuate seasonally, and in response to variations in precipitation.

5. <u>GEOTECHNICAL ENGINEERING CONSIDERATIONS</u>

5.1 General

It is planned to expand the subdivision on Melville Court in the Township of Oro-Medonte. There are existing residential lots on the south side of Melville Court. The proposed expansion will add 14 residential lots on the north side of Melville Court and two more lots off of Line 5. The land is currently being utilized for agricultural purposes with a treed area at the east end along Line 5. Full-depth basements are being planned and each lot will have a septic system and a well.

5.2 Site Grading and Engineered Fill

Grading was not provided at the time of this report.

A cut may be needed in the west as the grade north of the road is somewhat higher than the road. At the east end of the site, the water table is expected within 1.0 m of the surface. A grade raise will be required if basements are desired. It is recommended that basements be established a minimum 0.5 m above the stabilized ground water level.

Any grade raise below structures should be constructed as engineered fill. The existing topsoil and upper 1.0 to 2.0 m of loose/very loose native soil is not suitable to support footings or floor slabs due to concerns with settlement. In this regard, it is recommended that existing topsoil and upper very loose/loose native soils be removed/reworked. Grades under the buildings can be raised with engineered fill to required levels.

Reference is made to Appendix B for guidelines for engineered fill construction. The following general highlights are provided:

- Strip existing topsoil, fill, upper very loose to lose native soil, and other deleterious materials down to competent native soil, subject to Geotechnical review during construction. The excavated native soil should be segregated and stockpiled separately for reuse or disposal, subject to geotechnical review;
- Proofroll exposed subgrade using a heavy roller to targeted 100% Standard Proctor maximum dry density (SPmdd) for the building areas and 95% SPmdd for other areas, under geotechnical review;
- Following geotechnical review and approval of the subgrade, spread approved material in maximum 200 mm thick lifts and uniformly compacted to 100% SPmdd in building areas and 95% SPmdd in other areas. If wet subgrade conditions are present the use of Granular B Type II may be required for the first lift or two of engineered fill;
- Organics, topsoil, oversized material (over 150 mm in diameter) or otherwise deleterious materials are not suitable for reuse as engineered fill. The excavated site soil is generally considered suitable for reuse as engineered fill, subject to moisture content and geotechnical review during construction. Imported material, if required should comprise OPSS Granular B or OPSS Select Subgrade Material (SSM). Other sources of imported material should be reviewed by our office to ensure suitability;
- The engineered fill pad must extend at least 1 m beyond the structure to be supported, then outwards and downwards at no steeper than 45° to the horizontal to meet the underlying approved native subgrade. In this regard, strict survey control and detailed documentation of the lateral and vertical extent of the engineered fill limits should be carried out to ensure that the engineered fill pad fully incorporates the structure to be supported;
- Engineered fill construction must be carried out under full-time field review by PML, to approve sub-excavation and subgrade preparation, backfill materials, placement and compaction procedures, and to verify that the specified compaction standards are achieved throughout.

5.3 Foundations

The basement floor slab is assumed to be established 3.0 m below proposed grade. In the areas to the east of the site, basements will require a grade raise due to the high ground water table.

The available bearing capacity on native soils, on a borehole by borehole basis is provided below:

BOREHOLE	DEPTH (m) / ELEVATION	ANTICIPATED SUBGRADE SOIL TYPE	GEOTECHNICAL BEARING RESISTANCE AT SLS* (kPa)	FACTORED BEARING RESISTANCE AT ULS** (kPa)
1	0.7 / 289.4	Till	120	180
	1.5 / 288.6	Till / Sand	200	300
2	2.1 / 289.1	Till	200	300
3	2.2 / 291.2	Silt and Sand	200	300
4	0.7 / 295.3	Silt and Sand / Sand	200	300

* Serviceability Limit State – SLS

** Ultimate Limit State – ULS

As discussed earlier, any upfilling under buildings will need to be constructed as engineered fill. Footings founded on engineered fill, constructed as noted above, can be designed for a net Geotechnical bearing resistance at SLS of 150 kPa and a factored bearing resistance at ULS of 225 kPa.

The bearing resistance at SLS is based on total settlement of 25 mm in the bearing stratum with differential settlement of 75% of this value.

Footings subject to frost action should be provided with a minimum 1.2 m of earth cover or equivalent insulation. If there are any walkout basement areas, footings will have to be stepped down.

Prior to placement of structural concrete, all founding surfaces should be reviewed by PML to verify the design bearing capacity is available, or to reassess the design parameters based on the actual conditions revealed in the excavation.

Based on the soil profile revealed in the boreholes, Site Classification D is applicable for Seismic Site Response as set out in Table 4.1.8.4.A of the Ontario Building Code (2012). Based on the type and relative density of the soil cover at the site, there is a low to moderate potential for liquefaction of soils to occur.

5.4 Basement Walls and Floor Slabs

Based on the available data to date, the stabilized perched ground water, where encountered, is at 0.9 to 4.2 m below existing grade, corresponding to elevation 288.8 to 289.2.

It is recommended that basements be established a minimum 0.5 m above the stabilized ground water level. Underfloor drains will be required when ground water is less than 1.0 m below the basement slab.

Full depth basements are proposed for the buildings. As such, perimeter walls must be designed to resist the unbalanced horizontal earth pressure imposed by the backfill adjacent to the walls. The lateral earth pressure, P, may be computed using the following equation and assuming a triangular pressure distribution:

$$P = K (\gamma h + q) + C_p$$

Where P = lateral pressure at depth h (m) below ground surface (kPa) K = lateral earth pressure coefficient of compacted backfill = 0.5 h = depth below grade (m) at which lateral pressure is calculated γ = unit weight of compacted backfill = 21.0 kN/m³ q = surcharge loads (kPa) C_p = compaction pressure

The above equation assumes that drainage measures will be incorporated to prevent the buildup of hydrostatic pressure. In this regard, foundation wall backfill should comprise free draining granular material conforming to OPSS Granular B in conjunction with a weeping tile system. The weeping tiles should be protected by a properly designed granular filter or geotextile to prevent migration of fines into the system. The drainage pipe should be placed on a positive grade and lead to a frost-free outlet. The basement walls should be damp proofed. Alternatively, the native soil can be utilized with a proprietary drainage board product.

Basement wall backfill should be placed in thin lifts compacted to a minimum 95% SPmdd. Over compaction close to the walls should be avoided as this could generate excessive pressure on the walls.

Basement floor slab construction is feasible on native soils or engineered fill, as discussed above. A minimum 200 mm thick base layer of crushed stone (nominal 19 mm size) is recommended directly under the slab. A polyethylene sheet vapour barrier is recommended as a vapour barrier.

Exterior grades should be established to promote surface drainage away from the buildings.

Reference is made to appended Figure 4, for general recommendations regarding drainage and backfill requirements.

5.5 Excavation and Ground Water Control

It is anticipated that excavation for the building foundations and septic system (discussed later in the report) will extend as deep as 3.0 m below existing grade. Excavation will encounter native sand and silt, sand, and silty sand till. Cobbles and boulders and harder digging in the till and other very dense soil can be expected.

Subject to the ground water control as discussed below, the site soils encountered at the site should be considered as Type 3 soil requiring excavation sidewalls to be constructed at no steeper than one horizontal to one vertical (1H:1V) from the base of the excavation in accordance with the Occupational Health and Safety Act.

For the western half of the site, the ground water table was more than 4.2 m below the ground surface. As such, conventional sump pumping is anticipated to suffice to control local seepage and surface water runoff for house construction to an anticipated 3.0 m depth of exploration.

For the eastern half of the site, the ground water table was within 1.0 to 2.0 m of the ground surface, and excavation below these levels will require that the ground water table be lowered a minimum 0.5 m below the deepest excavation point to permit excavation in the "dry". Dewatering will be required. Any dewatering system must be designed and installed by specialists in the field.

Excavation during the dry time of the year, when the ground water table is at its lowest, is recommended in order to reduce ground water control requirements.

Water taking in Ontario is governed by the Ontario Water Resources Act (OWRA) and the Water Takings and Transfer Regulation O. Reg. 387/04. Section 34 of the OWRA requires anyone taking more than 50,000 L/d to notify the Ministry of the Environment, Conservation and Parks (MECP). This requirement applies to all withdrawals, whether for consumption, temporary construction dewatering, or permanent drainage improvements. Where it is assessed than more than 50,000 L/d but less than 400,000 L/d of ground water taking is required, the Owner can register online via the Environmental Activity and Sector Registry (EASR) system. Where it is assessed that more than 400,000 L/d of ground water taking is required then a Category 3 Permit-to-Take-Water (PTTW) is required.

A PTTW or registry on the EASR is not anticipated for building excavations within west half of the site; however, may be required for building excavations within east half of the site. When design details are established, they should be provided to PML for review and assessment for a PTTW on the EASR.

It is recommended that a test dig be undertaken to allow prospective contractors an opportunity to observe and evaluate the conditions likely to be encountered and assess preferred means of excavation and ground water control measures based on their own experience.

5.6 Geotechnical Review and Construction Inspection and Testing

It is recommended that the final design drawings be submitted to PML for geotechnical review for compatibility with site conditions and recommendations of this report.

Earthworks operations should be carried out under the supervision of PML to approve subgrade preparation, backfill materials, placement and compaction procedures and check the specified degree of compaction is achieved throughout.

Prior to placement of structural concrete, all founding surfaces must be inspected by PML to verify the design bearing capacity is available, or to reassess the design parameters based on the actual conditions.

The comments and recommendations provided in the report are based on information revealed in the boreholes. Conditions away from and between boreholes may vary. Geotechnical review during construction should be ongoing to confirm the subsurface conditions are substantially similar to those encountered in the boreholes, which may otherwise require modification to the original recommendations.

6. <u>HYDROGEOLOGICAL CONSIDERATIONS</u>

A Hydrogeological investigation has also been requested for the site to provide recommendations for a preliminary water balance, desktop domestic well assessment, ground water flow direction and gradient, and assessment of ground water quality for septic design and sizing of lots.

6.1 Aquifers and Local Ground Water Use

The Water Well Records (WWRs) shown on the MECP website within a 500 m study area are tabulated in Appendix C. A total of forty-two WWRs were identified.

The following is summary of the forty-two well records:

- All forty-two WWRs were for water supply (domestic, public/municiapl, and/or irrigation).
- Water wells were installed at depths of 9.7 to 58.0 m below ground surface at the time of drilling within sand units with varibale gravel and silt.
- The water supply wells typically comprised 102 to 762 mm diameter drilled wells. The WWRs indicate the drilling was terminated at depths of 5.5 to 60.0 m below ground surface at the time of drilling.
- Typically fresh water was encountered during drilling, and static water levels were recorded at depths of 1.2 to 12.8 m below ground surface at the time of drilling.
- Pump test have been completed in thrity-nine recorded water wells, with pumping tests ranging from 1.0 to 34.0 hours with pumping rates of 2 to 132 GPM (10,902 to 719,531 L/day). Durign the pumping tests drawdowns of about 1.5 to 36.0 m were observed.

Based on the pump tests completed on the wells in the vicinity of the site (MECP WWRs), it is probable that private potable water supply wells can be developed on-site for each lot. It is noted that the MECP considers a well to be sustainable with a minimum yield of 13.7 L/min (19,728 L/day), considering a four-bedroom dwelling. Following well installation, a pump test will be required to confrim that an adequate water supply can be developed on the property and that the sustained pumping rate will not have an adverse impact on other wells in the area.

During the pumping test it is also recommended that a sample from the on-site test well be collected, follwing installation, and tested to ensure the quality of the water meets the Ontario Drinking Water Standards (ODWS).

It should be noted that the site is not within either a Well Head Protection Area (WHPA) nor an Intake Protection Zone (IPZ) for municipal water supply; however, the western portion of the site is located with in a significant Ground Water Recharge Area (vulnerability score of 2).

6.2 <u>Septic System Considerations</u>

6.2.1 Grain Size Distribution

Four samples from the near surface site soils were submitted for particle size analysis. Based on the grain size distribution curves (Figures 1 to 3, appended), the estimated permeability, K, and percolation rate, "T", for the sample tested based on OBC (2012) Supplementary Standards SB-6, are summarized as follows:

BOREHOLE	DEPTH (m)	SOIL DESCRIPTION	ESTIMATED PERMEABILITY K (cm/sec)	"T"-TIME (min/cm)
1	1.4 to 1.9	Silty Sand (Till)	10 ⁻⁵ to 10 ⁻⁶	20 to 50
2	1.4 to 1.9	Sand	10 ⁻³ to 10 ⁻⁴	8 to 12
3	3.0 to 3.5	Sand	10 ⁻³ to 10 ⁻⁴	8 to 12
4	1.4 to 1.9	Silt and Sand	10 ⁻⁵ to 10 ⁻⁶	20 to 50

The Vukovic and Soro (1992) method was used to assess K.

The site soils are favourable for septic design however, in the east, due to the high ground water table at the site (water about 0.9 m below existing grade in septic area), a raised septic bed may be required.

The K value derived from the particle size distribution curve does not take into consideration site specific details such as compaction, soil structure, organic content and/or the degree of saturation.

6.3 Ground Water Sample Chemical Test Results

The laboratory certificate of chemical analyses for the analysis carried out by Caduceon on a ground water sample from BH/MW 3, in accordance with the chain-of-custody records and the protocols described in Section 2.2.3, are in included in Appendix D.

The ground water sample was analyzed for nitrate/nitrite and phosphorous to establish background conditions for septic design.

The chemical test results complied with the applicable PWQO for the parameters tested with the exception of the parameters listed below:

Location	Parameter	Units	PWQO	Measured Concentration
BH/MW 3	Phosphorous	µg/L	10	3670

6.4 **Preliminary Water Balance**

6.4.1 Climate

The site is located in Oro-Medonte, northern portion of Lake Simcoe within Simcoe County. The climate of Oro-Medonte is humid-continental, characterized by changeable weather patterns. Orillia's location relative to Lake Simcoe, can result in disparities in weather over short distances. From Environment Canada data, the average annual temperature recorded at the Shanty Bay station, (closest station with required data) located southwest of Orillia, averages 6.8°C. The highest monthly average temperature is in July, at 20.1°C and the lowest monthly average temperature is in

January, at -7.7°C. The average annual precipitation recorded at the Shanty Bay weather station is 968 mm. Climate data is tabulated in Table 1, appended.

6.4.2 Water Balance: Pre-Development

To determine the amount of ground water infiltration relative to existing site conditions, a pre-development water balance was carried out to provide an estimate of the volume of infiltrating precipitation at the site. This method is based on classic storm water management principles and generally over-estimates the volume of runoff, providing a conservative assessment of infiltration volume. It is noted that the equations were developed for heavy rainfall events of short duration, where as a large volume of the precipitation occurs at a light to moderate rate over an extended period of time and would result in a much higher volume of infiltration.

For the purposes of our analysis, the following parameters were assumed:

- The annual precipitation at the Shanty Bay weather station was recorded to be 968 mm/year, and the water surplus was computed to be 389.25 mm/year (computed by the Thornthwaite and Mather Method).
- The water available for infiltration was computed using the following infiltration factors:

Topography	0.20
Soil	0.30
Cover	0.10
Total	0.60

• By multiplying the water surplus of 389.25 mm/year by the infiltration factor of 0.60, the infiltration rate was computed to be 233.6 mm/year.

The total existing catchment area for infiltrating precipitation was computed as follows:

- Total Approximate Site Area = 66,089 m²
- Approximate Area of Existing Buildings = 0 m²
- Approximate Area of Existing Parking Lots and Paved Laneway Areas = 0 m²
- Total Approximate Impermeable Surface Area = 0 m²
- Total Site Area less the Impermeable Surface Area = Area of Potential Infiltration = $66,089 \text{ m}^2$

The total pre-development infiltration at the site (potential for ground water recharge) was calculated utilizing the LSRCA procedures and was found to be 15,437,100 L/year (15,437.10 m³/year).

6.4.3 Water Balance: Post Development

In order to assess the effect of site development, a post-development water balance for the site was carried out using the same approach and infiltration factors noted above. The proposed lot plans are shown on Drawing 1, attached; however, site plan details have not been finalized. Based on housing and driveway layouts of the existing Melville Court subdivision the following development plan details have been assumed:

- Each lot will house a residential building with a 325 m² footprint (5,200 m² total assuming 16 lots); and,
- Each lot will include an impermeable driveway surface with a 70 m² footprint (1,120 m² total assuming 16 lots).

The total post-development area for infiltrating precipitation was computed as follows:

- Total Approximate Site Area = 66,089 m²
- Total Impermeable Surface Area (buildings, and paved driveways) = 6,320 m²
- Total Site Area less the Impermeable Surface Area = Area of Potential Infiltration = 59,769 m²

Based on the current site conditions and approximated development plans, the total post development infiltration at the site (potential for ground water recharge) was calculated utilizing the LSRCA procedures and was found to be 13,960,000 L/year (13,960 m³/year), indicating a reduction of site infiltration of approximately 10%.

Once site plan details are finalized Table 2B should be updated to include accurate post-development details.

The results of the preliminary water balance for pre- and post-development are tabulated in Tables 2A to 2C.

6.5 <u>Development Considerations</u>

6.5.1 Ground Water Recharge Management

The LID guidelines call for the pre and post-development ground water infiltration volumes to be maintained as much as practically possible. The assessment provided above indicates a reduction in the volume of surface water infiltration following redevelopment of the site; hence, implementation of measures to reduce the infiltration deficit (such as the proposed LID features) should be considered.

Mitigation Measures, Opportunities and Constraints

The following measures should be considered to reduce the post-development infiltration:

- Reduce the area of the impermeable surfaces.
- Create swales/depressed areas that will retard the rate of storm water runoff and promote infiltration.
- Promote surface water flow from impermeable surfaces into infiltration facilities, as opposed to directing surface water to catchbasins connected to the municipal storm sewers.
- Ensure that roof drains are not connected to the municipal storm water control system.
- Reduce the slope of the ground surface to promote increased infiltration.

Once mitigation measures are finalized Table 2C should be updated to include a comparison of predevelopment to post-development including all mitigation features.

This assessment is subject to the Statement of Limitations that is included with this report (Appendix A) which must be read in conjunction with the report.

7. GEOENVIRONMENTAL CONSIDERATIONS

7.1 General

A limited chemical testing program was carried out to check the geoenvironmental quality of the soil at selected sampling locations in order to provide comments regarding on site reuse or off-site disposal options for excess excavated soil.

A Phase One Environmental Site Assessment (ESA) was not within the scope of work for this assignment. Accordingly, soil impairment that has not been identified by the limited chemical testing program may exist at the site. The limited chemical testing program does not constitute an Environmental Site Assessment as defined under the Environmental Protection Act and O. Reg. 153/04, as amended.

7.2 Chemical Testing Protocols

As part of the geoenvironmental procedural protocol, all recovered soil samples were field examined for visual and olfactory evidence of potential contamination. It is noted that none of the samples displayed visual or olfactory evidence of contamination.

After field examination, selected geoenvironmental soil samples were placed in laboratory air tight glass containers and stored in an insulated cooler for transportation to our laboratory for detailed visual examination.

Soil samples were submitted for chemical analysis to a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory. The chemical analyses conducted were in accordance with the O. Reg. 153/04, as amended Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act dated March 9, 2004, amended as of July 1, 2011.

For general environmental quality characterization, soil samples were tested for the following analyte groups:

- Metals and Inorganics; and,
- Organochlorine Pesticides (OC Pesticides).

The following soil samples were submitted for testing:

Borehole 1 SS2 (silty sand till – 0.8 to 1.4 m)	Borehole 3 SS2 (silt and sand – 0.8 to 1.4 m)
Borehole 2 SS2 (sand – 0.8 to 1.4 m)	Borehole 4 SS2 (silt and sand – 0.8 to 1.4 m)

7.3 Site Condition Standards

The Ontario MECP has developed a set of Soil, Ground water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) and O. Reg. 153/04, as amended. The standards consist of nine tables (Table 1 through Table 9) that provide criteria for maximum concentrations of various contaminants. In general, the applicable O. Reg. 153/04, as amended, SCSs depend on the site location, land use, soil texture, bedrock depth and the applicable potable or non-potable ground water condition at the investigation site.

In order to determine the Site Sensitivity, Sections 41 and 43.1 of O. Reg. 153/04, as amended, were evaluated by PML as shown in the following table:

CRITERIA	RESULT
Current Property Use	Vacant Land
Potable vs. Non-Potable Ground Water	Potable ⁱ
Proximity of Areas of Natural Significance	< 30 m
Proximity to a Water Body	> 30 m
Shallow Soil Condition	No
Land Use	Residential/Parkland/Institutional (RPI)
Applicable Site Condition Standard	Table 1: Full Depth Background Site Condition Standards (RPI/Industrial/Commercial/Community (ICC))

Notes: i) MECP interactive Water Well Record (WWR) mapping indicates private water supply wells within 250 m of the site.

7.4 Analytical Findings and Conclusions

The Certificates of Analyses for Chemical Testing are included in Appendix E.

7.4.1 On-Site Reuse

In summary, the concentration of the tested parameters in the submitted soil samples from the boreholes were either not detected (below the method detection limit) or were within the Table 1 RPI/ICC SCSs. As such, the site soil can remain on-site for reuse, subject to Geotechnical requirements.

It should be noted that the soil conditions between and beyond the sampled locations may differ from those encountered during this assignment. PML should be contacted if impacted soil conditions become apparent during future development to further assess and appropriately handle the materials, if any, and evaluate whether modifications to the conclusions documented in this report are necessary.

This assessment is subject to the Statement of Limitations that is included with this report (Appendix A) which must be read in conjunction with the report.

7.4.2 Off-Site Reuse/Disposal

It should be noted that the MECP has developed new On-Site and Excess Soil Management Regulations O.Reg. 406/19. These regulatory requirements will come into force on January 1, 2022. This regulation is currently being followed as of January 1, 2021 by most parties. Additional environmental review and management of excess soils will be required, including additional soil sampling and analytical testing requirements, for this project, if O.Reg. 406/19 is to be followed. In addition, an Excess Soil Management Plan (ESMP) may be required depending on the volume to be generated.

Based on the limited chemical testing results, excess excavated soil may be disposed of off-site at a receiving site where the following O.Reg. 153/04, as amended, criterial apply:

- Table 1 (RPI/ICC);
- Table 2 (RPI/ICC);
- Table 3 (RPI/ICC).

In general, when transporting excavated site soil to another site, O.Reg. 406/19 should be followed along with any local bylaws, with the following highlighted below:

- The soil characterization and excess soil destination assessment reports, including all applicable chemical testing results, should be provided to the receiving site authority for approval;
- A tracking system must be implemented by the source site QP such that transportation and placement of the surplus soil is monitored to check the material is appropriately placed at the pre-approved site;
- The receiving site(s) must be arranged and/or approved in advance of excavation such that a site-specific excess soil destination report assessment report is completed for each site prior to fill movement;
- Additional sampling and chemical testing shall be carried out during construction to verify the chemical quality of the excess soil to assess the appropriate management/disposal options for the actual soil to leave the site. The frequency of the addition testing depends on the volume of the soil to be transported and it is noted that additional leachate testing may be required;
- The excavation work should be conducted in accordance with a written Excess Soil Management Plan (ESMP) prepared by a qualified professional to ensure that all surplus excavated material is tested and managed appropriately, and that imported fill material is of suitable quality and meets the SCSs applicable to the receiving site. Reuse of surplus excavated soil on-site is also subject to acceptance for reuse by the Geotechnical consultant at the time of construction based on Geotechnical considerations;

This assessment is subject to the Statement of Limitations that is included with this report (Appendix A) which must be read in conjunction with the report.

8. CLOSURE

We trust this report is complete within our terms of reference, and the information presented is sufficient for your present purposes. If you have any questions, or when we may be of further assistance, please do not hesitate to call our office.

Sincerely

Peto MacCallum Ltd.

Alicia Kimberley, MSc., P.Geo. Associate Manager, Geoenvironmental and Hydrogeological Services

Geoffrey R. White, P.Eng. Director Manager, Geotechnical Services

AK/GRW:tc

-
PMĽ
\sim

	TABLE 1							
	Water Budget Summary (Using Thornthwaite Empirical Approach)							
Month	*Mean Daily Av. Temp (C)	I	*Mean Montly Precipitation (mm)	Days	^Daylight Hours	Evapotranspiration (mm)	Actual Evapotranspiration Adjusted for Month and Daylight (mm)	Actual Water Balance (mm)
January	-7.7	0.00	88.8	31	9.25	0.00	0.00	88.80
February	-6.5	0.00	69.8	28	10.83	0.00	0.00	69.80
March	-1.9	0.00	63.8	31	11.97	0.00	0.00	63.80
April	5.7	1.22	65	30	13.52	25.42	28.64	36.36
May	12.1	3.81	79.9	31	14.85	57.46	73.47	6.43
June	17.4	6.61	88.6	30	15.50	85.16	110.00	-21.40
July	20.1	8.22	73.2	31	15.13	99.57	129.72	-56.52
August	19.2	7.67	86.2	31	13.97	94.75	113.98	-27.78
September	15.2	5.38	92.2	30	12.47	73.56	76.44	15.76
October	8.7	2.31	78.2	31	10.93	40.19	37.83	40.37
November	2.6	0.37	98	30	9.57	10.86	8.66	89.34
December	-3.6	0.00	84.3	31	8.87	0.00	0.00	84.30
Yearly Av./Total:	6.78	1.58	968.00		12.24	486.97	578.75	389.25

I (heat index)	37.18
а	1.08

a is a function of heat index

*Data from Environment Canada web site - Shanty Bay ^from NSERC database

TABLE 2A Water Budget Pre-Development (Water Balance/Water Budget Assessment)				
Catchment Designation	Cultivated	Paved	Building	Total
Area (m ²)	66,089	0	0	66,089
Pervious Area (m ²)		0	0	
, , , , , , , , , , , , , , , , , , ,	66,089	-	-	66,089
Impervious Area (m²)	-	0	0	-
Tana ang ku kafilingtan Eastan	Infiltration Fa		0.0	
Topography Infiltraton Factor	0.2	0.2	0.2	
Soil Infiltration Factor Land Cover Infiltration Factor	0.3	0.3	0.3	
MOE Infiltration Factor	0.1	0.0 0.0	0.0 0.0	
Actual Infilration Factor	0.6	0.0	0.0	
Run-Off Co-efficient	0.0	1.0	1.0	
Runoff from Impervious Surfaces	0.4	0.8	0.8	
Runon nom impervious Surfaces	Inputs (per Uni		0.0	
Precipitation (mm/yr)	968.0	968.0	968.0	968.0
Run-on (mm/yr)	0.0	<u> </u>	908.0	908.0
Other inputs (mm/yr)	0.0	0.0	0.0	0.0
Total Imputs (mm/yr)	968.0	968.0	968.0	968.0
	Outputs (per Un		000.0	000.0
Precipitation Surplus (mm/yr)	389.3	774.4	774.4	389.3
Net Surplus (mm/yr)	389.3	774.4	774.4	389.3
Evapotranspiration (mm/yr)	578.7	193.6	193.6	578.7
Infiltration (mm/yr)	233.6	0.0	0.0	233.58
Rooftop Infiltration (mm/yr)	0.0	0.0	0.0	0.0
Total Infiltration (mm/yr)	233.6	0.0	0.0	233.58
Runoff Pervious Areas (mm/yr)	155.7	0.0	0.0	155.7
Runoff Impervious Areas (mm/yr)	0.0	774.4	774.4	0.0
Total Runoff (mm/yr)	155.7	774.4	774.4	155.7
Total Outputs (mm/yr)	968.0	968.0	968.0	968.0
Difference (Inputs-Outputs)	0.00	0.00	0.00	0.00
	Inputs (Volu	nes)		
Precipitation (m ³ /yr)	63,974.2	-	-	63,974.2
Run-On (m³/yr)	-	-	-	-
Other Inputs (m ³ /yr)	-	-	_	-
Total Inputs (m3/yr)	63,974.2	-	-	63,974.2
	Outputs (Volu	imes)		00,011.2
Precipitation Surplus (m ³ /yr)	25,728.4		-	25,728.4
Net Surplus (m ³ /yr)				
	25,728.4	-	-	25,728.4
Evapotranspiration (m ³ /yr)	38,245.7	-	-	38,245.7
Infiltration (m ³ /yr)	15,437.1	-	-	15,437.1
Rooftop Infiltration (m ³ /yr)	0.0	-	-	0.0
Total Infiltration (m ³ /yr)	15,437.1	-	-	15,437.1
Runof Pervious Areas (m ³ /yr)	10,291.4	-	-	10,291.4
Runoff Impervious Areas (m ³ /yr)	0.0	-	-	_
Total Runoff (m ³ /yr)	10,291.4		_	10,291.4
Total Outputs (m ³ /yr)		-	-	
	63,974.2	-	-	63,974.2
Difference (Inputs-Outputs)	0.0	0.0	0.0	0.0

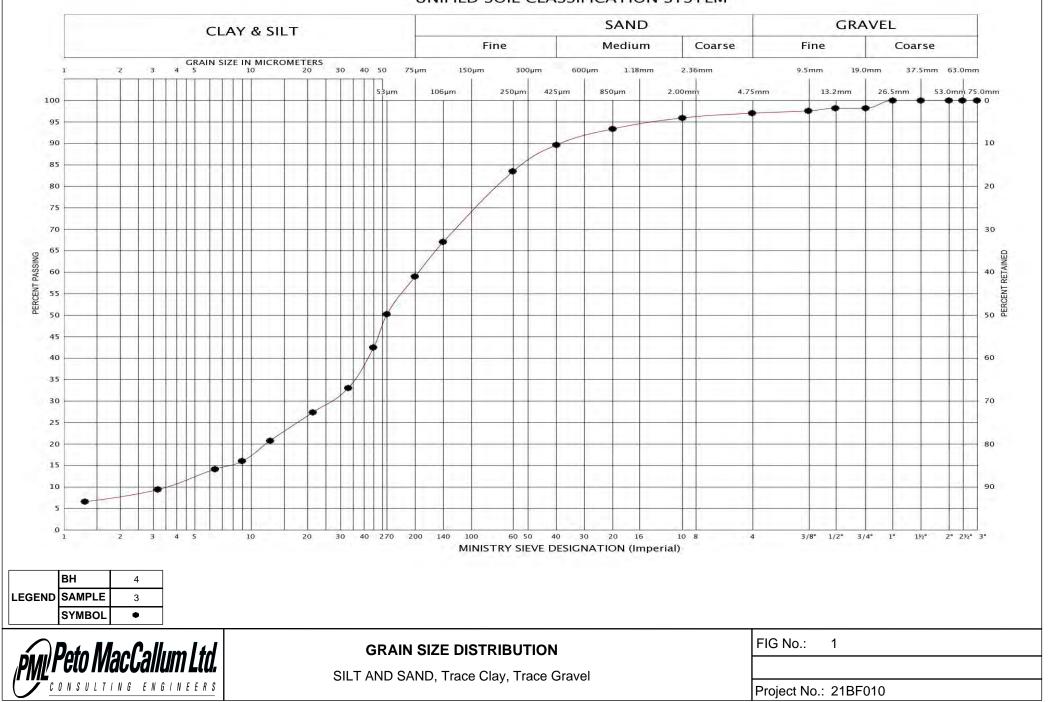


TABLE 2B Water Budget Post-Development (Water Balance/Water Budget Assessment)				
Catchment Designation	Cultivated	Paved	Building	Total
Area (m²)	59,769	1,120	5,200	66,089
Pervious Area (m ²)	59,769	0.0	0.0	59,769
Impervious Area (m ²)	0.0	1,120	5,200	6,320
	Infiltration F		0,200	0,020
Topography Infiltraton Factor	0.2	0.2	0.2	
Soil Infiltration Factor	0.3	0.3	0.3	
Land Cover Infiltration Factor	0.1	0.0	0.0	
MOE Infiltration Factor	0.6	0.0	0.0	
Actual Infilration Factor	0.6	0.0	0.0	
Run-Off Co-efficient	0.4	1.0	1.0	
Runoff from Impervious Surfaces	-	0.8	0.8	
· · · ·	Inputs (per Ur	nit Area)	I	
Precipitation (mm/yr)	968.0	968.0	968.0	968.0
Run-on (mm/yr)	0.0	0.0	0.0	0.0
Other inputs (mm/yr)	0.0	0.0	0.0	0.0
Total Imputs (mm/yr)	968.0	968.0	968.0	968.0
	Outputs (per U	nit Area)		
Precipitation Surplus (mm/yr)	389.3	774.4	774.4	398.7
Net Surplus (mm/yr)	389.3	774.4	774.4	398.7
Evapotranspiration (mm/yr)	578.7	193.6	193.6	569.3
Infiltration (mm/yr)	233.6	0.0	0.0	211.2
Rooftop Infiltration (mm/yr)	0.0	0.0	0.0	0.0
Total Infiltration (mm/yr)	233.6	0.0	0.0	211.2
Runoff Pervious Areas (mm/yr)	155.7	0.0	0.0	155.7
Runoff Impervious Areas (mm/yr)	0.0	774.4	774.4	74.1
Total Runoff (mm/yr)	155.7	774.4	774.4	187.5
Total Outputs (mm/yr)	968.0	968.0	968.0	968.0
Difference (Inputs-Outputs)	-	-	-	-
	Inputs (Volu		[
Precipitation (m ³ /yr)	57,856.4	1,084.2	5,033.6	63,974.2
Run-On (m ³ /yr)	-	-	-	-
Other Inputs (m ³ /yr)	-	-	-	-
Total Inputs (m3/yr)	57856.4	1084.2	5033.6	63,974.2
	Outputs (Vol	umes)		
Precipitation Surplus (m ³ /yr)	23,268.1	867.3	4,026.9	28,162.3
Net Surplus (m ³ /yr)	23,268.1	867.3	4,026.9	28,162.3
Evapotranspiration (m ³ /yr)	34,588.3	216.8	1,006.7	35,811.9
Infiltration (m ³ /yr)	13,960.8			
, , , , , , , , , , , , , , , , , , ,	,	0.0	0.0	13,960.8
Rooftop Infiltration (m ³ /yr)	0.0	0.0	0.0	0.0
Total Infiltration (m ³ /yr)	13,960.8	0.0	0.0	13,960.8
Runof Pervious Areas (m ³ /yr)	9,307.2	0.0	0.0	9,307.2
Runoff Impervious Areas (m³/yr)	0.0	867.3	4,026.9	4,894.2
Total Runoff (m ³ /yr)	9,307.2	867.3	4,026.9	14,201.4
Total Outputs (m ³ /yr)	57,856.4	1,084.2	5,033.6	63,974.2
Difference (Inputs-Outputs)	0.0	0.0	0.0	0.0

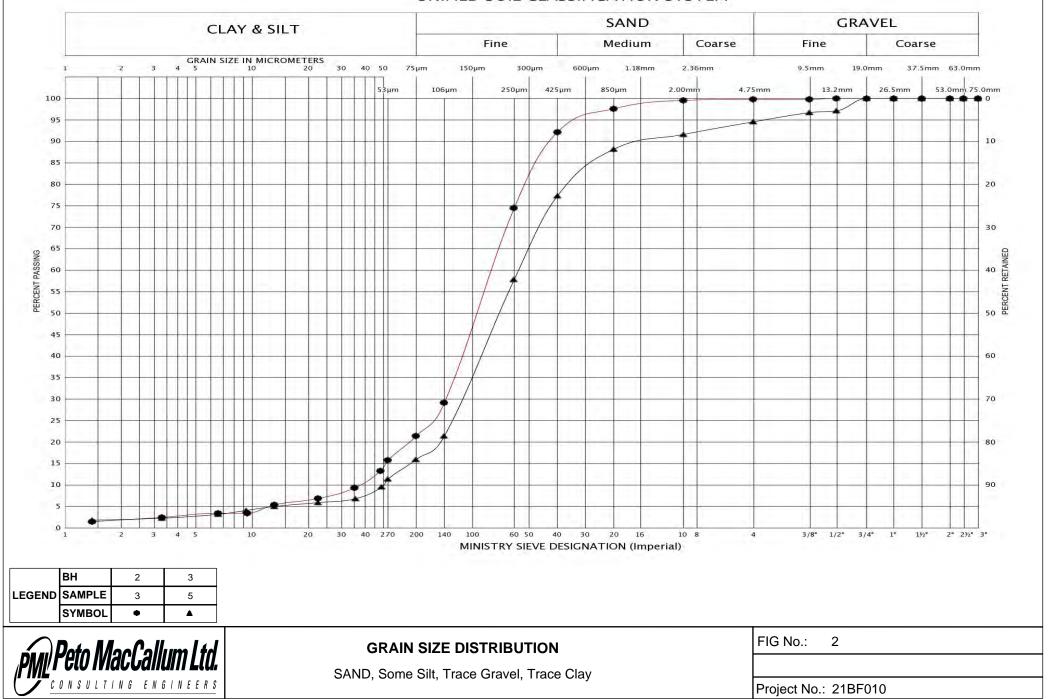
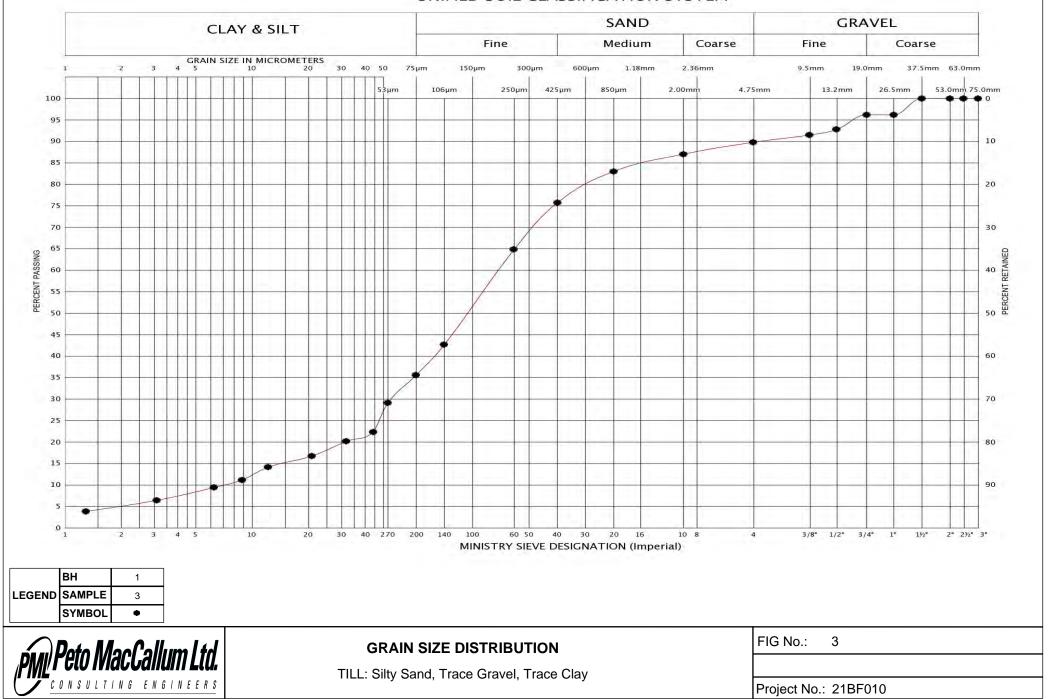
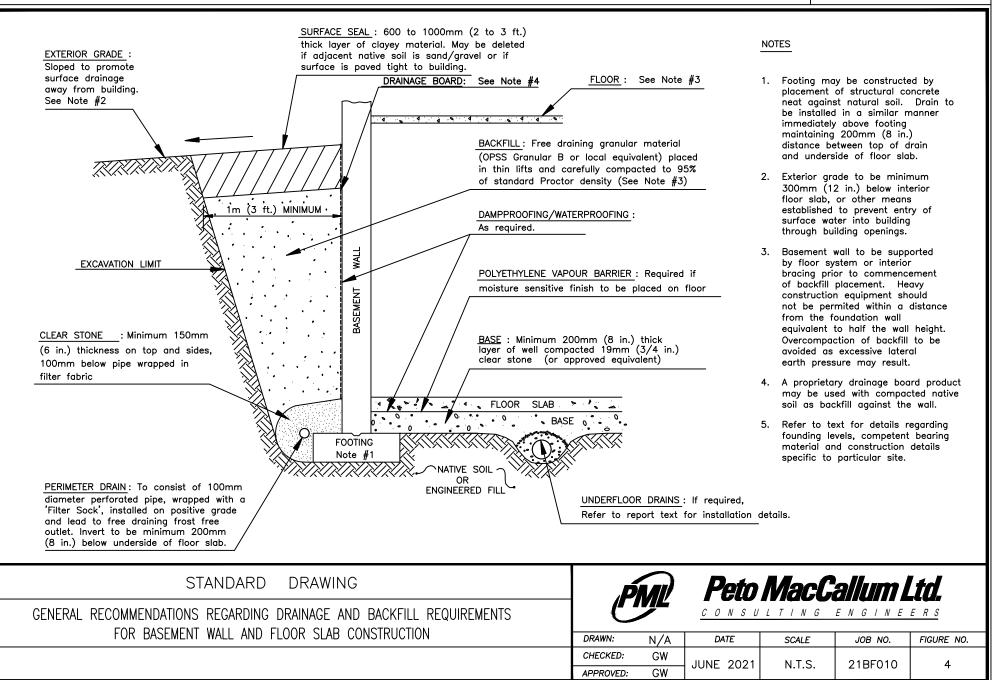


TABLE 2C						
Water Budget Summary (Water Balance / Water Budget Assessment)						
Inputs (Volumes)						
Pre-Development Post-Developmemt Change (Pre- to Post-)						
Precipitation (m ³ /yr)	63,974.2	63,974.2	0%			
Run-On (m ³ /yr)	-	-	0%			
Other Inputs (m ³ /yr)	-	-	0%			
Total Inputs (m3/yr)	63,974.2	63,974.2	0%			
	Outputs (Vo	lumes)				
Precipitation Surplus (m ³ /yr)	25,728.4	28,162.3	9%			
Net Surplus (m³/yr)	25,728.4	28,162.3	9%			
Evapotranspiration (m ³ /yr)	38,245.7	35,811.9	-6%			
Infiltration (m³/yr)	15,437.1	13,960.8	-10%			
Rooftop Infiltration (m ³ /yr)	0.0	0.0	0%			
Total Infiltration (m ³ /yr)	15,437.1	13,960.8	-10%			
Runof Pervious Areas (m³/yr)	10,291.4	9,307.2	-10%			
Runoff Impervious Areas (m³/yr)	-	4,894.2				
Total Runoff (m ³ /yr)	10,291.4	14,201.4	38%			
Total Outputs (m³/yr)	63,974.2	63,974.2	0%			


UNIFIED SOIL CLASSIFICATION SYSTEM


UNIFIED SOIL CLASSIFICATION SYSTEM

UNIFIED SOIL CLASSIFICATION SYSTEM

STD - GEO-A REV 1/2004

PENETRATION RESISTANCE

Standard Penetration Resistance N: - The number of blows required to advance a standard split spoon sampler 0.3 m into the subsoil. Driven by means of a 63.5 kg hammer falling freely a distance of 0.76 m.

Dynamic Penetration Resistance: - The number of blows required to advance a 51 mm, 60 degree cone, fitted to the end of drill rods, 0.3 m into the subsoil. The driving energy being 475 J per blow.

DESCRIPTION OF SOIL

The consistency of cohesive soils and the relative density or denseness of cohesionless soils are described in the following terms:

<u>CONSISTE</u>	<u>NCY N (blows/0.3 m)</u>	<u>c (kPa)</u>	DENSENESS	<u>N (blows/0.3 m)</u>
Very Soft	0 - 2	0 - 12	Very Loose	0 - 4
Soft	2 - 4	12 - 25	Loose	4 - 10
Firm	4 - 8	25 - 50	Compact	10 - 30
Stiff	8 - 15	50 - 100	Dense	30 - 50
Very Stiff	15 - 30	100 - 200	Very Dense	> 50
Hard	> 30	> 200		
WTLL	Wetter Than Liquid Limit			
WTPL	Wetter Than Plastic Limit			
APL	About Plastic Limit			
DTPL	Drier Than Plastic Limit			

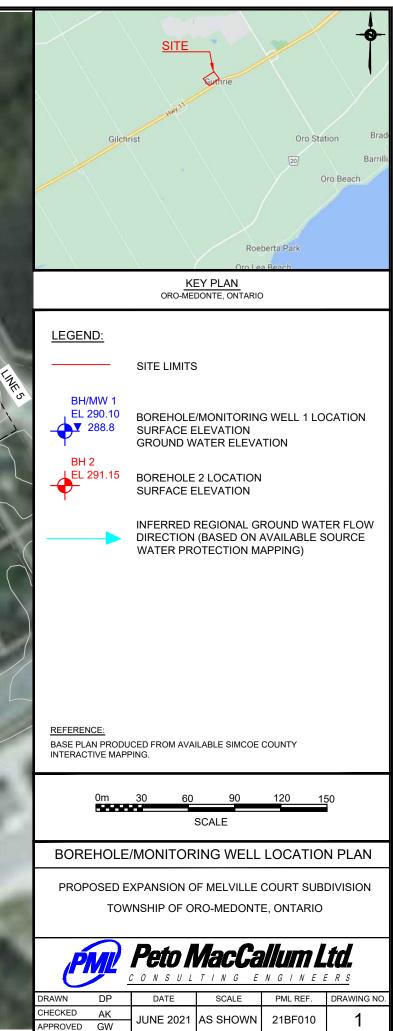
TYPE OF SAMPLE

SS	Split Spoon	ST	Slotted Tube Sample
WS	Washed Sample	TW	Thinwall Open
SB	Scraper Bucket Sample	TP	Thinwall Piston
AS	Auger Sample	OS	Oesterberg Sample
CS	Chunk Sample	FS	Foil Sample
GS	Grab Sample	RC	Rock Core
PH Sample Advanced Hydraulically			

PM Sample Advanced Manually

SOIL TESTS

Qu	Unconfined Compression	LV	Laboratory Vane
Q	Undrained Triaxial	FV	Field Vane
Qcu	Consolidated Undrained Triaxial	С	Consolidation
Qd	Drained Triaxial		


LOCA	IECT Proposed Expansion of Melville Co ITION Oro-Medonte, Ontario NG METHOD Continuous Flight Hollow S							BORII	NG DA	TE March 3,	2021		EN	GINEE CHNIC	R	21BF010 GW D. Powe	
	SOIL PROFILE	LOT	œ	SAMP		N SCALE	+FIE	AR STRE LD VANE CKET PE 50 10		WANE OQU	PLAST LIMIT	CON	URAL STURE ITENT W	LIQUID LIMIT Wi	UNIT WEIGHT	OB	OUND WATER SERVATIONS
EPTH ELEV netres)	DESCRIPTION SURFACE ELEVATION 290.10	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	DYNA STAN	-	E PENE	TION TEST •	WA	ATER CO	ONTENT	(%)	kN/m		ID REMARKS GRAIN SIZE DISTRIBUTION GR SA SI8
0.28	TOPSOIL: Dark brown to black, silty sand, trace organics, frozen SILT AND SAND: Very loose to compact,		1	SS	3	290	٩				c					SC	tick-up casing oncrete
0.76 89.34	brown, silt and sand, trace clay, moist SILTY SAND TILL: Compact, brown, silty sand, trace clay, trace gravel, very moist		21	SS	12	289	À					2	_				and the second
0.1			3	SS	25			•				þ				В	entonite seal
<u>2.1</u> 288.0	SAND: Compact to dense, brown, sand, some silt, wet		4	SS	22	288		•				ō				网络	
			5	SS	36	287		>				o					irst water strike a 1 m
						286	š							-		5 F	0 mm slotted pipe ilter sand
			6	SS	22			•				o					
						285											
<u>6.0</u> 284.1	BOREHOLE TERMINATED UPON AUGER HEAVE AT 6.0 m						-									Upon co Wet cave	mpletion of auger e at 5.2 m
																Date 2021-03-	
																2021-05-	20 1.3 28
																	1
																1	11

SOLIP ROPILE SAMPLES SIGL PROPILE SAMPLES SIGL PROPILE	1.100.000	ATION Oro-Medonte, Ontario RING METHOD Continuous Flight Hollow S	Stem A	ugers			-	0.15		NG DA			2021				GINEE CHNIC		GW D. Power
SURFACE ELEVATION 291.15 All Set of the set of th	DEPTH	SOIL PROFILE	LOT	R			IN SCALE	+FIEI	D VAN		RVANE DMETE	E O QU R O Q			ATUR/ DISTU DISTU DISTU DISTU W	AL L RE NT	LIMIT	VEIGHT	OBSERVATIONS
SURFACE ELEVATION 291.15 Image: Surface in the sur	ELEV	- DESCRIPTION	STRAT P	NUMBI	ТҮРЕ	"N" VALI	ELEVATIC	DYNAI	MIC COI DARD P	NE PEN ENETR/	ETRAT	TION × TEST •	VV/						CRACK CARDON AND CONTRACT
21 3 SS 7 289.1 SiLTY SAND TILL: Dense to very dense, brown, silty sand, trace clay, trace gravel, very moist 4 SS 40 4 SS 40 5 SS 63 5 SS 63 289 0 0 4.0 5 SS 63 289 0 0 287.2 SAND: Compact, brown, sand, some silt, trace gravel, trace clay, wet 6 SS 10 0 5.0 286 0 0 0 0 0 287.2 SAND: Compact, brown, sand, some silt, trace gravel, trace clay, wet 6 SS 10 0 5.0 286 0 0 0 0 0	0.22	TOPSOIL: Dark brown to black, silty sand, trace organics, frozen SAND: Loose, brown, sand, some silt,		1	SS	4	-											KIN/III	GR SA SIAC
23.1 SILTY SAND TILL: Dense to very dense, brown, silty sand, trace clay, trace gravel, very moist 4 SS 40 4 SS 40 5 SS 63 5 SS 6 SS 10 5.0 280 0 0 5.0 280 0 0		trace gravel, trace clay, wet		2'	SS	5	290	•			-	-	-		0				
4 SS 40 very moist 4 SS 40 5 SS 63 4 SS 40 5 SS 63 288 6 SS 10 5 SS	21			1.11	SS	7		1						٥					
4.0 287.2 SAND: Compact, brown, sand, some silt, trace gravel, trace clay, wet 5.0 286.2 BOREHOLE TERMINATED UPON AUGER HEAVE AT 5.0 m Upon completion of augering No water	289.1	brown, silty sand, trace clay, trace gravel,		1	SS	40	289		/				0						First water strike at 2.1 m
287.2 SAND: Compact, brown, sand, some silt, trace gravel, trace gravel, trace clay, wet 287 287 0 0 5.0 6 SS 10 0 0 0 0 286.2 BOREHOLE TERMINATED UPON AUGER HEAVE AT 5.0 m 0 0 Upon completion of augering No water				5	SS	63	288				•			0					
286.2 BOREHOLE TERMINATED UPON Upon completion of augering No water		SAND: Compact, brown, sand, some silt, trace gravel, trace clay, wet					287							_					
AUGER HEAVE AT 5.0 m No water	5.0			6	SS	10		•							Ō				
																			/

LOCA	LOG ECT Proposed Expansion of Melville Co TION Oro-Medonte, Ontario NG METHOD Continuous Flight Hollow S	ourt Su	bdivi	sion				5E 492					LN	PM EN	IL REI IGINEI	ER (21BF010 GW D. Powel	
DOT	SOIL PROFILE		ugene	SAMF	LES	щ	SHE	AR STR	ENGTH	(kPa)	~ ~		NAT				1.1.1	
EPTH ELEV netres)	DESCRIPTION	STRAT PLOT	NUMBER	түре	"N" VALUES	ELEVATION SCALE	▲ PC	MIC CO	E ATOF ENETRO 00 15 NE PENE ENETRA	METER 50 20 ETRATION T	DN × EST •	w _P W	COM ATER C		0.04	UNIT WEIGH	OB	DUND WATEF SERVATIONS D REMARKS GRAIN SIZ DISTRIBUTIO
0.05	SURFACE ELEVATION 293.35 TOPSOIL: Dark brown to black, silty	- ~	-			ш		20	40 6	8 0	0	1	0 20	30	40	kN/m ³	S	GR SA S
93.10	sand, trace organics, frozen SILT AND SAND: Loose to dense,		1	SS	4	293	1		-				0				C	oncrete
1	brown, silt and sand, trace clay, moist		21	SS	7								0					
						292				_					-			
			3	SS	4	T		1	111			d						
									1.1									entonite seal rst water strike
		• • • • • • • • • • •	4	SS	32	291		0					2					1 m
2.9	SAND: Very dense, brown, sand, some	0000	Q															
	silt, wet		5	SS	57	290	, 	-)	-		o	-		-			
									1									
4.8						289			X			-			1		· Hi	
288.6	SILTY SAND TILL: Dense to very dense, light brown, silty sand, trace clay, trace		6	SS	36	_							0				:目:	
	gravel, very moist					288	3	-						-	-) mm slotted pi Iter sand
										1								
9			7	SS	92	287	,				1		0					
6.5 286.9	BOREHOLE TERMINATED AT 6.5 m	\$7.75				200	-										Upon co	npletion of auge at 6.0 m depth
M																		vel Readings:
																	Date 2021-03-	Depth(m) 30 4.3
																	2021-05-	20 4.2
																		/
NOT	ES 1. Samples submitted for chemical testin	a										1						

LOCA	IECT Proposed Expansion of Melville C ATION Oro-Medonte, Ontario NG METHOD Continuous Flight Hollow S					1		_			arch 3,	2021	1		PML R ENGIN TECHI	IEER		
	SOIL PROFILE	DT.	œ		PLES	V SCALE	+FIEL	KET PE		RVANE METER	O Qu O Q	PLAS LIMIT WP		ATURAL DISTUR DISTUR	F			GROUND WATER OBSERVATIONS
EPTH ELEV netres)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	DYNAM	AIC CON	NE PENI		ON × EST •	w.	ATER		NT (%)	+ E		AND REMARKS GRAIN SIZE DISTRIBUTION GR SA SI8
95.78	SURFACE ELEVATION 296.00 TOPSOIL: Black, silty sand, trace organics, frozen		1	SS	4		•					o				KIN	/m	Stick-up casing Concrete
	SILT AND SAND: Loose to very dense, brown, silt and sand, trace clay, moist		2	SS	22	295		•	-	_		0-				-		
			3	SS	23								Ø					First water strike a
					50/000	294				/								1.7 m Bentonite seal
<u>2.9</u> 293.1	SAND: Dense to very dense, brown,		4	SS	50/200 mm	293				/					_	_	4	
	sand, some silt, moist		5	SS	32	-		5				c						
						292	2		/								1	
			6	SS	64	291	(•		o						
																		50 mm slotted pip Filter sand
6.5			7	SS	73	290)						ō				÷	
289.5	BOREHOLE TERMINATED AT 6.5 m																We	on completion of auger it cave at 6.0 m depth
																	Dat 202	ter Level Readings: <u>e Depth(m)</u> 21-03-30 Dry 21-05-20 Dry
																		/

APPENDIX A

Statement of Limitations

STATEMENT OF LIMITATIONS

This report is prepared for and made available for the sole use of the client named. Peto MacCallum Ltd. (PML) hereby disclaims any liability or responsibility to any person or entity, other than those for whom this report is specifically issued, for any loss, damage, expenses, or penalties that may arise or result from the use of any information or recommendations contained in this report. The contents of this report may not be used or relied upon by any other person without the express written consent and authorization of PML.

This report shall not be relied upon for any purpose other than as agreed with the client named without the written consent of PML. It shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. A portion of this report may not be used as a separate entity: that is to say the report is to be read in its entirety at all times.

The report is based solely on the scope of services which are specifically referred to in this report. No physical or intrusive testing has been performed, except as specifically referenced in this report. This report is not a certification of compliance with past or present regulations, codes, guidelines and policies.

The scope of services carried out by PML is based on details of the proposed development and land use to address certain issues, purposes and objectives with respect to the specific site as identified by the client. Services not expressly set forth in writing are expressly excluded from the services provided by PML. In other words, PML has not performed any observations, investigations, study analysis, engineering evaluation or testing that is not specifically listed in the scope of services in this report. PML assumes no responsibility or duty to the client for any such services and shall not be liable for failing to discover any condition, whose discovery would require the performance of services not specifically referred to in this report.

STATEMENT OF LIMITATIONS (continued)

The findings and comments made by PML in this report are based on the conditions observed at the time of PML's site reconnaissance. No assurances can be made and no assurances are given with respect to any potential changes in site conditions following the time of completion of PML's field work. Furthermore, regulations, codes and guidelines may change at any time subsequent to the date of this report and these changes may effect the validity of the findings and recommendations given in this report.

The results and conclusions with respect to site conditions are therefore in no way intended to be taken as a guarantee or representation, expressed or implied, that the site is free from any contaminants from past or current land use activities or that the conditions in all areas of the site and beneath or within structures are the same as those areas specifically sampled.

Any investigation, examination, measurements or sampling explorations at a particular location may not be representative of conditions between sampled locations. Soil, ground water, surface water, or building material conditions between and beyond the sampled locations may differ from those encountered at the sampling locations and conditions may become apparent during construction which could not be detected or anticipated at the time of the intrusive sampling investigation.

Budget estimates contained in this report are to be viewed as an engineering estimate of probable costs and provided solely for the purposes of assisting the client in its budgeting process. It is understood and agreed that PML will not in any way be held liable as a result of any budget figures provided by it.

The Client expressly waives its right to withhold PML's fees, either in whole or in part, or to make any claim or commence an action or bring any other proceedings, whether in contract, tort, or otherwise against PML in anyway connected with advice or information given by PML relating to the cost estimate or Environmental Remediation/Cleanup and Restoration or Soil and Ground Water Management Plan Cost Estimate.

APPENDIX B

Engineered Fill

The information presented in this appendix is intended for general guidance only. Site specific conditions and prevailing weather may require modification of compaction standards, backfill type or procedures. Each site must be discussed, and procedures agreed with Peto MacCallum Ltd. prior to the start of the earthworks and must be subject to ongoing review during construction. This appendix is not intended to apply to embankments. Steeply sloping ravine residential lots require special consideration.

For fill to be classified as engineered fill suitable for supporting structural loads, a number of conditions must be satisfied, including but not necessarily limited to the following:

1. <u>Purpose</u>

The site specific purpose of the engineered fill must be recognized. In advance of construction, all parties should discuss the project and its requirements and agree on an appropriate set of standards and procedures.

2. Minimum Extent

The engineered fill envelope must extend beyond the footprint of the structure to be supported. The minimum extent of the envelope should be defined from a geotechnical perspective by:

- at founding level, extend a minimum 1.0 m beyond the outer edge of the foundations, greater if adequate layout has not yet been completed as noted below; and
- extend downward and outward at a slope no greater than 45° to meet the subgrade

All fill within the envelope established above must meet the requirements of engineered fill in order to support the structure safely. Other considerations such as survey control, or construction methods may require an envelope that is larger, as noted in the following sections.

Once the minimum envelope has been established, structures must not be moved or extended without consultation with Peto MacCallum Ltd. Similarly, Peto MacCallum Ltd. should be consulted prior to any excavation within the minimum envelope.

3. Survey Control

Accurate survey control is essential to the success of an engineered fill project. The boundaries of the engineered fill must be laid out by a surveyor in consultation with engineering staff from Peto MacCallum Ltd. Careful consideration of the maximum building envelope is required.

During construction it is necessary to have a qualified surveyor provide total station control on the three dimensional extent of filling.

4. <u>Subsurface Preparation</u>

Prior to placement of fill, the subgrade must be prepared to the satisfaction of Peto MacCallum Ltd. All deleterious material must be removed and in some cases, excavation of native mineral soils may be required.

Particular attention must be paid to wet subgrades and possible additional measures required to achieve sufficient compaction. Where fill is placed against a slope, benching may be necessary and natural drainage paths must not be blocked.

5. Suitable Fill Materials

All material to be used as fill must be approved by Peto MacCallum Ltd. Such approval will be influenced by many factors and must be site and project specific. External fill sources must be sampled, tested and approved prior to material being hauled to site.

6. Test Section

In advance of the start of construction of the engineered fill pad, the Contractor should conduct a test section. The compaction criterion will be assessed in consultation with Peto MacCallum Ltd. for the various fill material types using different lift thicknesses and number of passes for the compaction equipment proposed by the Contractor.

Additional test sections may be required throughout the course of the project to reflect changes in fill sources, natural moisture content of the material and weather conditions.

The Contractor should be particularly aware of changes in the moisture content of fill material. Site review by Peto MacCallum Ltd. is required to ensure the desired lift thickness is maintained and that each lift is systematically compacted, tested and approved before a subsequent lift is commenced.

7. Inspection and Testing

Uniform, thorough compaction is crucial to the performance of the engineered fill and the supported structure. Hence, all subgrade preparation, filling and compacting must be carried out under the full time inspection by Peto MacCallum Ltd.

All founding surfaces for all buildings and residential dwellings or any part thereof (including but not limited to footings and floor slabs) on structural fill or native soils must be inspected and approved by PML engineering personnel prior to placement of the base/subbase granular material and/or concrete. The purpose of the inspection is to ensure the subgrade soils are capable of supporting the building/house foundation and floor slab loads and to confirm the building/house envelope does not extend beyond the limits of any structural fill pads.

8. Protection of Fill

Fill is generally more susceptible to the effects of weather than natural soil. Fill placed and approved to the level at which structural support is required must be protected from excessive wetting, drying, erosion or freezing. Where adequate protection has not been provided, it may be necessary to provide deeper footings or to strip and recompact some of the fill.

9. Construction Delay Time Considerations

The integrity of the fill pad can deteriorate due to the harsh effects of our Canadian weather. Hence, particular care must be taken if the fill pad is constructed over a long time period.

It is necessary therefore, that all fill sources are tested to ensure the material compactability prior to the soil arriving at site. When there has been a lengthy delay between construction periods of the fill pad, it is necessary to conduct subgrade proof rolling, test pits or boreholes to verify the adequacy of the exposed subgrade to accept new fill material.

When the fill pad will be constructed over a lengthy period of time, a field survey should be completed at the end of each construction season to verify the areal extent and the level at which the compacted fill has been brought up to, tested and approved.

In the following spring, subexcavation may be necessary if the fill pad has been softened attributable to ponded surface water or freeze/thaw cycles.

A new survey is required at the beginning of the next construction season to verify that random dumping and/or spreading of fill has not been carried out at the site.

10. Approved Fill Pad Surveillance

It should be appreciated that once the fill pad has been brought to final grade and documented by field survey, there must be ongoing surveillance to ensure that the integrity of the fill pad is not threatened.

Grading operations adjacent to fill pads can often take place several months or years after completion of the fill pad.

It is imperative that all site management and supervision staff, the staff of Contractors and earthwork operators be fully aware of the boundaries of all approved engineered fill pads.

Excavation into an approved engineered fill pad should never be contemplated without the full knowledge, approval and documentation by the geotechnical consultant.

If the fill pad is knowingly built several years in advance of ultimate construction, the areal limits of the fill pad should be substantially overbuilt laterally to allow for changes in possible structure location and elevation and other earthwork operations and competing interests on the site. The overbuilt distance required is project and/or site specified.

Iron bars should be placed at the corner/intermediate points of the fill pad as a permanent record of the approved limits of the work for record keeping purposes.

11. Unusual Working Conditions

Construction of fill pads may at times take place at night and/or during periods of freezing weather conditions because of the requirements of the project schedule. It should be appreciated therefore, that both situations present more difficult working conditions. The Owner, Contractor, Design Consultant and Geotechnical Engineer must be willing to work together to revise site construction procedures, enhance field testing and surveillance, and incorporate design modifications as necessary to suit site conditions.

When working at night there must be sufficient artificial light to properly illuminate the fill pad and borrow areas.

Placement of material to form an engineered fill pad during winter and freezing temperatures has its own special conditions that must be addressed. It is imperative that each day prior to placement of new fill, the exposed subgrade must be inspected and any overnight snow or frozen material removed. Particular attention should be given to the borrow source inspection to ensure only nonfrozen fill is brought to the site.

The Contractor must continually assess the work program and have the necessary spreading and compacting equipment to ensure that densification of the fill material takes place in a minimum amount of time. Changes may be required to the spreading methods, lift thickness, and compaction techniques to ensure the desired compaction is achieved uniformly throughout each fill lift.

The Contractor should adequately protect the subgrade at the end of each shift to minimize frost penetration overnight. Since water cannot be added to the fill material to facilitate compaction, it is imperative that densification of the fill be achieved by additional compaction effort and an appropriate reduced lift thickness. Once the fill pad has been completed, it must be properly protected from freezing temperatures and ponding of water during the spring thaw period.

If the pad is unusually thick or if the fill thickness varies dramatically across the width or length of the fill pad, Peto MacCallum Ltd. should be consulted for additional recommendations. In this case, alternative special provisions may be recommended, such as providing a surcharge preload for a limited time or increase the degree of compaction of the fill.

APPENDIX C

MECP Water Well Records

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ORO TOWNSHIP CON 05 020	17 613300 4924284 W	1961/10 4102	30 30	FR 0025	20//2/:	DO		5703214 ()	GRVL 0025 MSND 0030
ORO TOWNSHIP CON 05 020	17 614066 4924662 W	1964/11 4608	30	FR 0013	13//2/:	DO		5703215 ()	MSND GRVL 0015
ORO TOWNSHIP CON 05 020	17 613220 4924281 W	1966/09 2514	6	FR 0052	24/48/7/2 :30	DO		5703218 ()	BRWN MSND GRVL CLAY 0008 BRWN CLAY STNS 0045 CSND GRVL 0052
ORO TOWNSHIP CON 05 020	17 614021 4924632 W	1967/12 4608	30	FR 0009	9//2/:	DO		5703219 ()	BRWN CLAY 0010 MSND GRVL STNS 0015
ORO TOWNSHIP CON 05 021	17 613988 4924480 W	1964/10 4816	6	FR 0170	35/59/13 0/34:0	PS	0171 4 0175 3	5703220 ()	MSND GRVL 0036 BLUE CLAY 0044 GREY FSND 0058 BLUE CLAY 0094 GRVL 0096 CLAY GRVL 0108 BLUE CLAY 0155 FSND 0165 CSND GRVL 0180
ORO TOWNSHIP CON 06 020	17 614253 4924716 W	1962/08 1614	4 4	FR 0078	34/39/20/ 2:0	DO		5703256 ()	HPAN BLDR 0078 GRVL 0079
ORO TOWNSHIP CON 05 021	17 613584 4924094 W	1968/06 4608	30	FR 0012	6///:	DO		5705797 ()	BRWN CLAY 0018
ORO TOWNSHIP CON 05 020	17 613654 4924374 W	1968/08 4608	30	FR 0008	8///:	DO		5705799 ()	BRWN CLAY 0007 MSND 0018
ORO TOWNSHIP CON 06 021	17 614194 4924594 W	1970/05 4608	30	FR 0018 FR 0025	10/18//1: 15	DO		5707169 ()	BRWN CLAY STNS 0018 GREY CLAY MSND 0025
ORO TOWNSHIP CON 05 020	17 613884 4924544 W	1972/10 4715	4	FR 0130	22/140/5/ 2:0	DO	0163 3	5709363 ()	SAND 0004 CLAY GRVL BLDR 0020 SAND 0045 GREY CLAY 0130 FSND 0166
ORO TOWNSHIP CON 05 020	17 613884 4924584 W	1976/03 3203	5	FR 0021	5/19/7/2: 0	DO	0031 3	5714173 ()	FILL 0006 GREY CLAY SNDY 0021 BRWN SAND 0034
ORO TOWNSHIP CON 06 020	17 614214 4924724 W	1976/05 3203	5	FR 0114	27/65/10/ 1:30	DO	0115 3	5714181 ()	BRWN LOAM 0001 BRWN GRVL STNS SAND 0038 GREY CLAY SILT FSND 0065 GREY CLAY 0105 BRWN SAND CLAY 0114 BRWN SAND GRVL 0118
ORO TOWNSHIP CON 05 020	17 613944 4924614 W	1976/06 3203	5	FR 0028	4/20/5/1: 0	DO	0030 3	5714190 ()	FILL 0004 GREY CLAY 0018 BRWN SAND CLAY 0028 BRWN SAND 0033
ORO TOWNSHIP CON 05 020	17 614064 4924624 W	1978/02 3135	5	FR 0031	4/25/3/3: 0	DO	0032 3	5715007 ()	FILL 0003 BRWN SAND 0021 BRWN SAND CLAY 0031 BRWN SAND FGRD 0035

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ORO TOWNSHIP CON 05 020	17 613264 4924274 W	1978/11 4816	6	FR 0139	30/72/13 2/24:0	MN	0160 10	5715897 ()	SAND GRVL LYRD 0026 CLAY SAND 0060 CLAY 0139 FSND 0154 MSND 0172 SAND CMTD 0190 CLAY 0198
ORO TOWNSHIP CON 06 021	4924674 W	1982/05 3602	6	FR 0102	20/85/8/5 :0	DO	0102 7	5718089 ()	BRWN LOAM 0001 GREY CLAY STNS 0020 GREY CLAY SNDS 0040 BRWN SAND CLAY 0050 GREY CLAY STNS HARD 0065 GREY CLAY SNDS 0102 BRWN SAND CLN WBRG 0109
ORO TOWNSHIP 05 020	17 613357 4924530 L	1988/03 1467	5	FR 0031	9/28/3/2: 30	DO	0038 4	5722980 (25853)	BRWN LOAM 0001 BRWN SAND GRVL 0019 GREY CLAY GRVL 0031 BRWN SAND 0042 GREY SAND CLAY 0042
ORO TOWNSHIP CON 05 020	17 614076 4924711 W	1988/08 1583	65	FR 0153	27/140/6/ 2:15	DO	0150 3	5723789 (26573)	BRWN CLAY SAND 0005 GREY CLAY 0030 GREY CLAY SILT 0143 SAND CLAY 0149 FSND MGRD 0154
ORO TOWNSHIP CON 06 021	17 614206 4924664 W	1988/11 4793	6	FR 0037	12//5/1:0	DO		5724308 (39760)	BRWN LOAM LOOS 0003 GREY CLAY GRVL LOOS 0008 BRWN GRVL STNS DNSE 0037
ORO TOWNSHIP CON 06 021	17 614235 4924678 W	1989/05 1456	5	FR 0080	21/60/7/2 :0	DO	0076 4	5724948 (63127)	BLCK LOAM 0002 RED SAND 0005 BRWN CLAY 0011 GREY CLAY GRVL LYRD 0038 GRVL CLAY LYRD 0070 GRVL 0085
ORO TOWNSHIP CON 05 020	17 613691 4925287 W	1988/10 3135	5	FR 0078	34/48/12/ 6:0	DO ST	0078 4	5724981 (37750)	CLAY 0015 CLAY SAND 0078 SAND 0082
ORO TOWNSHIP CON 05 020	4924516 W		6	FR 0022	10/18/5/2 4:0	DO	0022 6	5725001 (41566)	BRWN FILL 0005 BRWN SAND CGVL 0022 BRWN SAND WBRG 0030
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1990/09 3660	5	FR 0033	/30/5/1:0	DO	0038 6	5727214 (58208)	BRWN CLAY 0011 GREY CLAY GRVL HARD 0026 GREY CLAY SAND HARD 0033 BRWN FSND WBRG 0047 GREY SILT SAND 0047
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1991/12 1456		FR 0087	20/80/8/2 :0	DO	0083 4	5728975 (115246)	BRWN CLAY SAND 0020 BRWN CSND 0025 BRWN STNS GRVL 0055 GREY CLAY SILT 0065 GREY SILT 0082 GREY MSND 0095
ORO TOWNSHIP CON 06 021	17 614093 4924681 W	1992/06 2662	6	UK 0170	30/54/20/ 12:	DO	0163 8	5729488 (116964)	BLCK LOAM 0001 BRWN SAND 0003 BRWN CLAY STNS SAND 0071 GREY CLAY 0138 GREY CLAY STNS 0170 BRWN SAND 0178
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1996/11 2513	6	FR 0131	17/118/1 0/1:30	DO	0132 3	5732536 (173390)	BRWN SAND GRVL FILL 0002 BRWN SAND SILT 0007 GREY CLAY SAND BLDR 0017 YLLW SAND SILT 0035 GREY CLAY SAND SILT 0131 YLLW MSND 0135
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1997/09 2513	6	FR 0148	23/106/2 0/1:30	DO	0148 3	5733073 (181549)	BRWN CLAY SAND 0008 GREY SILT SAND STNS 0030 YLLW SAND 0046 GREY CLAY 0091 GREY CLAY SAND CMTD 0148 YLLW SAND MGRD 0151
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1997/12 2513		FR 0144	26/100/1 0/1:30	DO	0144 3	5733213 (184106)	LOAM 0001 YLLW SAND SILT STNS 0033 GREY CLAY SILT BLDR 0144 YLLW SAND 0147
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1997/12 2513		FR 0164		DO	0165 3	5733214 (184107)	YLLW SAND SILT 0037 GREY SAND FGRD 0045 GREY CLAY SILT STNS 0142 GREY SILT CLAY SAND 0164 YLLW SAND CMTD SLTY 0168
ORO TOWNSHIP CON 05 020	17 613357 4924530 L	1998/04 2513		FR 0149	27/136/1 0/2:0	DO	0151 3	5733474 (184116)	BRWN SAND GRVL BLDR 0039 GREY SILT CLAY SAND 0149 GREY SAND SILT 0154

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
ORO TOWNSHIP	17 613357	1998/06			26/140/1			5733534	YLLW SAND SILT 0036 GREY SILT CLAY BLDR 0085 GREY CLAY 0137
CON 05 020	4924530 L	2513	6	FR 0170	5/1:0	DO	0172 3	(184124)	GREY SILT SAND 0165 GREY SAND SILT 0175
ORO TOWNSHIP	17 613357	1998/06			27/90/10/			5733535	BRWN SAND CLAY 0040 GREY SILT CLAY SAND 0073 GREY CLAY
CON 05 020	4924530 L	2513	6	FR 0163	1:30	DO	0163 3	(184123)	0134 GREY SILT SAND 0152 GREY SAND SLTY GRVL 0166
	17 613357	1998/07			/165/8/2:			5733774	BRWN SAND SILT BLDR 0019 YLLW SAND 0037 GREY SILT SAND 0045 GREY CLAY 0136 GREY SILT SAND CMTD 0169 YLLW SAND
CON 05 020	4924530 L	2513	6	FR 0169	0	DO	0169 3	(184130)	SILT 0172 GREY CLAY 0172
	17 613358 4924530 L	1998/11 2513	6	FR 0158	39/128/1 5/1:0	DO	0155 3	5734036 (181553)	LOAM 0001 YLLW SAND GRVL SILT 0026 YLLW SAND 0052 GREY CLAY BLDR 0118 GREY CLAY SAND 0147 GREY SILT CLAY 0153 YLLW SAND SILT MGVL 0158
	17 613358 4924530 L	1999/01 2513	6	FR 0158	34/120/2 0/1:0	DO	0155 3	5734052 (195327)	LOAM 0002 YLLW SAND SLTY 0014 YLLW SAND CLAY 0021 YLLW SAND 0041 GREY CLAY VERY SAND 0148 GREY SILT SAND 0155 YLLW SAND CSND 0158
ORO TOWNSHIP CON 05 020		1999/03 2513	6	FR 0163	35/105/2 5/1:20	DO	0160 3	5734062 (195334)	YLLW SAND CLAY BLDR 0046 GREY CLAY SAND 0149 GREY SILT SAND 0160 YLLW SAND SILT 0163
		1999/05 2513	6	FR 0168	37/145/1 5/1:30	DO	0169 3	5734443 (195337)	BRWN SAND SILT BLDR 0052 GREY CLAY SILT 0136 GREY SILT SAND CMTD 0168 YLLW SAND SLTY 0172
		1999/06 2513	65	FR 0190	40/140/2 0/1:0	DO	0187 3	5734444 (195338)	YLLW SAND SILT BLDR 0054 GREY SILT CLAY SAND 0140 GREY SILT SAND CMTD 0185 YLLW CSND SILT 0190
	17 613358 4924530 L	1999/10 1467	5	FR 0061	15/20/12/ 2:	DO	0063 4	5734805 (209775)	BLCK LOAM 0001 BRWN CLAY SAND STNS 0021 BRWN SAND CLAY 0039 GREY CLAY 0052 BRWN SAND 0061 BRWN SAND 0061
	17 613354 4924528 L	2002/06 1467	5	FR 0160	42/43/6/1 7:30	DO	0161 4	5737086 (228105)	BLCK LOAM 0001 BRWN SAND GRVL 0017 BRWN CLAY SAND 0057 GREY CLAY SAND 0063 GREY CLAY 0070 BRWN SAND CMTD 0079 GREY SAND GRVL CLAY 0140 GREY CLAY 0160 BRWN SAND 0165 BRWN SAND 0165
ORO TOWNSHIP 05 020	17 613901 4924521 W	2004/11 5528	6.09 5.11	FR 0167	31///:	DO	0166 4	5739498 (Z18512) A018335	FILL 0002 BRWN SAND 0031 GREY CLAY SAND 0068 BRWN SAND GRVL 0070 GREY CLAY DNSE 0141 BRWN SAND FSND 0146 BRWN SAND MSND 0177 GREY CLAY 0180
	17 614040 4924734 W		6.25	FR 0138	26/51/6/1 :0	DO	0140 3	5740571 (Z15139) A015078	BRWN MUCK SILT SAND 0004 GREY SILT SAND 0016 YLLW SAND 0035 GREY CLAY SILT SAND 0083 GREY CLAY 0130 GREY SILT SAND 0140 YLLW SAND SILT CMTD 0143

APPENDIX D

Certificates of Analyses for Chemical Testing – Ground Water

Client committed. Quality assured.

C.O.C.: GH0170

Final Report

REPORT No. B21-08693

Report To:				Ca	duceon Environmental I	Laboratories
Peto MacCallum Ltd				112	2 Commerce Park Drive	
19 Churchill Drive,				Bai	rrie ON L4N 8W8	
Barrie ON L4N 8Z5				Tel	: 705-252-5743	
Attention: Alicia Kim	nberley			Fax	k: 705-252-5746	
DATE RECEIVED: 3	0-Mar-21			JO	B/PROJECT NO.:	
DATE REPORTED: 0	7-Apr-21					
SAMPLE MATRIX: 0	Groundwater			P.C	D. NUMBER: 21BF	010
				WA	TERWORKS NO.	
					1	
Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Anions	1	Holly Lane	VK	31-Mar-21	A-IC-01 (o)	SM4110C
T. Phosphorus (P)	1	Kingston	KD	01-Apr-21	A-TP K	E3199A.1

PWQO - Provincial Water Quality Objectives Interim PWQO - Interim PWQO PWQO - Provincial Water Quality Objectives

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Client committed. Quality assured.

C.O.C.: GH0170

Final Report

REPORT No. B21-08693

<u>Report To:</u>	Caduceon Environmental Laboratories
Peto MacCallum Ltd	112 Commerce Park Drive
19 Churchill Drive,	Barrie ON L4N 8W8
Barrie ON L4N 8Z5	Tel: 705-252-5743
Attention: Alicia Kimberley	Fax: 705-252-5746
DATE RECEIVED: 30-Mar-21	JOB/PROJECT NO.:
DATE REPORTED: 07-Apr-21	P.O. NUMBER: 21BF010
SAMPLE MATRIX: Groundwater	WATERWORKS NO.

	Client I.D.		BH/MW3		PW	QO
	Sample I.I Date Colle		B21-08693-1 30-Mar-21		Interim PWQO	PWQO
[Date Colle		50-iviai-2 i	_	1 11 40	
Parameter	Units	R.L.				
Nitrite (N)	µg/L	50	60			
Nitrate (N)	µg/L	50	310			
Phosphorus-Total	µg/L	2	3670			10

PWQO - Provincial Water Quality Objectives Interim PWQO - Interim PWQO PWQO - Provincial Water Quality Objectives

- la

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

C.O.C.: GH0170

Final Report

REPORT No. B21-08693

Report To:	Caduceon Environmental Laboratories
Peto MacCallum Ltd	112 Commerce Park Drive
19 Churchill Drive,	Barrie ON L4N 8W8
Barrie ON L4N 8Z5	Tel: 705-252-5743
Attention: Alicia Kimberley	Fax: 705-252-5746
DATE RECEIVED: 30-Mar-21	JOB/PROJECT NO.:
DATE REPORTED: 07-Apr-21	P.O. NUMBER: 21BF010
SAMPLE MATRIX: Groundwater	WATERWORKS NO.

Summary of Exceedances

Provincial Water Quality Objectives		
BH/MW3	Found Value	Limit
Phosphorus-Total (µg/L)	3670	10

PWQO - Provincial Water Quality Objectives Interim PWQO - Interim PWQO PWQO - Provincial Water Quality Objectives

1

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

G	ENERAL S	AMPLE SUBN	ISSION FORM	SA	MPLES SUBMITTE	TO:	ALC YE	1.30	TEST	ING R	EQUI	REMEN	TS				-01			REF	PORT NUM	MBER (Lab Us	e)
	189 20		STOPIS		Kingston Ottawa Richmond Hill Barrie London Windsor	x		O'Reg 153/04 O'Reg 406/19 RPI Coarse MISA Other:		X	Table ICC	e (1 + 9) ø (1 + 9.1) um/Fine 10		SPLI Agrii O'Re	cultural Ig 558 T	(1 - 9.1)			B	2)- (086	93
	Are an	y samples to be su	ibmitted intended for	r Human Cons	umption under any	Drinking	Water Regulation	is?		Yes	X	No		If yes, s	submit	all Drin	king W	later :	Sample	s on a D	rinking Wat	er Chain of Cu	stody)
Organizat		to Maccallum Ltd.	A	ddress:		Invoicing	Address (if different):				ANA	LYSES	REQU	JESTE	D					REQUESTE	OUND SERVIC	age)
Contact: Tel:		A. Kimberley			prive, Barrie, ON L4N petomaccallum.com					MOO									Itaminated	-	*Must be ar Platinum* Gold*		ance Surcharge Surcharge
	05-734-3900	705-7		luote #:		Project N	lame#:		NO2NO3	Phosphorous PWOO									spected Highly Contam		Silver Bronze	50% S	Surcharge
Additiona	l Info (email, cell, et		P	.0. #:		Addition	21BF010 al Info:		2	Phospi								1000	uspected h	x	Standard Specific D	5-7 da ate:	ys
Lab		@petomaccallu.c	* Sample Matri	×Legend: WW=V	Vaste Water, SW=Surface	Sample	Date Collected	Time	=Solid	Sludge		Indicate	Test For	Each S	ample	2	ilter, Oi		x		eld	# Bottles/	Field Filtered
No. 5	ample Source and/	or Sample Identification		1000	S.P.L.	Matrix *	(yy-mm-dd)	Collected	x		By Us	ing A Chi	ick Mark	In The E	Box Pra	wided	T			рН	Temp.	Sample 2	Y/N
-		BH/M	NVV 3			GW	21-03-30	1:45:00 PM	A	X	_		-	-		-	-	+	-	-	-	2	N
1			0			_					_		-	-		_	_	-	_				
1	Gen C	ents >	0			_					_		-	-		-	_	-	_				
1.15	nuti-	ents->	K			_					_		-			_	_	_					
LA											_		-				_	_			1.27		
Luni						-			1			_	_			-	-	-	_	-			
4 1													_			_	-	-	-		_		-
													-			_	_	_	_				
						_							-			_		_	-				
1																							
								DECONTINU								DEOF		1500		10.100	DATODY U		
1	SAMPI	LE SUBMISSION INFO	DRMATION	Courier	SHIPPING INI Client account)	ORMATIC	Invoice	REPORTING Report by Fax	ST INV		_	Receive	d By (pi				s n	-		n (LABO gnature:	RATORYUS	E ONLY)	
Print:	Sample S. Gri		Submitted by: S. Griffith		Caduceon account)	H	Invoice	Report by Email		X		Date Re	1.1	1.00			03	_		ne Recei	ved: /	4:40	
Sign:	0.01			Drop Off		X	# of Pieces	Invoice by Email		X		Laborat	ory Pre	pared B	ottles:	E	Y	es		No			
	21-03 Date (yy-mm		21-03-30 Date (yy-mm-dd)/Time:		n (Pick-up)			Invoice by Mail				Sample	Temper	ature °(C:	14	.8	La	abeled	by:	1	17	
Commer		way tarres	And HI COULDER & BIRS																		Page	1 of Revision HQ1	1

APPENDIX E

Certificates of Analyses for Chemical Testing - Soil

Client committed. Quality assured.

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (i)

Report	To:

Peto MacCallum Ltd

19 Churchill Drive, Barrie ON L4N 8Z5 Attention: Alicia Kimberley

DATE RECEIVED: 08-Mar-21

DATE REPORTED: 12-Mar-21

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746

JOB/PROJECT NO .:

P.O. NUMBER: 21BF010

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Cyanide	4	Kingston	US	12-Mar-21	A-CN s K	in house
Conductivity	4	Holly Lane	ROD	12-Mar-21	A-COND-01 (o)	SM 2510B
ρΗ	4	Richmond Hill	HAZ	10-Mar-21	A-pH-02 (rh)	MOEE3530
Chromium (VI)	4	Holly Lane	LMG	11-Mar-21	D-CRVI-02 (o)	EPA7196A
Vercury	4	Holly Lane	PBK	12-Mar-21	D-HG-01 (o)	EPA 7471A
Sodium Adsorption Ratio	4	Holly Lane	AHM	12-Mar-21	D-ICP-01 SAR (o)	SM 3120
Vetals - ICP-OES	4	Holly Lane	AHM	12-Mar-21	D-ICP-02 (o)	EPA 6010
Vetals - ICP-MS	4	Holly Lane	TPR	12-Mar-21	D-ICPMS-01 (o)	EPA 6020

 μ g/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μ g/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in μ g/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

R.L. = Reporting Limit

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC QC will be made available upon request.

O. Reg 406/19 - Ontario Regulation 406/19 Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

Christine Burke Lab Manager

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (i)

Caduceon Environmental Laboratories
112 Commerce Park Drive
Barrie ON L4N 8W8
Tel: 705-252-5743
Fax: 705-252-5746
JOB/PROJECT NO.:
P.O. NUMBER: 21BF010
WATERWORKS NO.

	Client I.D.		BH1 SS2	BH2 SS2	BH3 SS2	BH4 SS2	O. Reg	406/19
	Sample I.D) .	B21-06513-1	B21-06513-2	B21-06513-3	B21-06513-4	Tbl. 1 -	
	Date Colle	cted	03-Mar-21	03-Mar-21	03-Mar-21	03-Mar-21	Res/Park/In sti	
Parameter	Units	R.L.						
pH @25°C	pH Units		7.99	6.03	6.38	7.81		
Conductivity @25°C	mS/cm	0.001	0.112	0.058	0.054	0.15	0.57	
Cyanide (Free)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.051	
Sodium Adsorption Ratio	units		0.0722	0.127	0.141	0.0994		
Antimony	µg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	
Arsenic	µg/g	0.5	0.7	0.8	0.9	1.0	18	
Barium	µg/g	1	42	40	51	74	220	
Beryllium	µg/g	0.2	0.2	0.3	0.3	0.3	2.5	
Boron	µg/g	0.5	3.0	1.5	1.8	4.1	36	
Cadmium	µg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	
Chromium	µg/g	1	11	12	13	18	70	
Chromium (VI)	µg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.66	
Cobalt	µg/g	1	3	4	4	5	21	
Copper	µg/g	1	7	4	5	9	92	
Lead	µg/g	5	< 5	< 5	< 5	< 5	120	
Mercury	µg/g	0.005	< 0.005	0.017	0.017	0.008	0.27	
Molybdenum	µg/g	1	< 1	< 1	< 1	< 1	2	
Nickel	µg/g	1	6	6	6	8	82	
Selenium	µg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.5	
Silver	µg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.5	
Thallium	µg/g	0.1	< 0.1	< 0.1	< 0.1	< 0.1	1	
Uranium	µg/g	0.1	0.2	0.3	0.3	0.3	2.5	
Vanadium	µg/g	1	28	27	28	31	86	
Zinc	µg/g	3	17	15	19	23	290	

O. Reg 406/19 - Ontario Regulation 406/19

Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke Lab Manager

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (i)

Report To:	Caduceon Environmental Laboratories
Peto MacCallum Ltd	112 Commerce Park Drive
19 Churchill Drive,	Barrie ON L4N 8W8
Barrie ON L4N 8Z5	Tel: 705-252-5743
Attention: Alicia Kimberley	Fax: 705-252-5746
DATE RECEIVED: 08-Mar-21	JOB/PROJECT NO.:
DATE REPORTED: 12-Mar-21	P.O. NUMBER: 21BF010
SAMPLE MATRIX: Soil	WATERWORKS NO.

Summary of Exceedances

O. Reg 406/19 - Ontario Regulation 406/19 Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

1.0

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (ii)

Report To:				Ca	duceon Environmental La	boratories
Peto MacCallum Lto	I			112	2 Commerce Park Drive	
19 Churchill Drive,				Ba	rrie ON L4N 8W8	
Barrie ON L4N 8Z5				Tel	: 705-252-5743	
Attention: Alicia Ki	mberley			Fax	x: 705-252-5746	
DATE RECEIVED:	08-Mar-21			JO	B/PROJECT NO.:	
DATE REPORTED:	12-Mar-21					
SAMPLE MATRIX:	Soil			P.C	D. NUMBER: 21BF01	0
				WA	TERWORKS NO.	
Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
	-	•]	
OC Pesticides	4	Kingston	CS	12-Mar-21	C-PESTCL-01 K	EPA 8080
μg/g = micrograms per g F1 C6-C10 hydrocarbons F2 C10-C16 hydrocarbon F3 C16-C34 hydrocarbon F4 C34-C50 hydrocarbon This method complies wi validated for use in the la	s in μg/g, (F1-bte ns in μg/g, (F2-n ns in μg/g, (F3-p ns in μg/g th the Reference	ex if requested) apth if requested) ah if requested)			Unless otherwise noted all e requirements and limits for h If analyzed for F4 and F4G t but the greater of the two nu application to the CWS PHC QC will be made available u	nolding time were met. hey are not to be summed mbers are to be used in

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

O. Reg 406/19 - Ontario Regulation 406/19 Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (ii)

Caduceon Environmental Laboratories
112 Commerce Park Drive
Barrie ON L4N 8W8
Tel: 705-252-5743
Fax: 705-252-5746
JOB/PROJECT NO.:
P.O. NUMBER: 21BF010
WATERWORKS NO.

	Client I.D.		BH1 SS2	BH2 SS2	BH3 SS2	BH4 SS2	O. Reg 406/19
	Sample I.I) .	B21-06513-1	B21-06513-2	B21-06513-3	B21-06513-4	-
	Date Colle	ected	03-Mar-21	03-Mar-21	03-Mar-21	03-Mar-21	Res/Park/In sti
Parameter	Units	R.L.					
Aldrin	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Chlordane (alpha)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Chlordane (Gamma)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Chlordane Total (alpha+gamma)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDD, 2,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDD, 4,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDD Total	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
DDE, 2,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDE, 4,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDE Total	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
DDT, 2,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDT, 4,4-	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
DDT Total	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.4
Dieldrin	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Lindane (Hexachlorocyclohexane, Gamma)	µg/g	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Endosulfan I	µg/g	0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Endosulfan II	µg/g	0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Endosulfan I/II	µg/g	0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Endrin	µg/g	0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.04
Heptachlor	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Heptachlor Epoxide	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Hexachlorobenzene	µg/g	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01

O. Reg 406/19 - Ontario Regulation 406/19

Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

1.0

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke Lab Manager

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (ii)

Report To:	Caduceon Environmental Laboratories
Peto MacCallum Ltd	112 Commerce Park Drive
19 Churchill Drive,	Barrie ON L4N 8W8
Barrie ON L4N 8Z5	Tel: 705-252-5743
Attention: Alicia Kimberley	Fax: 705-252-5746
DATE RECEIVED: 08-Mar-21	JOB/PROJECT NO.:
DATE REPORTED: 12-Mar-21	P.O. NUMBER: 21BF010
SAMPLE MATRIX: Soil	WATERWORKS NO.

	Client I.D. BH1 SS2		BH2 SS2	BH3 SS2	BH4 SS2	O. Reg	406/19			
	Sample I.I	Sample I.D. B: Date Collected (B21-06513-2	B21-06513-3	B21-06513-4	Tbl. 1 -			
	Date Colle			Date Collected		Date Collected		03-Mar-21	03-Mar-21	03-Mar-21
		i					sti			
Parameter	Units	R.L.								
Hexachlorobutadiene	hð/ð	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01			
Hexachloroethane	µg/g	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01			
Methoxychlor	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05			

O. Reg 406/19 - Ontario Regulation 406/19 Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

1.0

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

C.O.C.: G0341

Final Report

REPORT No. B21-06513 (ii)

Report To:	Caduceon Environmental Laboratories						
Peto MacCallum Ltd	112 Commerce Park Drive						
19 Churchill Drive,	Barrie ON L4N 8W8						
Barrie ON L4N 8Z5	Tel: 705-252-5743 Fax: 705-252-5746						
Attention: Alicia Kimberley	Fax: 705-252-5746						
DATE RECEIVED: 08-Mar-21	JOB/PROJECT NO.:						
DATE REPORTED: 12-Mar-21	P.O. NUMBER: 21BF010						
SAMPLE MATRIX: Soil	WATERWORKS NO.						

Summary of Exceedances

O. Reg 406/19 - Ontario Regulation 406/19 Tbl. 1 - Res/Park/Insti - Bulk - Residental/Parkland/Institutional

1.0

Christine Burke Lab Manager

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

	TESTING REQUIREMENTS													REPORT NUMBER (Lab Use)										
CADUCE N" ENVIRONMENTAL LABORATORIES Client committed Quality assured					χ O.Reg 406 Table1 RPI ICC Agricultural Yes No Record of Site Co Provincial Water Quality Objectives Sewer Use By-Law:									MISA Guidelines O.Reg 558 Leachate Analysis Disposal Site: Landfill Monitoring Other:						B21-06513				
Are an	ny samples to be submitted inte	ended for Hu	man Consumpt	ion under any	V Drinking Water	Regulations?		Yes	X	_		_	nit all D		-				king W	ater Chain	of Custo	dy)		
	Indicate Labor	atory Samp	les are submi	tted to:	King	ston	Otta	wa				d Hill			ndsor		Ba	rrie	_	London				
Organiz Peto Mar	zation: cCallum Ltd.					ress (if different)				ANALYSES RE					est in B	oxes)		TURNAROUND SERVICE REQUESTED (see back page)						
Contact	t: A. Kimberley	19 Churchill D	Drive, Barrie, ON L	N8Z5, barrie@petomaccallum.com Project Name: 21BF010														Contaminated		Platinum 200% Surcharge				
Tel:	705-734-3900																	Highly Cor	5	Gold 100% Surcharge Silver 50% Surcharge				
Fax:	705-734-9911	Quote No.:						OC Pesticides									Suspected Hi	x	Bronze 25% Surchard Standard 5-7 days					
Email: akimt	perley@petomaccallum.c	P.O. No.:	d• WW=Wasta W	Additional Info: aturner@petomaccallum.com later, SW=Surface Water, GW=Groundwater, LS=						Solid S	ludae.	S=Soil.	Sed=S	edime	nt. PC=	Paint Ch	hips, F			Specific Da	ate:			
Lab	Samp	e matrix Leger	I. III-Mastern	Sample	Date Collected	Time		orange		Ir	dicate	Test Fo	r Each S	Sample	1			~		Field	# Bottles/	Field		
No:	Sample Identification		S.P.L.	Matrix *	(yy-mm-dd) 2021-03-03	Collected	X	X	B	y Using	A Chi	eck Mari	k In The	Box P	rovided	-	1	*	рН	Temp.	Sample 2	Filtered(Y/N)		
2	BH1 SS2		-	S	2021-03-03		×	×	-	-	-		+	-	-	+	+	-	-		2			
3	BH2 SS2 BH3 SS2			S	2021-03-03		x	x					+		+		1				2			
4	BH4 SS2			S	2021-03-03		x	x													2			
cr	SPECOP > K > 10	2																						
	Jar > C Jar > C orgon > RH > peup											_		-		-		_			_			
C-	For >RH >g	renp	_		_								-	_	-	-	-	1	-					
								-					-	-	-	-	-	-			-			
			-						-		-				-									
SAMPLE SUBMISSION INFORMATION			SHIPPING INFORMATION			REPORTING / INVOICING					SAMPLE RECEIVING INFORMATION								RATORY	USE ONL	Y)			
	Sampled by:		Submitted by: Client's Courier Invoice			Invoice	Report by Fax Report by Email X					Received By (print): Nich Orleni Signature: Mother												
Print:	D. Power			Caduceon's Courier								Date F	Receive	d (yy-	mm-dd):21-	1	Time Received: 16:50						
Sign:				Drop Off X # of Piece			Invoice by Email X					Laboratory Prepared Bottles: Yes								No				
	03/03/2021 Date (yy-mm-dd)/Time:	Date (yy	-mm-dd)/Time:	Caduceon (Caduceon (Pick-up)			Invoice by Mail					le Tem	peratu	re °C:	1	Label	Labeled by:						
Commer extra jar	nts: submitted for leachate testing. Sample	es will be reque	sted following revie	w of these resul	ts-b No le	xtraja-	sul	brut	tec	t ca	3.								Page G 03	_1_ of _	_1			