

Appendix A: Typical Cross Sections

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

Appendix B: Counts and Timings

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

County Road 93

Site #: 1301800046Person(s) who counted:Person(s) who counted:TR File #: 4Count date: 28-Jun-13Major Road: CR 93 runs N/SEast Leg Total: 968North Leg Total: 968Heavys 00001North Peds: 1Person(s)Heavys 0East Leg Total: 366Peds Cross:<	Morning Pe	ak Diag	ram	-	fied Perio 6:00:00 9:00:00	d		e Hou m: 8: 9:)
North Leg Total: 968 North Entering: 554 North Peds: 1 Peds Cross:Heavys000016Trucks10East Leg Total:366Beavys Trucks2122165381179East Peds:1Peds Cross:Image: Solution of the solution o	Site #: 13018 Intersection: CR 98 TFR File #: 4	800046 3 & Vindin St/G	olf Link Rd				ed:			
North Entering: 554 North Peds: 1 Peds Cross: \bowtie Heavys Trucks Cars Totals 0 9 123 132 Heavys Trucks Cars Totals 0 1 29 0 3 118 0 5 226 Cars 629 West Entering: 231 Cars 629 West Entering: 231 Cars 629 Cars 51 316 29 Trucks 6 7 8 Heavys 0 0 0 0 0 Cars 51 316 29 Trucks 6 7 8 0 0 0 0 Cars 51 316 29 Trucks 6 7 8 0 0 0 0 Cars 51 316 29 Trucks 6 7 8 0 0 0 0 0 0	** Signalized Inters	ection **		Major	Road: C	R 93 ru	ins N/	S		
Heavys Trucks Cars Totals Image: Cars Trucks Heavys Trucks 0 9 123 132 132 132 Golf Link Rd Image: Cars Trucks Cars Trucks Heavys Trucks 0 1 29 30 1 0 61 0 1 29 30 1 0 67 0 1 29 30 1 0 67 0 1 29 30 1 0 1 0 3 118 121 1 1 0 187 Peds Cross: X Cars 629 Cars 51 316 29 396 Peds Cross: M West Peds: 2 0 1 0 187 West Peds: 2 1 1 0 187 West Peds: 2 0 0 0 0 0 South Peds: 0 West Peds: 2 0 0 0 0 0 South Peds:	North Entering: 554 North Peds: 1	Trucks 2 Cars 22	12 2 448 68	16	Trucks Cars	10 404	_	East Ente East Ped	ering: s:	179 1
N 63 4 0 67 Golf Link RdHeavys Trucks Cars 0Totals 30Vindin St 0 1 29 30 11 12		1	J L	CR 93			59	2	0	61
0 1 29 30 30 S 0 1 79 80 S Cars Trucks Heavys Total 0 3 118 121 Cars 629 Cars Trucks Heavys Total 0 5 226 Cars 629 Cars 51 316 29 396 Peds Cross: M Vest Peds: 2 Trucks 19 Trucks 6 7 8 21 South Peds: 0 West Entering: 231 Heavys 0 0 0 0 0 South Entering: 417	Golf	Link Rd	w -	N E		 	63	4	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heavys Trucks Cars Tota	als				Vind	in St			
0 3 118 121 Image: CR 93 1mmodel image: CR 93 Im	0 1 29 30			S						$ \rightarrow $
0 5 226 CR 93 176 11 0 187 Peds Cross: X Cars 629 Cars 51 316 29 396 Peds Cross: M West Peds: 2 Trucks 19 Trucks 6 7 8 21 South Peds: 0 West Entering: 231 Heavys 0 0 0 0 South Entering: 417							Care	Trucks	Hoovy	Totale
West Peds:2Trucks19Trucks67821South Peds:0West Entering:231Heavys000000South Entering:417			CRS	3					-	187
West Entering: 231 Heavys 0 0 0 South Entering: 417	Peds Cross:	Cars 629		Cars 51	316 29	396		Peds Cro	ss:	\boxtimes
	West Peds: 2	Trucks 19	Tı	rucks 6	7 8	21		South Pe	ds:	0
West Leg Total: 363 Totals 648 Totals 57 323 37 South Leg Total: 106	West Entering: 231	Heavys 0	_ He	avys 0	0 0	0		South En	tering:	417
	West Leg Total: 363	Totals 648	Т	otals 57	323 37			South Leg	g Total:	1065
Comments			Cor	nments						

Site #: 1301800046Person(s) who counted:Person(s) who counted:Person(s) who counted:Person(s) who counted:TR File #: 4Count date: 28-Jun-13Major Road: CR 93 runs N/SPerson(s) who counted:Total: 1536North Leg Total: 1536Heavys 0000North Entering: 739Trucks 19313Cars 784East Leg Total: 4Peds Cross:Peds Cross:PedsTotals 40588111CR 93Cars 784Totals 797East Peds: 0Peds Cross:Peds Cross:PedsTotalsTotals 40 588 111CR 93Cars Trucks Heavys 74 3 0 North Entering: 739Totals 42 0 0 13 726 Cars Trucks Heavys 74 3 0 Meavys Trucks CarsTotals 40 588 111 11 12 13 20 <t< th=""><th>Afternoon Peak Diagram</th><th>Specified P From: 15:00 To: 18:00</th><th>0:00</th><th>One Hour Pe From: 15:15:0 To: 16:15:0</th><th>00</th></t<>	Afternoon Peak Diagram	Specified P From: 15:00 To: 18:00	0:00	One Hour Pe From: 15:15:0 To: 16:15:0	00
North Leg Total: 1536 North Entering: 739 North Peds: 0 Peds Cross: \bowtie Heavys 0 3 292 295 Golf Link Rd Heavys Trucks Cars Totals 0 3 292 295 Golf Link Rd Heavys Trucks Cars Totals 0 0 42 0 1 89 0 2 132 0 3 263 Peds Cross: \boxed{X} Cars Totals 0 Cars Trucks Heavys 0 Cars Truc	Site #:1301800046Intersection:CR 93 & Vindin St/Golf Link RdTFR File #:4			ed:	
North Entering:739 CarsTrucks193 Cars13 726Trucks13 CarsEast Entering:2 East Peds:Peds Cross: \bowtie \checkmark \checkmark \checkmark \uparrow \uparrow \uparrow \uparrow \downarrow <td< td=""><td>** Signalized Intersection **</td><td>Major Road</td><td>I: CR 93 ru</td><td>ns N/S</td><td></td></td<>	** Signalized Intersection **	Major Road	I: CR 93 ru	ns N/S	
Heavys Trucks Cars Totals 0 3 292 295 Golf Link Rd Heavys Trucks Cars Totals 0 0 42 42 0 1 89 90 0 2 132 134 Peds Cross: \overline{X} West Peds: 1 West Entering: 266 Cars Totals 0 Cars Totals 0	North Entering: 739 Trucks 1 9 3 13 North Peds: 0 Cars 39 579 108 72	6	Trucks 13 Cars 784	East Entering: East Peds:	480 212 0 ∑
NGolf Link RdHeavys Trucks CarsTotals00424201899002134 42 03263Peds Cross: \overline{X} Peds Cross: \overline{X} Cars760Trucks13Heavys0000West Peds:1Heavys00000	Heavys Trucks Cars Totals	₹ 93		74 3 0	77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				49 2 0	84 51
0 1 89 90 90 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 135 135 135 135 135 135 135 136	Heavys Trucks Cars Totals		Vindir	n St	
0 3 263 CR 93 CR 93 CR 93 CR 93 CR 93 CR 93 Peds Cross: 263 5 0 263 <td></td> <td>5</td> <td>[</td> <td></td> <td>\rightarrow</td>		5	[$ \rightarrow $
West Peds:1Trucks13Trucks210113South Peds:0West Entering:266Heavys0Heavys0000South Entering:9					s Totals 268
West Entering: 266 Heavys 0 Heavys 0 0 0 South Entering: 9	Peds Cross: X Cars 760 Ca	rs 169 668	66 903	Peds Cross:	\mathbb{X}
					0
				-	
			07		1. 1009
Comments	Comn	nents			

Site #:1301800045Intersection:CR 93 & Zehrs/Canadian TireTFR File #:3Count date:27-Jun-13	ľ	who cou	nted:	East Leg Total East Entering:	
North Leg Total: 1115 Heavys 0 0 0 0 North Entering: 602 Trucks 1 17 0 18 North Peds: 2 Cars 45 484 55 584 Peds Cross: Image: Cars Totals 46 501 55 Heavys Trucks Cars Totals Image: Cars Totals <th>Î</th> <th>Heavys 0 Trucks 29 Cars 484</th> <th></th> <th>East Leg Total East Entering:</th> <th></th>	Î	Heavys 0 Trucks 29 Cars 484		East Leg Total East Entering:	
North Entering: 602 Trucks 1 17 0 18 North Peds: 2 2 Cars 45 484 55 584 Peds Cross: Image: Cars 10 15 55 584 Heavys Trucks Cars 16 501 55 584 0 5 138 143 143 Image: Cars CR 93	ľ	Trucks 29 Cars 484		East Entering:	
Heavys Trucks Cars Totals	i -			East Peds: Peds Cross:	102 1 ∑
N N			Cars	Trucks Heav 0 0	ys Totals 26
Zehrs/Canadian Tire	► E] 7] <u>68</u> 101	1 0 0 0 1 0	8 68
Heavys Trucks Cars Totals		Z	ehrs/Cana	adian Tire	
0 1 31 32 S 0 1 7 8 S					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Cars 133	Trucks Heav 1 0	
Peds Cross: X Cars 567 Cars 8	86 427	71 584		Peds Cross:	\square
West Peds: 0 Trucks 18 Trucks 3		0 31		South Peds:	0
West Entering:56Heavys0Heavys0West Leg Total:199Totals585Totals8		0 0 71		South Entering South Leg Tot	
Commen					

Afternoon F	Peak Diagrar	n Spe Fror To:	cified Peric n: 15:00:00 18:00:00	d	One F From: To:	lour Pe 16:15:0 17:15:0	00
	300045 3 & Zehrs/Canadian Tir		ther condition		ed:		
** Signalized Inters	ection **	Majo	or Road: C	R 93 rui	ns N/S		
North Leg Total:1838North Entering:920North Peds:2Peds Cross:⋈	Trucks 0 20 Cars 108 731	0 0 0 20 61 900 61	Heavys Trucks Cars Totals	5 13	Eas Eas	t Leg Total: t Entering: t Peds: s Cross:	478 259 4 ∑
Heavys Trucks Cars Tota 0 1 358 359	als 🖓 🖓 [CR 93			Cars Tru 97 0 18 0	icks Heavy 0 0	s Totals 97 18
Zehrs/Canac	dian Tire	W E	:	5	144 0 259 0	0	144
Heavys Trucks Cars Tota 0 0 133 133 0 0 20 20	5 č	S		Zehrs	/Canadian	Tire	
0 1 34 35 0 1 187	$\overline{\nabla}$	CR 93			Cars Tru 219 0	icks Heavy 0	s Totals 219
Peds Cross:∑West Peds:0West Entering:188West Leg Total:547	Cars 909 Trucks 21 Heavys 0 Totals 930	Cars 232 Trucks 1 Heavys 0 Totals 233	675 138 13 0 0 0 688 138	1045 14 0	Sou Sou	s Cross: th Peds: th Entering: th Leg Tota	
		Comments					

Site #: 1301800044 Person(s) who counted: Person(s) who counted: TRF File #: 2 Count date: 26-Jun-13 Major Road: CR 93 runs N/S North Leg Total: 1221 Heavys 0	Morning P	eak Diagram	Specified Period From: 6:00:00 To: 9:00:00	One Hour Peak From: 8:00:00 To: 9:00:00
North Leg Total: 1221 North Entering: 647 North Entering: 647 North Peds: 1 Peds Cross: \bowtie Heavys Trucks Cars Totals 0 0 61 61 Heavys Trucks Cars Totals 0 0 23 23 0 0 1 1 0 0 47 CR 93 CR 93 CR 93 CR 93 CR 93 CR 93 Cars Trucks Heavys Total 0 0 23 23 CR 93 Cars Trucks Heavys Total 0 0 23 23 CR 93 CR 93 CR 93 Cars Trucks Heavys Total 0 0 23 23 CR 93 CR 93 CR 93 CR 93 CR 93 Cars Trucks Heavys Total 0 0 23 23 CR 93 C	Site #: 130 Intersection: CR TFR File #: 2	1800044 93 & Hugel St		
North Entering: 647 Trucks 0 24 4 28 1 Trucks 20 East Entering: 245 Peds Cross: Image: Solution of the so	** Signalized Inter	section **	Major Road: CR 93 m	uns N/S
Heavys Trucks Cars Trucks Heavys Totals 0 0 61 130 3 0 133 0 0 61 130 3 0 28 130 3 0 28 84 29 6 0 Heavys Trucks Cars Totals 0 0 23 0 0 133 0 0 23 23 1	North Entering: 647 North Peds: 1	Trucks 0 24 4 Cars 29 438 15	28 Trucks 20 2 619 Cars 554	East Entering: 245 East Peds: 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heavys Trucks Cars T	otals	CR 93	Cars Trucks Heavys Totals
Plaza DrivewayHeavys TrucksCarsTotals00232300232300110047Peds Cross: \overline{X} West Peds:00West Entering:47	0 0 61 6	1	N	28 0 0 28
0 0 23 23 23 S S 0 0 1 1 S Cars Trucks Heavys Total 0 0 47 Cars 520 Cars 4 401 131 536 Peds Peds Cross: N West Peds: 0 0 47 Heavys 0 0 0 0 0 9	Plaza		E	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heavys Trucks Cars T	otals	Hug	el St
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			S	
0 0 47 CR 93 0 306 6 0 312 Peds Cross: X Cars 520 Cars 4 401 131 536 Peds Cross: M West Peds: 0 Trucks 27 Trucks 0 17 2 19 South Peds: 2 West Entering: 47 Heavys 0 0 0 0 0 South Entering: 555				Coro Trueko Lloova Totolo
West Peds:0Trucks27Trucks017219South Peds:2West Entering:47Heavys000000South Entering:555			CR 93	-
West Entering: 47 Heavys 0 0 0 South Entering: 555	Peds Cross:	Cars 520	Cars 4 401 131 536	Peds Cross: 🛛 🖂
	West Peds: 0	Trucks 27	Trucks 0 17 2 19	South Peds: 2
West Leg Total: 108 Totals 547 Totals 4 418 133 South Leg Total: 1102	-			-
	West Leg Total: 108	Totals 547	Totals 4 418 133	South Leg Total: 1102
Comments			Comments	

Afternoon Pe	ak Diagram	From: 15	H Period 5:00:00 8:00:00	One Hour PeakFrom:16:15:00To:17:15:00
Municipality:MidlandSite #:13018000Intersection:CR 93 &TFR File #:2Count date:26-Jun-13	Hugel St		conditions:) who coun	
** Signalized Intersect	tion **	Major Ro	ad: CR 93 r	uns N/S
North Entering: 1027 T North Peds: 1	eavys 0 0 0 Trucks 0 21 1 Cars 74 689 242 Totals 74 710 243		Heavys 0 Trucks 13 Cars 910 Totals 923	East Leg Total: 925 East Entering: 445 East Peds: 3 Peds Cross:
Heavys Trucks Cars Totals 0 0 164 164		CR 93		Cars Trucks Heavys Totals 214 0 0 214 89 0 0 89
■ Plaza Drive	way W	E		141 1 0 142 444 1 0
Heavys Trucks Cars Totals 0 0 90 90 0 0 65 65 0 1 6 7		S	Hug	el St
0 1 161		CR 93		477 3 0 480
West Entering: 162 H	Cars 836 Trucks 23 eavys 0 Totals 859	Cars 1 606 Trucks 0 13 Heavys 0 0 Totals 1 619	2 15 0 0	Peds Cross: South Peds: 8 South Entering: 792 South Leg Total: 1651
1	С	omments		

Morning Pe	ak Diagram		ecified om: 6:0 : 9:0		k		ne Ho om: 3 o: 3)
	800043 3 & Huronia Mall Entran		eather o			ted:			
** Signalized Inters	ection **	Ма	jor Roa	ad: CF	R 93 ri	uns N	/S		
North Leg Total: 1109 North Entering: 544 North Peds: 5 Peds Cross: ⋈			Î	Heavys Trucks Cars Totals	37 528	_	East Le East Er East Pe Peds C	eds:	234 108 0 ∑
Heavys Trucks Cars Tota 0 4 59 63	als 🖓 🖓 🗍	CR 93			ß	Cars 51	1	Heavys	52
Huronia Mall I	Entrance	w	E		 	19 36 106	1 0 2	0 0 0	20 36
Heavys Trucks Cars Tota	als	V			Huro	onia Ma	all Entran	ice	
0 1 14 15 0 0 19 19 0 1 22 23		S	\bigtriangleup			Cars		s Heavys	
0 2 55	~	CR 93				120	6	0	126
Peds Cross: X West Peds: 0	Cars 489 Trucks 34	Cars 31 Trucks 2	35	35 2	529 39		Peds C South F	Peds:	⊠ 3
West Entering: 57	Heavys 0 Totals 523	Heavys 0 Totals 33	0	0 37	0			Entering: .eg Total	
West Leg Total: 120			s						

Site #: 1301800043 Intersection: CR 93 & Huronia Mall Entrance TFR File #: 1 Count date: 25-Jun-13 ** Signalized Intersection ** M North Leg Total: 1726 North Entering: 910 North Peds: 9 Peds Cross: Image: Signal and the section is	Person(s Major Ro	r condit (s) who oad: C Heavys Trucks Cars Totals	Counte R 93 rui 0 15 <u>801</u> 816	ns N/S East East Peds	t Leg Total: t Entering: t Peds: s Cross:	359 184 4 X
North Leg Total: 1726 Heavys 0 0 0 0 North Entering: 910 Trucks 0 28 0 28 North Peds: 9 Gars 31 778 73 882 Peds Cross: 124 Totals 31 806 73 CR 93 Heavys Trucks Cars Totals Image: CR 93 Image: CR 93 Image: CR 93 0 1 157 158 Image: CR 93 Image: CR 93 Huronia Mall Entrance Image: CR 93 Image: CR 93 Image: CR 93		Heavys Trucks Cars	0 15 <u>801</u> <u>816</u>	East East East Pede	t Entering: t Peds:	184 4
North Entering: 910 Trucks 0 28 0 28 North Peds: 9 Cars 31 778 73 882 Peds Cross: Image: Cars 31 806 73 CR 93 Heavys Trucks Cars Totals Image: Cars CR 93 0 1 157 158 Image: Cars Image: Cars Nother the	3	Trucks Cars	15 801 816	East East Ped:	t Entering: t Peds:	184 4
Heavys Trucks Cars Totals 0 1 157 158 Huronia Mall Entrance	3					
Huronia Mall Entrance			1 4	Cars Tru	icks Heavy	s Totals
Huronia Mall Entrance			6	65 0	0	65
Huronia Mall Entrance				24 0	0	24
vv	► F		- ל ל	93 2 182 2	0	95
Heavys Trucks Cars Totals	- L		Huron	ia Mall Ent	ronoo	
$0 0 42 42 \qquad $			HUIOI			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L			
0 1 89 90	~	N	(Cars Tru	icks Heavy	s Totals
0 1 167 CR 93			1	75 0	0	175
Peds Cross: X Cars 960 Cars 1	102 694	4 66	862	Pede	s Cross:	\bowtie
West Peds: 1 Trucks 31 Trucks 1	1 15	0	16	Sout	th Peds:	13
West Entering: 168 Heavys 0 Heavys 0	0 0	0	0	Sout	th Entering:	878
West Leg Total: 326 Totals 991 Totals 1	103 709	9 66		Sout	th Leg Total	: 1869
Commer	nte					

Morning Pe	ak Diagram	F	Specified From: 6:0 To: 9:0			ne Hour Pearon: 8:00:00 o: 9:00:00)
	300042 3 & CR 25/Yonge St		Veather o Person(s)				
** Signalized Inters	ection **	Ν	lajor Roa	ad: CR S	93 runs N	N/S	
North Leg Total: 1255 North Entering: 602 North Peds: 0 Peds Cross: ⊯	Trucks 3 28 Cars 103 337	0 0 9 40 122 562 131	Î	Heavys 0 Trucks 4 Cars 6 Totals 6	1 12	East Leg Total: East Entering: East Peds: Peds Cross:	581 243 0 ∑
Heavys Trucks Cars Tota 0 8 198 206	N V		3		Cars 109 74 43	Trucks Heavy 11 0 3 0 3 0	s Totals 120 77 46
CR 25/Y	′onge St	w	► E		226	17 0	-
Heavys Trucks Cars Tota 0 4 125 129 0 1 141 142		S			CR 25/Yo	nge St	$ \rightarrow $
0 3 27 30 0 8 293	Ţ	CR 93			Cars 325	,	s Totals 338
Peds Cross: X West Peds: 0 West Entering: 301 West Leg Total: 507	Cars 407 Trucks 34 Heavys 0 Totals 441	Cars Trucks Heavys Totals	2 26 0 0	62 4 3 3 0 0 65		Peds Cross: South Peds: South Entering: South Leg Total	
		Comme	nts		L L		

Afternoon F	Peak Diagrar	n Spea Fror To:	cified Period n: 15:00:00 18:00:00	One Hour PeakFrom:15:45:00To:16:45:00
	300042 3 & CR 25/Yonge St		ther conditions	
** Signalized Inters	ection **	Мајс	or Road: CR 93	runs N/S
North Leg Total:1769North Entering:1013North Peds:2Peds Cross:⋈	Trucks 1 15 Cars 218 525	0 0 11 27 243 986 254	Heavys 0 Trucks 18 Cars 738 Totals 756	East Leg Total: 835 East Entering: 398 East Peds: 0 Peds Cross: X
Heavys Trucks Cars Tota 0 3 434 437	N V	CR 93		Cars Trucks Heavys Totals 150 6 0 156 164 1 0 165
CR 25/Y	/onge St		Ţ	73 4 0 77 387 11 0
Heavys Trucks Cars Tota 0 1 145 146 0 0 140 140		s	CF	25/Yonge St
0 0 53 53 0 1 338	Ţ	CR 93		Cars Trucks Heavys Totals 422 15 0 437
Peds Cross: X West Peds: 1 West Entering: 339 West Leg Total: 776	Cars 651 Trucks 19 Heavys 0 Totals 670	Cars 52 Trucks 1 Heavys 0 Totals 53	443 39 534 11 4 16 0 0 0 454 43	Peds Cross: South Peds: 0 South Entering: 550 South Leg Total: 1220
		Comments		

County Road 44

Site #:1301800029Person(s) who counted:Person(s) who counted:Major Road: CR 44 runs N/SPerson(s) who counted:Person(s) who counted:North Leg Total: 553Heavys 0000Cars 11984Count date:203Person(s)Person(s)North Leg Total: 553Person(s)P	Morning Peak Diagram	Specified Period From: 6:00:00 To: 9:00:00	One Hour Peak From: 7:45:00 To: 8:45:00
North Leg Total: 553 North Entering: 208 North Peds: 0 Peds Cross: \bowtie Heavys Trucks Cars Totals 0 6 9 15 CR 45 Heavys Trucks Cars Totals 0 2 1 3 0 1 0 1 6 7 Peds Cross: \boxed{X} Heavys Trucks Cars Totals 0 2 1 3 0 1 0 1 6 7 Peds Cross: \boxed{X} CR 45 Heavys Trucks Cars Totals 0 2 1 3 0 1 0 1 6 7 Peds Cross: \boxed{X} CR 45 Heavys Trucks Cars Totals 0 2 1 3 0 1 0 1 6 7 Peds Cross: \boxed{X} CR 45 Heavys Pincks Cars Totals 0 2 1 3 0 1 0 1 6 7 Peds Cross: \boxed{X} CR 45 Heavys Pincks Cars Totals 0 2 1 6 7 0 4 7 Heavys Pincks Cars Totals 0 2 1 6 7 0 4 7 Heavys Pincks Cars Totals 0 2 2 1 0 1 0 1 6 7 0 4 7 Heavys Pincks Cars Totals 0 2 2 1 0 1 0 1 0 0 1 0 1 6 7 0 4 7 Heavys 0 0 1 0 0 0 0 1 6 7 0 4 7 Heavys 0 0 0 0 0 Heavys 0 0 0 0 0 Trucks 4 15 2 1 Heavys 0 0 0 0 0 South Entering: 363 South Leg Total: 26	Site #: 1301800029 Intersection: CR 44 & CR 45 TFR File #: 2		ed:
North Entering:208 CarsTrucks2305Trucks17 CarsEast Entering:89 East Peds:2Peds Cross: \bowtie 198 4203 $Trucks$ 17 Cars 345 East Entering:89 East Peds:2Heavys TrucksCarsTotals32014 CR $Trucks$ 17 Cars 345 East Entering:89 East Peds:2Heavys TrucksCarsTotals 201 4 CR 4 CR $Trucks$ $Ravys$ Totals06915 CR CR $R44$ $Trucks$ $Ravys$ </td <td>** Signalized Intersection **</td> <td>Major Road: CR 44 ru</td> <td>ins N/S</td>	** Signalized Intersection **	Major Road: CR 44 ru	ins N/S
Heavys Trucks Cars Totals 0 6 9 15 CR 45 Heavys Trucks Cars Totals 0 2 1 3 0 1 0 1 0 1 6 7 0 4 0 15 0 0 15 0 0 0 70 4 0 85 4 0 CR 45 Cars Trucks Heavys Totals 0 2 1 3 0 1 0 1 0 1 6 7 Peds Cross: \overline{X} West Peds: 0 West Leg Total: 26 Cars 274 Trucks 8 Heavys 0 Totals 282 Cars 8 312 27 Trucks 4 15 2 Heavys 0 0 0 Totals 12 327 29 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 7 Cars 8 Cars 7 Cars 7 Cars 8 Cars 7 Cars 8 Cars 7 Cars 7 Cars 8 Cars 7 Cars 7 Cars 8 Cars 7 Cars 7 Cars 7 Cars 8 Cars 7 Cars 7 Cars 7 Cars 7 Cars 7 Cars 8 Cars 7 Cars 7	North Entering: 208 Trucks 2 3 0 North Peds: 0 Cars 1 198 4	5 Trucks 17 203 Cars <u>328</u>	East Peds: 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			15 0 0 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N	70 4 0 74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15
Peds Cross: X Cars 274 Cars 8 312 27 347 Peds Cross: Image: Cars Image: Cars 8 Image: Cars 8 Image: Cars 15 2 21 South Peds: 0 West Entering: 11 Heavys 0 15 2 21 South Peds: 0 West Leg Total: 26 Totals 282 Totals 12 327 29 South Leg Total: 650	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
West Peds:0Trucks8Trucks415221South Peds:0West Entering:11Heavys0Heavys00000South Entering:368West Leg Total:26Totals282Totals1232729South Leg Total:560			Peds Cross 🛛 🖂
West Leg Total: 26 Totals 282 Totals 12 327 29 South Leg Total: 650			
			South Entering: 368
Comments			
	Co	omments	

HWY 12 @ SIMCOE RD 44 - RAMA RD (N)

Central

Intersection ID:194201481

Count Day: Tuesday

Count Date: 17-Jul-2012

County Road 124

	Accu-7	raffic Inc.	
Morning F	Peak Diagram	Specified Period From: 6:00:00 To: 9:00:00	One Hour Peak From: 8:00:00 To: 9:00:00
Site #: 13 Intersection: Po TFR File #: 0	ncoe 10100001 plar Sideroad & High Street -Jun-13	Weather conditions: Person(s) who coun	ted:
** Non-Signalized	d Intersection **	Major Road: Poplar S	Sideroad runs W/E
North Leg Total:455North Entering:240North Peds:0Peds Cross:⋈	Cyclists 1 0 0 Trucks 0 0 10 Cars 29 0 200 Totals 30 0 210	1 Cyclists 0 10 Trucks 15 229 Cars 200 Totals 215	East Leg Total: 601 East Entering: 291 East Peds: 0 Peds Cross: X
,	Totals 125	High Street	Cars Trucks Cyclists Totals 181 15 0 196 85 10 0 95 0 0 0 0
Popla	ar Sideroad W 🔫	E	266 25 0
0 0 19 1 7 92	Totals 19 100	Pop S	Cars Trucks Cyclists Totals
1 7 111	Drivew		292 17 1 310
Peds Cross:∅West Peds:0West Entering:119West Leg Total:244	Cars 0 Trucks 0 Cyclists 0	Cars 0 0 0 ucks 0 0 0 clists 0 0 0 optals 0 0 0	Peds Cross:Image: MailSouth Peds:0South Entering:0South Leg Total:0
	Co	nments	

Accu-Tra	affic Inc.
Afternoon Peak Diagram	Specified Period One Hour Peak From: 15:00:00 From: 15:00:00 To: 18:00:00 To: 16:00:00
Municipality:SimcoeSite #:1310100001Intersection:Poplar Sideroad & High StreetTFR File #:0Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Non-Signalized Intersection **	Major Road: Poplar Sideroad runs W/E
North Leg Total: 494 Cyclists 5 0 0 5 North Entering: 287 Trucks 1 0 19 20 North Peds: 0 Cars 34 0 228 26 Peds Cross:<	Ŭ Ŭ
Cyclists Trucks Cars Totals	Cars Trucks Cyclists Totals 165 9 0 174 81 6 3 90
Cyclists Trucks Cars Totals	Poplar Sideroad
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cars Trucks Cyclists Totals 314 30 0 344
West Peds: 0 Trucks 0 Truck West Entering: 130 Cyclists 0 Cyclists	
-	
Comn	nents

Site #: 1301800048 Intersection: CR 124 & Poplar Side Rd Person(s) who counted: FR File #: 9 Count date: 31-May-13 ** Signalized Intersection ** Major Road: CR 124 runs N/S North Leg Total: 861 Heavys 0 0 0 0 0 0 23 Trucks 45 East Leg Total: 626 East Leg Total: 626 North Leg Total: 861 Heavys 0 0 0 0 0 270 Flaewys 0 East Leg Total: 626 628 North Leg Total: 861 Heavys 10 159 101 270 Flaewys 0 East Leg Total: 626 628 North Peds: 0 Peds Cross: Major Road: CR 124 Cars 523 Trucks 45 Cars 523 Peds Cross: X Heavys Trucks Cars Totals Poplar Side Rd	Morning P	eak Diag	ram	-	fied Per 6:00:00 9:00:00)		e Hou om: 8 : 9)
North Leg Total: 861 Heavys000001North Entering:293293159101232701Heavys01Peds Cross: \bowtie 111661161161616171523113266Heavys TrucksCarsTotals11166116116187190206Heavys TrucksCarsTotalsTotalsCR124Cars568CarsTotals3019191210 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 187 1902060331 34 \checkmark \bullet <	Site #: 130 Intersection: CR TFR File #: 9	01800048 8 124 & Poplar Si	de Rd							
North Entering: 293 Trucks 1 7 15 23 Trucks 45 East Entering: 342 Peds Cross: Image: Side Rd Trucks 1 166 116 CR 124 Trucks 45 East Entering: 342 Heavys Trucks Cars Totals Totals Totals CR 124 Cars 568 East Entering: 342 Heavys Trucks Cars Totals Totals M CR 124 M M 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 99 8 0 20 90 107 29 29 107 29 29 107 29 107 29 107 20 20 107 20 107	** Signalized Inte	rsection **		Major	Road:	CR 124	runs I	N/S		
Heavys TrucksCarsTotalsCarsTrucksHeavysTotals019191210 187 19020699801072180293073502930735020980111110791980212300Peds Cross: \overline{X} Cars271West Peds:3340West Entering:25400	North Entering: 293 North Peds: 0	Trucks 1 Cars 10	7 15 159 101	23		cks 45 ars <u>523</u>	_	East Ent East Peo	ering: ds:	342 3
NPoplar Side RdNNPoplar Side Rd0331340111110791021233Cars271Peds Cross: \overline{X} West Peds:3West Entering:254Cars271Cars82South Entering:23Cars271Cars82South Entering:23Cars20Cars30Cars271Cars82South Heavys0O0O0OO </td <td>-</td> <td>1</td> <td></td> <td>CR 124</td> <td></td> <td>Ê</td> <td></td> <td></td> <td></td> <td></td>	-	1		CR 124		Ê				
Poplar Side RdHeavys TrucksCarsTotals0331340111110791021233Peds Cross: \mathbb{X} West Peds:3West Entering:254	<			Ν						
0 3 31 34 S 0 11 111 122 S Cars Trucks Heavys Trucks Cars Trucks Heavys Cars Trucks 10 248 36 0 284 Peds Cross: Image: Cars Image: Cars 271 Cars 82 305 36 423 Peds Cross: Image: Cars 10 43 South South Peds:0 South Entering: 466	Pop	olar Side Rd	107			1 T				
0 3 31 34 S 0 11 111 122 S Cars Trucks Heavys Trucks Cars Trucks Heavys Cars Trucks 10 248 36 0 284 Peds Cross: Image: South Cars Image: South Cars Image: South Cars 10 248 36 0 284 Peds Cross: Image: South Cars Image: South Cars 271 Cars 82 305 36 423 Peds Cross: Image: South Peds: 0 West Entering: 254 Heavys 0 0 0 0 0 South Peds: 0	Heavys Trucks Cars	Totals	VV			Por	lar Side	Rq		
0 7 91 98 Image: Cross of the construction of the constructine constructine of the construction of the construction	•			S		1 04				
0 21 233 CR 124 1 1 248 36 0 284 Peds Cross: X Cars 271 Cars 82 305 36 423 Peds Cross: M West Peds: 3 Trucks 22 Trucks 10 23 10 43 South Peds: 0 West Entering: 254 Heavys 0 0 0 0 0 South Entering: 466	0 11 111 1	122								<i>V</i>
West Peds:3Trucks22Trucks10231043South Peds:0West Entering:254Heavys0Heavys0000South Entering:466		98	CR 12	24		$\mathbf{\hat{\mathbf{b}}}$			-	
West Peds:3Trucks22Trucks10231043South Peds:0West Entering:254Heavys0Heavys0000South Entering:466	Peds Cross:	Cars 271		Cars 82	305 36	423		Peds Cr	oss:	\boxtimes
										0
Wast Log Totals 464 Totals 202 Totals 02 229 46 South Log Totals 750	West Entering: 254	Heavys 0	He	avys 0	0 0	0		South Er	ntering:	466
	West Leg Total: 464	Totals 293	Τ	otals 92	328 46			South Le	eg Total	759
Comments			Con	nments						

Afternoor	n Peak Diagram	Specified Period From: 15:00:00 To: 18:00:00	One Hour PeakFrom:15:00:00To:16:00:00
Site #: 13 Intersection: CI TFR File #: 9	ollingwood 301800048 R 124 & Poplar Side Rd 1-May-13	Weather conditions: Person(s) who coun	
** Signalized Inte	ersection **	Major Road: CR 124	runs N/S
North Leg Total: 988 North Entering: 557 North Peds: 0 Peds Cross: ⋈	Heavys 0 0 0 0 Trucks 3 23 17 43 Cars 35 322 157 51 Totals 38 345 174		East Leg Total: 629 East Entering: 306 East Peds: 0 Peds Cross: X
Heavys Trucks Cars 0 16 262	Totals CI	R 124	Cars Trucks Heavys Totals 120 5 0 125
Po	oplar Side Rd	, F	133 3 0 136 40 5 0 45 293 13 0
Heavys Trucks Cars	Totals	E E	lar Side Rd
0 1 29	30 1 26 1		
0 10 139 0 17 288	149 CR 124		CarsTrucksHeavysTotals300230323
Peds Cross: X West Peds: 4		rs 94 271 23 388 rs 10 5 0 15	Peds Cross:
West Entering: 305 West Leg Total: 583	Heavys 0 Heavy		South Entering: 403 South Leg Total: 942
	Comr	nents	1

Accu-Tra	affic Inc.
Morning Peak Diagram	Specified Period One Hour Peak From: 6:00:00 From: 8:00:00 To: 9:00:00 To: 9:00:00
Municipality:SimcoeSite #:1310100002Intersection:County Road 124 & 33&34 SideroadTFR File #:1Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Non-Signalized Intersection **	Major Road: County Road 124 runs N/S
North Leg Total: 504 Cyclists 0 0 0 North Entering: 228 Trucks 0 13 1 14 North Peds: 0 Cars 9 167 38 21 Peds Cross: IM Totals 9 180 39	
Cyclists Trucks Cars Totals	Cars Trucks Cyclists Totals Cars 0 0 33 13 0 0 13 9 0 0 9
33&34 Sideroad Nottawasaga	
Cyclists Trucks Cars Totals 0 0 12	E 33&34 Sideroad Nottawasaga
0 0 39 County Road 124	63 1 0 64
Peds Cross: Image: Carse 187 Carse 187 Carse Carse 187 West Peds: 0 Trucks 13 Trucks 13 West Entering: 39 Cyclists 0 Cyclists 0	
Comm	
Comn	nents

Accu-Tra	affic Inc.
Afternoon Peak Diagram	Specified Period One Hour Peak From: 15:00:00 From: 16:45:00 To: 18:00:00 To: 17:45:00
Municipality:SimcoeSite #:1310100002Intersection:County Road 124 & 33&34 SideroadTFR File #:1Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Non-Signalized Intersection **	Major Road: County Road 124 runs N/S
North Leg Total: 596 Cyclists 0 0 0 North Entering: 320 Trucks 0 6 1 7 North Peds: 0 Cars 7 250 56 31 Peds Cross: Image: Marcine Structure Totals 7 256 57	Cyclists0East Leg Total:157Trucks13East Entering:71Cars263East Peds:0Totals276Peds Cross:X
Cyclists Trucks Cars Totals 0 0 39 39 33&34 Sideroad Nottawasaga	bunty Road 124 Cars Trucks Cyclists Totals 39 0 0 39 19 0 0 19 13 0 0 13 71 0 0
W - Cyclists Trucks Cars Totals	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cars Trucks Cyclists Totals 84 2 0 86
West Peds: 0 Trucks 7 Truck West Entering: 35 Cyclists 0 Cyclists	rs 13 221 12 246 Peds Cross: Image: second secon
Comn	nents

Morning Pea	ık Diagr	am	Specifi From: To:	ed Perio 6:00:00 9:00:00	d		Hour Pe 1: 8:00:00 9:00:00	0
Municipality:DuntrooSite #:130180Intersection:CR 91 &TFR File #:24Count date:31-May	0047 & CR 124			er conditi n(s) who d		ed:		
** Signalized Intersed	ction **		Major I	Road: C	R 91 ru	ns W/E		
North Leg Total:410North Entering:162North Peds:0Peds Cross:Image: Mail Control	Trucks 3 Cars 7	10 8 2	21 141	Heavys Trucks Cars Totals	21 227	Eas	st Leg Total: st Entering: st Peds: ds Cross:	345 148 1 ∑
Heavys Trucks Cars Totals 0 16 30 46			CR 124			Cars Tr 84 9 22 13	rucks Heavy 0 3 0	s Totals 93 35
(CR 91	w -	N E			12 8 118 30	0	20
Heavys TrucksCarsTotals0436400113445			S		CR 9	1		$ \rightarrow $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CR 124	, () (rucks Heavy) 0	
Peds Cross: X West Peds: 1 West Entering: 87 West Leg Total: 133	Cars 72 Trucks 20 Heavys 0 Totals 92	Tru Hea	icks 0 8 ivys 0 0	107 60 3 10 0 0 115 70	168 18 0	So	ds Cross: uth Peds: uth Entering: uth Leg Tota	
			ments				-	

Municipality:DuntroonSite #:1301800047Intersection:CR 91 & CR 124TFR File #:24Count date:31-May-13	Weather conditions: Person(s) who coun	
		led:
** Signalized Intersection **	Major Road: CR 91 r	uns W/E
North Leg Total: 550 Heavys 0 0 0 0 North Entering: 283 Trucks 0 12 11 23 North Peds: 1 Cars 44 110 106 26 Peds Cross: Image: March 10 Totals 44 122 117	1 1	East Leg Total: 484 East Entering: 234 East Peds: 0 Peds Cross: X
Heavys Trucks Cars Totals	R 124	Cars Trucks Heavys Totals 96 2 0 98
CR 91		52 2 0 54 69 13 0 82 217 17 0
Heavys Trucks Cars Totals	CR	91
	S	
0 4 48 52 0 1 3 4 0 7 83 CR 124		Cars Trucks Heavys Totals 221 29 0 250
		Peds Cross:
	ars 1 126 67 194 xks 1 9 14 24	South Peds: 0
	rys 0 0 0	South Entering: 218
West Leg Total: 190 Totals 208 Total	als 2 135 81	South Leg Total: 426
Comr	ments	

County Road 27

Morning Peak Diagram	Specified Period One Hour Peak From: 6:00:00 From: 7:30:00 To: 9:00:00 To: 8:30:00
Municipality:AngusSite #:1301800019Intersection:CR 90 & CR 27TFR File #:25Count date:3-May-13	Weather conditions: Person(s) who counted:
** Signalized Intersection **	Major Road: CR 90 runs W/E
North Leg Total: 40 Heavys 0 0 0 0 North Entering: 11 Trucks 3 0 0 3 North Peds: 0 Cars 2 2 4 8 Peds Cross: ⋈ Totals 5 2 4	Trucks 3 East Entering: 564
Heavys Trucks Cars Totals	Cars Trucks Heavys Totals 17 1 0 18 374 44 0 418
CR 90 W	N $\frac{117}{508}$ $\frac{117}{56}$ $\frac{117}{508}$ $\frac{117}{56}$ $\frac{118}{56}$ $\frac{118}{128}$
Heavys Trucks Cars Totals	CR 90
0 29 606 635	s
0 11 305 316 0 40 915 CR 27	Cars Trucks Heavys Totals 734 36 0 770
	ars 183 5 124 312 Peds Cross: ⊠ cks 24 2 7 33 South Peds: 0
West Entering: 955 Heavys 0 Heav	cks 24 2 7 33 South Peds: 0 vys 0 0 0 South Entering: 345 als 207 7 131 South Leg Total: 791
	ments

Afterno	oon	Pea	ak	Dia	agra	am		Spec Fron To:	n: 15	l Perio 5:00:00 3:00:00	b		-	u r Pe a 16:15:(17:15:(00
Municipality Site #: Intersection TFR File #: Count date:	130 : CR 25	gus)18000 ⁻ 90 & C 1ay-13		7						conditi) who c					
** Signalized	d Inte	rsecti	on '	**				Majo	or Ro	ad: CI	R 90 r	uns V	//E		
		Tri (avys ucks Cars otals	0 49	0 4 34 38	0 2 82 84	0 6 16	5		Heavys Trucks Cars Totals	4 138	_	East Le East En East Pe Peds Ci	itering: ds:	1853 874 0 ∑
Heavys Trucks C 0 36 1		⁻ otals 163	\langle		\checkmark	Ľ	CF	27				Cars 64	1	Heavy 0	65
<u></u>		CR	90			W	N	E			- C	640 138 842	28 3 32	0 0 0	668 141
Heavys Trucks C		otals									CR	90			
		26 768					S								
0 15 2		283	7			(CR 27	$\langle \cdot \rangle$	$\hat{\mathbf{T}}$			Cars 913	Trucks 66	Heavy: 0	s Totals 979
Peds Cross:	Χ		Cars	440	_	_		s 438	49	121	608		Peds Ci	ross:	
	0		ucks				Truck		2	6	16		South P		0
West Entering:	1077		avys		Z	Ļ	Heavy		0	0	0		South E	intering:	624
West Leg Total:	2240	То	otals	462			Total	s 446	51	127			South L	eg Total	: 1086
						С	omn	nents							

Morning Pe	ak Diagram	Specified Period From: 6:00:00 To: 9:00:00	One Hour Peak From: 7:00:00 To: 8:00:00
	800016 7 & CR 88	Weather conditions Person(s) who cour	
** Signalized Inters	ection **	Major Road: CR 27	runs N/S
North Leg Total: 547 North Entering: 448 North Peds: 0 Peds Cross: ⋈	Heavys 0 0 0 Trucks 2 13 16 Cars 2 293 12 Totals 4 306 13		East Leg Total: 369 East Entering: 156 East Peds: 0 Peds Cross: X
Heavys Trucks Cars Tota 0 3 17 20		CR 27	Cars Trucks Heavys Totals 36 16 0 52
<	7th Line		11 0 0 11 85 8 0 93 132 24 0
Heavys Trucks Cars Tota	als	CE	R 88
0 1 2 3 0 2 56 58		S	
0 1 29 30 0 4 87		CR 27	Cars Trucks Heavys Totals 192 21 0 213
Peds Cross: X West Peds: 2	Cars 407 Trucks 22	Cars 4 37 14 55 Trucks 1 7 3 11	Peds Cross:
West Entering: 91 West Leg Total: 111	Heavys 0 Totals 429	Heavys 0 0 0 0 Totals 5 44 17	South Entering: 66 South Leg Total: 495
		comments	

Afternoon F	Peak Dia	agram	Speci From: To:):00			-	i r Pe a 6:30:0 7:30:0	00
	00016 ′ & CR 88		Weath Perso				ed:			
** Signalized Interse	ection **		Major	Road	: CR	27 ru	ns N/	/S		
North Leg Total: 549 North Entering: 129 North Peds: 0 Peds Cross: ы	Heavys 0 Trucks 0 Cars 6 Totals 6	0 0 4 6 55 58 59 64	0 10 119		eavys (Trucks 2 Cars 2 Totals 2	10 410		East Leg East Ent East Peo Peds Cro	ering: ds:	492 287 0 ∑
Heavys Trucks Cars Tota 0 0 130 130	ls	↓ ↓	CR 27		1		Cars 130 104 42	Trucks 8 0 3	Heavys 0 0 0	s Totals 138 104 45
	7th Line	w –			4		276	11	0]
Heavys TrucksCarsTota0055014748			S			CR 8	8	_		
0 0 12 12 0 1 64	Ţ	CR	27				Cars 191	Trucks 14		s Totals 205
Peds Cross: X West Peds: 1 West Entering: 65 West Leg Total: 195	Cars 109 Trucks 7 Heavys 0 Totals 116	_ ↓ н	Cars 20 Trucks 0 eavys 0 Fotals 20	2 0	7 9	381 9)		Peds Cro South Pe South Er South Le	eds: ntering:	
		Co	mments							

Morning Peak Diagram	From: 6:00:00	One Hour Peak From: 7:00:00 To: 8:00:00
Municipality:Bond HeadSite #:1301800021Intersection:CR 27 & CR 1TFR File #:4Count date:24-Jan-13	Weather conditions: Person(s) who counte	d:
** Signalized Intersection **	Major Road: CR 27 run	s N/S
North Leg Total: 337 Heavys 0 0 0 North Entering: 255 Trucks 2 10 1 North Peds: 0 Cars 23 211 8 Peds Cross: ⋈ Totals 25 221 9	0Heavys013Trucks15242Cars67Totals82	East Leg Total: 62 East Entering: 16 East Peds: 0 Peds Cross:
Heavys Trucks Cars Totals	N 1	
CR 1 W -	E	
Heavys Trucks Cars Totals	CR 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 0 37 37 0 14 133 147 0 14 191 CF		ars Trucks Heavys Totals 5 1 0 46
Peds Cross: Image: X Cars 346 West Peds: 0 Trucks 26 West Entering: 205 Heavys 0	Cars 26 45 0 71 Trucks 7 15 0 22 Jeavys 0 0 0 0	Peds Cross:⋈South Peds:0South Entering:93
West Leg Total: 274 Totals 372	Totals 33 60 0	South Leg Total: 465
	mments	South Leg Total. 465

Afternoon Pea	k Diagrar	••	om: 15	Period :00:00 :00:00		ne Hour Pe rom: 16:30:0 o: 17:30:0	00
Municipality:Bond HeadSite #:1301800021Intersection:CR 27 & CRTFR File #:4Count date:24-Jan-13				conditio who cc			
** Signalized Intersectio	n **	Ма	jor Roa	ad: CR	27 runs l	N/S	
North Peds: 0 Ca	ks 1 1 nrs 24 80	0 0 0 2 2 106 2		Heavys 0 Trucks 3 Cars 2 Totals 2	90	East Leg Total: East Entering: East Peds: Peds Cross:	81 59 0 ∑
Heavys Trucks Cars Totals 0 10 217 227		CR 27			Cars 5 53	0 0 0 0 0 0	s Totals 5 53 1
CR 1		w	E		59	0 0	
Heavys Trucks Cars Totals 0 0 24 24 0 0 16 16		S			CR 1		$ \rightarrow $
0 6 65 71 0 6 105		CR 27	$\hat{\mathbf{T}}$		Cars 21	,	s Totals 22
West Peds:0TrucWest Entering:111Heav	$\begin{array}{c} \text{Irs} 146\\ \text{ks} 7\\ \text{ys} \\ 0\\ \text{als} 153 \end{array}$	Cars 14 Trucks 9 Heavys 0 Totals 14	3 0		.04	Peds Cross: South Peds: South Entering: South Leg Tota	
		Comment	S				

37) (98 71 13 ✔ ¥	3 33	R † 7	27 380 18	(35) (568) (15)	
71 13	3 33	←	380	(568)	
∠ ↓	N	Ľ	18	(15)	
				(/	
38) 39	9 7	7	1	7	
97) 43	34 →	45	56	19	
34) 57	7 1	(65)	(142)	(38)	
1	97) 43	97) 434 ->	97) 434 -> 45	97) 434 → 45 56	97) 434 -> 45 56 19

4 – Queen Street (Highway 89) and King Street (County Road 27)

31 - Highway 9 and County Road 27

Peak hour volumes for (1) Queen Street (Highway 89) and King Street (County Road 27) and (2) Highway 9 and County Road 27 obtained from the *Tottenham Bypass Study & South Simcoe Transportation Master Plan, 2012.* Counts were conducted in April and May 2012

Corridor 5

County Road 10

Turning Movement Counts

Accu-Tra	affic Inc.
Morning Peak Diagram	Specified Period One Hour Peak From: 6:00:00 From: 6:00:00 To: 9:00:00 To: 7:00:00
Municipality:SimcoeSite #:1310100003Intersection:Highway 89 & County Road 10TFR File #:1Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Signalized Intersection **	Major Road: Highway 89 runs W/E
North Leg Total: 489 Cyclists 1 0 0 1 North Entering: 430 Trucks 1 1 3 5 North Peds: 0 Cars 42 298 84 42 Peds Cross: Image: March 1 Totals 44 299 87	Cyclists0East Leg Total:1182Trucks4East Entering:656Cars55East Peds:0Totals59Peds Cross:X
Cyclists Trucks Cars Totals	Dunty Road 10 Cars Trucks Cyclists Totals 30 2 0 32 170 15 1 186
Victoria Street	✓ 617 38 1
Cyclists Trucks Cars Totals	– Highway 89
0 12 379 391	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cars Trucks Cyclists Totals 500 26 0 526
County Road 10 / Industrial Parkway	
	rs 19 14 37 70 Peds Cross: ⊠
	xs 2 11 15 South Peds: 0 ts 0 0 0 South Entering: 85
	ts 0 0 0 0 South Entering: 85 Is 21 16 48 South Leg Total: 969
Comn	
Com	nents

Accu-Tr	affic Inc.
Afternoon Peak Diagram	Specified Period One Hour Peak From: 15:00:00 From: 15:15:00 To: 18:00:00 To: 16:15:00
Municipality:SimcoeSite #:1310100003Intersection:Highway 89 & County Road 10TFR File #:1Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Signalized Intersection **	Major Road: Highway 89 runs W/E
North Leg Total: 982 Cyclists 0 0 0 North Entering: 432 Trucks 4 4 3 11 North Peds: 0 Cars 52 310 59 42 Peds Cross: Image: March 100 Totals 56 314 62	
Cyclists Trucks Cars Totals	Cars Trucks Cyclists Totals 111 1 0 112 576 11 1 588 378 13 0 391
Victoria Street	✓ 1065 25 1 ► E
Cyclists Trucks Cars Totals 0 2 86 88 0 21 566 587 0 3 146 149	Highway 89
0 26 798 County Road 10 / Industrial Parkway	997 50 0 1047
Peds Cross: Image: Second se	Ins 149 345 372 866 Peds Cross: ⋈ Ins 1 5 26 32 South Peds: 0 Insts 0 0 0 South Entering: 898 Insts 150 350 398 South Leg Total: 1752
Comr	nents

	On	tario T	raffic	Inc.			
Morning F	Peak Diagra	am	From:	ed Period 6:00:00 9:00:00		ne Hour Pe rom: 6:00:0	00
Site #: 13 ntersection: CF FFR File #: 8	iston 01800008 R 10 & Industrial Pkv -Apr-13	vy		r conditior (s) who co			
* Signalized Inte	ersection **		Major R	load: CR 1	0 runs V	V/E	
						East Leg Total East Entering: East Peds: Peds Cross:	
,	Totals 419				Cars	Trucks Heav	ys Totals
<	CR 10	Ν			304 113 417	16 0 5 0 21 0	320 118
Heavys Trucks Cars	Totals	W -	E		Simcoe Ro	ч	
0 18 104	122 🖒 92 깆	S	;		Cars	Trucks Heav	ys Totals 198
		Industrial Pkwy					
Peds Cross: X West Peds: 0	Cars 192 Trucks 18	Ca Truck	rs 90 rs 9	73 16 3 12		Peds Cross: South Peds:	⊠ 1
West Entering: 214	Heavys 0	Heavy		0 0		South Entering	
West Leg Total: 633	Totals 210	-	ls 99	76		South Leg Tot	
		Comn	nents				

Ontario	Traffic	: Inc.			
Afternoon Peak Diagram	Specifi From: To:	ed Period 15:00:00 18:00:00		ne Hour Pe om: 15:00: o: 16:00:	00
Municipality:AllistonSite #:1301800008Intersection:CR 10 & Industrial PkwyTFR File #:8Count date:26-Apr-13		er conditions (s) who coun			
* Signalized Intersection **	Major F	Road: CR 10 r	uns W	//E	
				East Leg Total East Entering: East Peds: Peds Cross:	: 1377 617 0 ∑
Heavys Trucks Cars Totals 0 32 625 657		4	Cars	Trucks Heav	
CR 10	N E	F	440 143 583	20 0 14 0 34 0	460 157
Heavys Trucks Cars Totals		Sim	ncoe Rd	I	
0 21 598 619 0 20 175 195 0 41 773 Industrial P	s		Cars 735	Trucks Heavy 25 0	vs Totals 760
Peds Cross: Image: Trucks West Peds: 0 Trucks 34	Cars 185 Trucks 12 Heavys <u>0</u> Totals 197	137 322 4 16 0 0 141		Peds Cross: South Peds: South Entering South Leg Tota	
	omments				

	ak Diagram	From: 6:	Period 00:00 00:00	One Hour Peak From: 8:00:00 To: 9:00:00
	800006 0 & CR 1		conditions:) who coun	
** Signalized Inters	section **	Major Roa	ad: CR 10 r	uns N/S
North Leg Total:399North Entering:214North Peds:0Peds Cross:⋈	Heavys 0 0 0 Trucks 2 29 9 Cars 13 138 23 Totals 15 167 32		Heavys 0 Trucks 38 Cars <u>147</u> Totals 185	East Leg Total: 266 East Entering: 138 East Peds: 0 Peds Cross: X
Heavys Trucks Cars Tota 0 8 47 55	als 🗸 🖡 🕻	CR 10	È	Cars Trucks Heavys Totals 30 10 0 40
<	CR 1	N F		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Heavys Trucks Cars Tota	als	T	CR	1
0 1 15 16 0 4 51 55		S		
0 2 15 17 0 7 81		CR 10		CarsTrucksHeavysTotals110180128
Peds Cross:	Cars 219	Cars 7 102	36 145	Peds Cross: 🖂
West Peds: 0 West Entering: 88	Trucks 34 Heavys 0	Trucks 4 27 Heavys 0 0	5 36 0 0	South Peds: 0 South Entering: 181
West Leg Total: 143	Totals 253	Totals 11 129	41	South Leg Total: 434
	(Comments		

Afternoon F	Peak Dia	agram	From:	ed Period 15:00:00 18:00:00		ne Hour Pea rom: 15:15:0 o: 16:15:0	00
	800006 0 & CR 1			r conditio (s) who co			
** Signalized Inters	ection **		Major R	oad: CR	10 runs N	I/S	
North Leg Total: 638 North Entering: 276 North Peds: 0 Peds Cross: ⋈	Heavys 0 Trucks 4 Cars 29 Totals 33	15 9	28 248	Heavys (Trucks 2 Cars 3 Totals 3	20 342	East Leg Total: East Entering: East Peds: Peds Cross:	385 175 0 ∑
Heavys Trucks Cars Tota 0 9 117 126	N	↓ Ŀ	CR 10	1	Cars	Trucks Heavys 3 0	63
<u></u>	CR 1	W	N E	Į	66 - 41 - 167	3 0 2 0 8 0	69 43
Heavys Trucks Cars Tota 0 6 25 31 0 7 58 65	als		S		CR 1		$ \rightarrow $
0 0 3 3 0 13 86	\	CR 10	, <h 1<="" td=""><td></td><td>Cars 188</td><td>Trucks Heavys 22 0</td><td>s Totals 210</td></h>		Cars 188	Trucks Heavys 22 0	s Totals 210
Peds Cross: X West Peds: 0	Cars 209 Trucks 17	Tru	icks 2 17	1 6 1	355 19	Peds Cross: South Peds:	⊠ 0
West Entering: 99 West Leg Total: 225	Heavys 0 Totals 226		tals 24 26	0 0 68 82)	South Entering: South Leg Total	
		Com	ments		I		

Morning Peak Diag	ram	Specifi From: To:	ed Perio 6:00:00 9:00:00	d		e Hour Pe om: 6:00:00 : 7:00:00)
Municipality:BeetonSite #:1301800007Intersection:CR 10 & CR 14TFR File #:4Count date:31-Jan-13			er conditi (s) who (ed:		
** Signalized Intersection **		Major F	Road: CI	₹ 10 ru	ins N	/S	
North Leg Total:359Heavys0North Entering:243Trucks0North Peds:0Cars3Peds Cross:Image: State	0 0 0 8 2 10 169 61 23 177 63		Heavys Trucks Cars Totals	8 108	-	East Leg Total: East Entering: East Peds: Peds Cross:	171 29 0 ∑
		ottenham Rd	(CR 10)				
Heavys Trucks Cars Totals					Cars	Trucks Heavy	
0 1 12 13					6 3	2 0 0 0	8
	Ν	١			3 16	2 0	18
5 Line (CR 14)				5	25	4 0	
Heavys Trucks Cars Totals	VV	E		Nala	~ Dd (
		5		INDIA		CR 14)	
0 0 23 23							/
0 1 27 28		4	N		Cars	Trucks Heavy	s Totals
0 3 50 Q	ueen St N (CR 10)	<hr/>			139	3 0	142
Peds Cross: X Cars 212	Ca	rs 6 1	02 55	163		Peds Cross:	\mathbb{X}
West Peds: 0 Trucks 11	Truck	ks 1 4	1	6		South Peds:	0
West Entering: 53 Heavys 0	Heavy	ys 0 0	0	0		South Entering:	169
West Leg Total: 66 Totals 223	Tota	ıls 7 1	06 56			South Leg Tota	1: 392
		nents					

Accu-7	raffic Inc.
Morning Peak Diagram	Specified Period One Hour Peak From: 6:00:00 From: 8:00:00 To: 9:00:00 To: 9:00:00
Municipality:SimcoeSite #:1310100004Intersection:Tottenham Road & Laverock StreeTFR File #:1Count date:26-Jun-13	Weather conditions: Person(s) who counted:
** Signalized Intersection **	Major Road: Tottenham Road runs N/S
North Leg Total: 540 Cyclists 0 0 0 North Entering: 289 Trucks 4 27 0 North Peds: 1 Cars 5 248 5 Peds Cross: Image: March 1 Totals 9 275 5	0 Cyclists 2 East Leg Total: 66 31 Trucks 18 East Entering: 52 258 Cars 231 East Peds: 2 Totals 251 Peds Cross: X
Cyclists Trucks Cars Totals 0 8 47 55	Tottenham Road Cars Trucks Cyclists Totals 27 0 0 27 2 0 0 22 23 N
Access W 🚽	E 51 1 0
Cyclists Trucks Cars Totals 0 0 5 0 0 1 0 2 28 0 2 34	Cars Trucks Cyclists Totals
Peds Cross: Image: X Cars 298 West Peds: 1 Trucks 30 T West Entering: 36 Cyclists 0 Cyclists	Cars 40 199 7 246 Peds Cross: ⋈ ucks 4 18 1 23 South Peds: 5 clists 0 2 0 2 South Entering: 271 otals 44 219 8 South Leg Total: 599
	nments

(38)	(280)	(43)	R	49	(94)	
50	359	34	←	26	(27)	
Ľ	$\mathbf{\Psi}$	Ы	Ľ	51	(54)	
(55)	29	7	K	↑	7	
(43)	12	→	18	136	8	
(49)	33	Ы	(48)	(500)	(50)	

23 - Mill Street and Queen Street (County Road 10)

(103)	(0)	(101)	R	39	(185)
277	2	162	←	342	(610)
Ľ	$\mathbf{\hat{\Lambda}}$	Ľ	Ľ	1	(8)
(327)	76	7	K	↑	7
(430)	539	→	0	0	5
(0)	1	И	(2)	(2)	(5)

29 – Highway 9 and Tottenham Road (County Road 10)

Peak hour volumes for (1) Mill Street and Queen Street (County Road 10) and (2) Highway 9 and Tottenham Road (County Road 10) obtained from the *Tottenham Bypass Study & South Simcoe Transportation Master Plan, 2012.* Counts were conducted in April and May 2012

Corridor 1

County Road 93

Signal Timing Plans

2013

MODEL 170 MICROPROCESSOR

LOCATION CRG3 -TIMING BASED ON T. M DATED TIMING INSTALLATION DATE ____ INSTALLED BY

DISTRICT MIDLARD _ PROGRAM NUMBER (C-C-O) _____

FAZE FUNCTION

PROM - CHECK SUM I(F-9-A) _77_; 2 (F-9-B) _124___

FAZE #

12345678

LAG FAZES	Ī	2	3	4	5	8	7	8
LAGS C-F-O					T			

For	Central	Computer	Control	(C-0-6
-----	---------	----------	---------	--------

FLAGS			-	<u> </u>				.	
PERMIT	0	X	X		X	X	X		X
RED LOCK	F				<u> </u>		•		
AMBER LOCK	2		X				X		
VEH. RECALL	3		X				X		
PED. RECALL	4								
VEH. MAX. RECALL	5								
OVERLAP A	6			_					
OVERLAP B	7					L			
DBL. ENTRY	8		IX	1	X		X		IX
RED TIMING RNG.	9			L	Ŀ	L			Ľ
ARROW ADV. GREEN	A	X				X	<u> </u>		1
RED REST	Ð	Ľ							Ŀ
REST IN WALK	C			L		L			Ŀ
FLASHING GREEN	D	X				X			
STARTUP	E		X				X		
(Reserved)	F					1		L	

5)= 0 SATE M

r Centres Compe			(0-0-0)		FAZE	#		KEYST	ROKES	F-FAZE #-IN	TERVAL	.#
AZE AND PREEM	PT	1	2	3	4	5	6	7	8	PREEMPT	E	Γ
WALK	0		1				-		-	RRI DELAY		Q
LASH D/W	1	an an			-		-		~	RRI CLEAR		1
AIN. GREEN	2	5.0	20		10	5.0	20		10	EV A DELAY	•	2
TYPE 3 DET.	3			in the	i.					EV A CLEAR		3
NOD/VEH	4		1.0	•	1	-	1.0	•	~	EV B DELAY		4
H. EXTEN.	5	2.5	40	•	3.0	2.5	4.0	•	•	EV B CLEAR		1
MAX. GAP	6	2.5	4.0	•	3.0	2.5	4.0	•	•	EV C DELAY		e
IIN. GAP	7	2.5	4.0	•	3.0	2.5	4.0	•	•	EV C CLEAR		
AX. EXTEN.	10	10	30		15	10				EV D DELAY		1
MAX. 2	9	-	1		-					EV D CLEAR		1
CALL TO FAZE	A	4			ALLARS.	4	Nº 1			RR2 DELAY		1
GRN CLEAR	8	•	1. S 1.	•	1	•	à -	•	100 100 100 100 100 100 100 100 100 100	RR2 CLEAR		1
REDUCE BY	C	•	•	•		•	•	•	•	EV CLR. TMR.		ui (
REDUCE EVERY	D	•		•	•	•	•	•	· 1	EV DLY. TMR		1 5
AMBER	E	4.0	5.0	•	5.0	4.0	5.0	•	5.6	RR CLR. TMR.		
RED CLEAR	F	1.6	2.0		2.0	1.0	2.0	•	2.0	RR DLY. TMR		

PREFERRED LEFT TURN: MAIN ST. (F-O-C)_____ (1 or 5) or SIDE ST. (F-O-D)_____ (3 or 7) EMERG. VEH. FAZES: EVA-FAZE 2 WITH (F-C-A)_____ (5 or 6) EVB-FAZE 4 WITH (F-C-B)_____ (7 or 8)

.

		2	14	-		4			5	7	8	
DETECTION FAZE		Pres.	L.D.	3	Pres.	L.D.	3	Pres.	L.D.		Pres	L.D.
DELAY	5				5		5				5	
CARRY OVER	•	•	•	•	•	•	•		•	٠	•	•
	Pras	Present	Det	ection at	Stop	Bor	1.0	Long	Distonce	Datecti	10	

CR93 - ZEHRS/CTC Naztec, Inc. 980 v50.x Programming Sheets

Phase Times [1.1.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Min Grn	7	10	þ	10	7	10	7	10								
Gap, Ext	3.0	4.0	Ø	3.0	3.0	40	3.0	3.0								
Max 1	15	45	Ø	20	15	45	15	20								
Max 2	Ø	ø	6	Ø	Ø	ø	þ	Ø								
Yel Cir	3.5	5.0	3.5	4.0	3.5	5.0	3.5	4.0								
Red Clr	ø	2.0	Ø	ø	Ø	2.0	3.5	20								
Walk	Ø	25	Ø	14	Ø	25	Ø	2014	1							
Ped Clr	6	8	ø	6	Ø	8	Ø	6								
Red Revt	Ø	Ø	Ø	8	Þ	Ø	6	0								
Add Init	Ø	Ø	6	Ø	Ø	Ø	Ø	Ø								
Max Init	Ø	Ø	Ø	0	Ø	6	6	Ø								
Gap Reductio	n															
Time B4																
Cars B4																
Time To																
ReducBy													e			
Min Gap																
DyMaxLim																
Max Step											1.1					

\$2+\$6-CR93 \$4+\$8-ZEHRS+CT \$1013 ADVANCED ARROW \$5-S/13 ADVANCED ARROW \$7-ELIS ADVANCED ARROW-ZEHRS

CR 93 @ Hugel - Midland June 2013

Phase Times [1.1.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Min Grn	5.0	25.0	5.0	10.0		25.0		10.0								
Gap, Ext	3.0	1.0	3.0	3.0		1.0		3.0								
Max 1	7.0	38.0	25.0	7.0		28.0		25.0								
Max 2	0.0	0.0	0.0	0.0		0.0		0.0								
Yel Cir	3.0	5.0	3.0	4.0		5.0		4.0								
Red Clr	0.0	2.0	0.0	2.0		2.0		2.0								
Walk	0.0	30.0	0.0	17.0		30.0		17.0								
Ped Clr	0.0	13.0	0.0	15.0		13.0		15.0								
Red Revt	0.0	0.0	0.0	0.0		0.0		0.0								
Add Init	0.0	0.0	0.0	0.0		0.0		0.0								
Max Init	0.0	0.0	0.0	0.0		0.0		0.0								
Gap Reduction																
Time B4																
Cars B4																
Time To																
ReducBy																
Min Gap																
DyMaxLim																
Max Step																

Naztec Timing Card

Model: 980 - A1100

District: Simcoe County

Location: Simcoe Rd 93 & Huronia Mall/ Mountain View Mall - Midland 2004

<u>Timings</u>								
Phases	1	2	3	4	5	6	7	8
Min Green		25		10	5	25	•	0
Gap Ext.		1.0		3.0	1.0	1.0		0.0
Max 1		25		25	10	25		0.0
Max 2		0		0	0	0		0
Yellow Clear		5.0		4.5	0.0	5.0		4.5
Red Clear		2.0		1.5	0.0	2.0		1.5
Walk		25 20		1617	0	26 20		0
Ped Clear		5		8.10	0	5		0
Red Revert	1. A	0.0		0.0	0.0	0.0		0.0
Add Init		0		0	0	0.0		0.0
Max Init		0		0	0	0		0
Gap Reduce								
Time B4								
	-			<u> </u>				
Cars B4								
Time To	2	· · · ·	· · · · · · · · · · · · · · · · · · ·					
Reduce By			100 A					
Min Gap								
Dynamic Max								al
Limit			e V					
Dynamic Max Step		d ^p						

-Ped timing change 06/24/04 by Chris Deterty - Cltof

Options						A DE		
Phases	1	2	3	4	5	6	7	8
Enabled		X		X	X	X		
Min Recall		1 - 1 3						- 42
Max Recall								12
Ped Recall	1	X			a	Х		
Soft Recall								
Lock Calls								
Auto Flash Entry								1 m m
Auto Flash Exit				an contraction				10
Dual Entry	Х	Х	Х	Х	Х	X	X	X
Enable Simulated Gap	х	Х	X	X		X		X
Garanted Passage								
Rest in Walk		X	10.0			Х		1
Conditional Service Non Actuated 1		x				x		
Non Actuated 2						^		
Added Init Calc	S	S	S	S	S	S	S	S
Options+								
Reservice								
Ped Clear thu Yellow								
Skip Red - No Call								
Red Rest								
Max 2							1	
Ped Delay								
Conflicting Ph.								
Omit Yellow, Yellow Ph.								
Ped Out/ Ovrip Ph.								
Start Yellow, Next								6

2004

Page 20-1

PROGRAM LOG

						PRO	GRAM	LOG								
20. <u>EPAC300 P</u>	ROGRA	ML	<u>DG</u>													
Prepared By											Date:		/		_/_	
Approved By	2											Г)ate:		1	1
									1		0					_ '
Intersection Name		JIM	COL	K	-15	CN	YON	KE	121	COL	1)				
	1. A. B.				51171	LITIES	- 40	TESS					小小規		9	
Access Code	1289 (Prof. 17 (87)								ts (0000) - 999	0)	1992 (1919	112023534			
Aucess Code		<u> </u>	16- 7	(Trial)	astriato el	Coue	3.100				., 	121606-93	相關的	Saakini		
	整重运			PH	ASE DA	ATA - V	EHIC	LETI	MING8	L. Sr.						
Basic Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Minimum Green Passage Time	······	30	20	30	30	0	0	0	000003							1.
Maximum No 1		Ē	30	Ĩ	30	0	$\overline{\mathcal{O}}$	0	0					_		
Maximum No 2		in	30	17	30	0	Ò_	0	0				14			
Yellow Change		30	<u>50</u>) <u>3,</u> 2	50	<u>3</u> _	30	30	<u>30</u>							
Red Clearance	:	D	žQ_	0	2Q	0	0	0	0							
Density Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seconds/Actuation								<u> </u>		—				—		<u> </u>
Maximum Initial Time B4 Reduction		-						<u> </u>								
Cars B4 Reduction			—													
Time To Reduce			_										×.			
Minimum Gap			_													
		P	HASE	DAT	A - PEI	DESTR	IAN T	IMING	S & CC	ONTRO	DL		清重			
Pedestrian Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Walk			24									<u> </u>			<u> </u>	
Pedestrian Clearance	€:		6					. <u> </u>							—	
Pedestrian Control	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Flashing Walk					<u> </u>		—			<u> </u>		<u> </u>				•••••
Act Rest In Walk																
			Pe	destri	an Cont	trol Ent	ry: "1"	= Yes	s & "O" =	= No			<u> </u>	<u> </u>		
				РНА	SE DA	TA - VE	HICL	E CO	NTROL							
Veh Control	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Non-Lock Memory		T		\bot	1					. <u> </u>	<u> </u>					
Dual Entry								. <u> </u>	<u> </u>							
Last Car Passage								<u> </u>						<u> </u>		
Conditional Service																

0

.

*

Corridor 2

County Road 44

Signal Timing Plans

F

2004

CR 44 @ CR 45 June 2013

Phase Times [1.1.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Min Grn		25.0		10.0												
Gap, Ext		1.0		5.0												
Max 1		0.0		30.0												
Max 2		0.0		0.0												
Yel Clr		5.2		5.0												
Red Clr		2.0		2.0												
Walk		20.0		8.0												
Ped Clr		5.0		14.0												
Red Revt		0.0		0.0												
Add Init		0.0		0.0												
Max Init		0.0		0.0												
Gap Reduction																
Time B4																
Cars B4																
Time To																
ReducBy																
Min Gap																
DyMaxLim																
Max Step																

Corridor 3

County Road 124

Signal Timing Plans

	_	-		_		PROG	RAM	LOG									Page 2
20. EPAC300 PR	OGRA	M LC) <u>G</u>														
Prepared By	:											D	ate:		/	1	_
Approved By	:											D	ate:		1	/	_
Intersection Name		C.F	R, #	12	4 8	20	721	42	3	R					-	_	_
			19444 1944 1947		UT	LITIES	- AGG	ESS									
Access Code		_				Codes	s: Four	Digit	s (0000	- 9999	9)						
				PHA	SE DA	TA-V	EHICL	ETIN	lings								
Basic Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Minimum Green Passage Time		_	3.0		3.0	5	30	-	830	-		_	_		-	_	
Maximum No 1			26	_	26	10	26		26					-			
Maximum No 2		_	26	_	26	10	26		26	_	_		_			_	_
Yellow Change		_	5.0		50	3,0	510		5.0			_				_	
Red Clearance			15	_	1.5	10	15		1,5	_	-		—			_	_
Density Times Seconds/Actuation	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Maximum Initial						_			_				_	_	_	_	_
Time B4 Reduction					_				_			_	_			-	
Cars B4 Reduction		_	_	-	-			_	-		-	-		_			_
Time To Reduce		-		_	_	_	_	_	-	-	_			_	-		-
Minimum Gap		_															
			HASE	DAT	A PEI					ONTRO							
Pedestrian Times Walk	Phase:	1	21	3	21	5	621	7	821	9	10	11	12	13	14	15	16
Pedestrian Clearance			5	_	5	Ξ	5	_	5	_	_	_	=	_	_		_
Pedestrian Control	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Flashing Walk Extended Pedestrian			-	-	-	_			_	-	-	_	-	_			-
Act Rest In Walk		_	T			_	1		_	_	_						-
			Pe	destri	an Con	trol Ent	ry: "1"	= Yes	8 "0" :	= No			_	_			
					SEIDA	ta vi	EHICL	EOO	NTROL								
Veh Control	Phase:	.1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Non-Lock Memory Dual Entry			-		+	1	+	_				-	_				-
Last Car Passage			1	-	-		-		-				_	-			_
Conditional Service			-	-	_	-		_	-			_		-		-	-

20. EPAC300 PROGRAM LOG Prepared By $\bigcirc \bigcirc $	ESS r Digits (0000 - LE TIMINGS 7 8 7 8 12 25 85	9	10 10 10	Da	ate: J ate: J J J 12 12 12 12 12			, <u>2</u> , 15 15 	
Approved By	CESS r Digits (0000 - LE TIMINGS 7 8 	9	10	Da)	ate:	13 		15	
Intersection Name SIMCOE Rd 124 $r \leq IM$ UTILITIES - ACC Access Code N/A Codes: Fou PHASE DATA - VEHICI Basic Times Phase: 1 2 3 4 5 6 Minimum Green JA Maximum No 1 S. O Maximum No 2 S. O JS Maximum Initial — Density Times Phase: 1 2 3 4 5 6 Seconds/Actuation Maximum Initial — — Time B4 Reduction — — Minimum Gap — — <t< th=""><th>CESS r Digits (0000 - LE TIMINGS 7 8 </th><th>9</th><th>10</th><th><u>)</u> 11</th><th></th><th>13</th><th>14</th><th></th><th></th></t<>	CESS r Digits (0000 - LE TIMINGS 7 8 	9	10	<u>)</u> 11		13	14		
Intersection Name SIMCOE Rd 184 $+$ SIM UTILITIES - ACC Access Code N/A Codes: Fou PHASE DATA - VEHICI Basic Times Phase: 1 2 3 4 5 6 Minimum Green $_{a}24$ $_{a}12$	CESS r Digits (0000 - LE TIMINGS 7 8 	9	10	11	12	13	14		
UTILITIES - ACC Access Code N/A Codes: Fou PHASE DATA - VEHICI Basic Times Phase: 1 2 3 4 5 6 Minimum Green $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	CESS r Digits (0000 - LE TIMINGS 7 8 	9	10	11	12	13	14		
Access Code N/A Codes: Fou PHASE DATA - VEHICI Basic Times Phase: 1 2 3 4 5 6 Minimum Green 244 12 14 112 112 112 Passage Time 355 <td>r Digits (0000 - LE TIMINGS 7 8 </td> <td>9</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	r Digits (0000 - LE TIMINGS 7 8 	9	10						
Access Code $\begin{subarray}{c} \begin{subarray}{c} \begin{subaray}{c} $	r Digits (0000 - LE TIMINGS 7 8 	9	10						
Access code Phase: 1 2 3 4 5 6 Basic Times Phase: 1 2 3 4 5 6 Minimum Green $_{a}2^{b}4^{b}$ $1^{b}2^{b}$ $1^{b}2^{b}2^{b}$ $1^{b}2^{b}2^{b}$ $1^{b}2$	7 8	9	10						
Basic Times Phase: 1 2 3 4 5 6 Minimum Green	7 8 <u>12</u> <u>50</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>2</u>								
Basic Times Phase: 1 2 3 4 5 6 Minimum Green	7 8 <u>12</u> <u>50</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>25</u> <u>2</u>								
Dask TimesPrice: 2^{14} 12 12 Minimum Green 3^{14} 12 3^{14} 12 Passage Time 3^{12} 3^{12} 3^{12} 3^{12} Maximum No 1 3^{12} 3^{12} 3^{12} 3^{12} Maximum No 2 3^{12} 3^{12} 3^{12} 3^{12} Yellow Change 5^{12} 3^{12} 3^{12} 3^{12} Yellow Change 5^{12} 3^{12} 3^{12} 3^{12} Red Clearance 3^{12} 3^{12} 3^{12} 3^{12} Density TimesPhase: 1^{12} 3^{14} 5^{16} Seconds/Actuation 3^{12} 3^{12} 3^{12} 3^{12} Time B4 Reduction 3^{12} 3^{12} 3^{12} 3^{12} Time B4 Reduction 3^{12} 3^{12} 3^{12} 3^{12} Time To Reduce 3^{12} 3^{12} 3^{12} 3^{12} Minimum Gap 3^{12} 3^{12} 3^{12} 3^{12} PHASE DATA - PEDESTRIAN 1Pedestrian TimesPhase: 1^{12} 3^{12} 4^{12} Walk 1^{12} 1^{12} 1^{12} 1^{12}									
Passage Time		9	10	11	12	13	14	15	-
Maximum No 1	- 45 - 4.5 - 3.0	9	10	11	 	13	14	15	-
Maximum No 2 3.5 9.5 9.5 Yellow Change 5.0 45 4.5 Red Clearance 3.0 3.0 3.0 Density Times Phase: 1 2 3 4 5 6 Seconds/Actuation	<u> </u>	9	10	 11 	 12 	13	14	 15 	-
Density Times Phase: 1 2 3 4 5 6 Seconds/Actuation	<u> </u>	9	10	 11 	12	13	14	 15 	-
Density Times Phase: 1 2 3 4 5 6 Seconds/Actuation	7 8 	9	10	11 	12	13	14	15	-
Seconds/Actuation	7 8	9	10	11	12	13	14	15 	-
Maximum Initial				_				_	2
Time B4 Reduction			_						-
Cars B4 Reduction				100					
Time To Reduce									-
Minimum Gap									
PHASE DATA - PEDESTRIAN 1 Pedestrian Times Phase: 1 2 3 4 5 6 Walk 10 10 10 10 10	-								-
Pedestrian Times Phase: 1 2 3 4 5 6 Walk				_				3.	-
Walk	rimings & CC	ONTRO	DL						
Walk	78	9	10	11	12	13	14	15	,
Pedestrian Clearance $12 - 12 - 12$	$\frac{10}{12}$							·	-
	1	_	-		<u> </u>	-			-
Pedestrian Control Phase: 1 2 3 4 5 6	78	9	10	11	12	13	14	15	;
Flashing Walk			·			· · · · · ·		·	-
Extended Pedestrian Clear:			•		·			•	-
Act Rest In Walk Pedestrian Control Entry: "1	 " = Yes & "0" =	= No							-
	dae meridana a bia	(Carrow							
PHASE DATA - VEHIC	LE CONTROL								
Veh Control Phase: 1 2 3 4 5 6	78	9	10	11	12	1:	3 14	15	5
Non-Lock Memory	↓					. <u> </u>			_
Dual Entry						·			_

Vehicle Control Entry: "1" = Yes & "0" = No

Corridor 4

County Road 27

Signal Timing Plans

Phase Times [1.1.1]	es [1.1	Ē	NBL	SB		53		SN								
	~	2	e	4	S.	Q	٢	6	Ø	10	ţ	12	с. С	14	2 2 2	16
Min Grn	مى	30	5	0)		30		0)								
Gap, Ext	(.)	4.5	1.0	~		£.S		0.7								
Max 1	50	fs.	15	So		ęŚ		Se								
Max 2																
Yel Clr	3.0	5.9	0.8	5.5		22		5.5								
Red Clr	0.0		୯,୦	L'S		たう		I.S.								
Walk																
Ped Clr					÷											
Red Revt																
Add Init																
Max Init																
Gap Reduction							-									
Time B4				2 - 												
Cars B4								-								
Time To																
ReducBy																
Min Gap																
DyMaxLim																
Max Step										-					e e e	
															and a second	-

Naztec, Inc. 980 v50.x Programming Sheets

4

MARCH 2006

Page 1

0. EPAC300 P	ROGRA	ML	OG			FNC	SIGN	ILO C		202.0		E PORTE SA					Pa
Prepared By Chris			1. 1. j.							<u>A</u>				<u>a</u> J	.01	5.20	<u>Za</u>
	an ing ana			in ang _{ba} ng sa	and and a second	er senter - - 		ander de la co					Date:				
Approved By											9 		Date:		.1	_1	<u>.</u>
Intersection Name.C.A	17CAA) <u>AG+</u>	<u>L</u>														2
							176 176										
Access Code						Code	es: Fo	ur Dig	its (000	0 - 999	99)					Nacional	
					SED												
asic Times		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Minimum Green	·····:	20	30	0	<u>8</u> 30	0	0 20	0	30			. <u></u>	·		and the second		
Passage Time Maximum No 1	······	12	30	0	<u>30</u> 25	Ŏ	<u>30</u> 30	0	30		·		·				<u> </u>
Maximum No 2		12	<u>30</u> 40	0	25	0_	30	20	25		. <u></u>						
Yellow Change	······	2:0	2.0	200	20	0	20		20		· <u></u>				-		
ensity Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Seconds/Actuation						<u> </u>											
Maximum Initial Time B4 Reduction								a a an Theasa an			. <u></u> R	es					
Cars B4 Reduction																	19 <u>-38</u>
Time To Reduce													(14.) 			. <u>1</u>	<u>N 100</u>
Minimum Gap	······		<u> </u>	<u></u>							<u></u>				• • • • • • • • • • • • • • • • • • •		
			5455	0740		etan Les cr		MINE	See								
<u>destrian Times</u> Walk	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pedestrian Clearance			15		15				15	••••••••••••••••••••••••••••••••••••••		anairean Martani anairean			i dana an Distanti an Distanti an		
<u>destrian Control</u> Flashing Walk	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Extended Pedestrian C																	
Act Rest In Walk	·····	-	Ţ		_						سوینید ر						
		0	Pec	lestria	in Cont	roi Enti	y: - 1*	= Yes	& "0" =	= NO	i di ka	GA Davi	,	· · · · ·			1997 - Se 1997 - Se
					NE DA		HIGU	500									
Control	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Non-Lock Memory		_			4		÷.	- 1997) 	<u> </u>							-	
Dual Entry			L					-	L		<u>C. S.</u>		-				
Last Car Passage Conditional Service												aning proving	and a grant of the second	constitutes	-		
No Simultaneous Gap.																	

.

I

)
Manual	EPAC300 Intersection	Controller Unit	

JUN 96

			2		2			000						2008
	CT Technologies	les les	PROG	INTERSECTION NAM PROGRAMMED BY	NAME:	INTERSECTION NAME: CALINICOLE	Kel	2 1 W DUAR CRITEIS 11.2	CKI-1	<u></u>		INSTALLATION DATE: PROGRAM DATE:	TE:	ł
			CONT	CONTROLLER SERIAL # LI	ERIAL #	4	9200	27 1		Ē	SECURI	SECURITY CODE		
			INTERSEC SECTION:	INTERSECTION TELEPHONI SECTION:	TELEPH		E (IF DIRECT DIAL):	21	3		ADDOCO.			
		H	PHASE (ON/OFF)	(OFF)		 .					PHASE THINDS			IГ
INTERVAL	1	e	4	5 6	1	Ø		INTERVAL	2	0				
MEMORY		-					NIW	MIN GREEN	25		2	20		
EXT RECALL							PAS	PASSAGE	0		Ś	05		
MAX RECALL	NQ			CN			TEL	YELLOW	5.0)	5.0	5.	500	
PED RECALL							2	RED	3.0	0	3.0	3		
CNAI				NO			X	MAXI	25		30	25		
CNA II	-						Ň	MAX II	<u></u> 2		30	8	0	
FL WALK				-			8	WALK	0		12	<u>}</u>		
SOFT RECALL							PED	PED CLEAR	0		0		0	
WALK REST	NO			NO			9	SIA	0	-	0			
COND PED				-				Ě	0		0	0		
FWTPCL			-					Ĕ	0		0			
10°.						0 0	NIW	MIN GAP	0		0		0	
- 44 5-1		•				4	W	MAX VI	0		0		0	
مراجعه د د د			8				Ŵ	MAX EXT	0	-	0	0		<u>.</u>
							AUTA	AUTO MAX	0		0	0	0	
							~	AMR	0	-	0		0	
		PHASES USED					-			INITAL	INITIALIZE/FLASH			[
	1 2	e		2	7	e e	erede Geodefi	. 1	INITIALIZE	ENTE	ENTER FLASH	EOT FLASH	H INTERVAL	
ON/OFF	0M		ZO	NO		NO V	I DNR	RING 1 PHASE	3		2	2	T	
SEQUENCE	~	I = SEQ, 2 =	DUAL	1 = SEQ, 2 = DUAL RNG, 3-7 = SPEC, 8 = LEA	SPEC, 8 =	LEADILAG	RING 2	RING 2 PHASE	0		6	0	2= YELLOW	2
LEADILA	CODES (SED IF "8"W	AS ENT	ERED FOR	SEQUENC		Ē	INTERVAL	~	_		7	; , 	
PAIRS	1 AND 2	3 AND 4		5 AND 6	~	2 AND 8			Po	VER UP/RE	POWER UP/RESTART TIMINGS	SONI		
CODE			_				WIN	MINIMUM FLASH		'N'	-	(0-127 SECONDS)	CONDS)	
			100			CKINPLIT	1 ST ALL	1 ⁶⁷ ALI REDAFTER ELASH		C				1

Naztec, Inc. 980 v50.x Programming Sheets

Phase Time	es [1.1.	.1]							CR 27 @	CR 21 - 1	Thornton	- Aug 200)7			
	SBL	N/B		W/B		S/B		E/B								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Min Grn	7.0	8.0		7.0		8.0		7.0								
Gap, Ext	3.0	3.0		3.0		3.0		3.0								
Max 1	15.0	45.0		40.0		45.0		15.0								
Max 2	50.0	50.0		50.0		50.0		50.0								
Yel Cir	3.5	5.0		4.0		4.0		4.0								
Red Clr	1.5	2.0		2.0		2.0		2.0								
Walk		20.0				20.0		16.0								
Ped Clr		10.0				10.0		10.0								
Red Revt																
Add Init																
Max Init																
Gap Reduction																
Time B4																
Cars B4																
Time To																
ReducBy																
Min Gap																
DyMaxLim																
Max Step																

Naztec Timing Card

Model: 980 - A0100

District: County of Simcoe

2004

Location: Simcoe Rd. 27 Simcoe Rd 21 - Thornton ROBERT STREET .

Timings								
Phases	1	2	3	4	5	6	7	8
Min Green	8	20		10		20		10
Gap Ext.	2.0	3.0		3.5		3.0		3.5
Max 1	8	25		18		25		18
Max 2	8	25		18		25		18
Yellow Clear	3.0	4.0		4.0	i	4.0		4.0
Red Clear		2.0		2.0		2.0		2.0
Walk		9		9		9		9
Ped Clear		8		8		8		8
Red Revert								
Add Init								
Max Init								
Gap Reduce								
Time B4								
Cars B4								
Time To								
Reduce By								
Min Gap								
Dynamic Max Limit								
Dynamic Max Step		a.						

Options			-					
Phases	1	2	3	4	5	6	7	8
Enabled	Х	Х		Х		Х		Х
Min Recall	Х							
Max Recall		Х				X		
Ped Recall								
Soft Recall								
Lock Calls								
Auto Flash Entry						1. 10-1		
Auto Flash Exit								
Dual Entry								
Enable Simulated								
Gap							1	
Garanted Passage								,
Rest in Walk								
Conditional Service						-		
Non Actuated 1								Х
Non Actuated 2								
Added Init Calc								
Options+								
Reservice								
Reservice								
Ped Clear thu Yellow								23
Skip Red - No Call								
Red Rest								
Max 2								
Ped Delay								
Conflicting Ph.								
Omit Yellow, Yellow Ph.								
Ped Out/ Ovrlp Ph.								
Start Yellow, Next Ph.								

0. EPAC300 F	ROGRA	ML	OG								_	Da	ite:	/.			
												Da	ate:	/	'		
Prepared By																	
Approved By		-	.00 8	Simo	oe Rd. 2	27_Co	okstow	/n			_						
Approved By		HW	y 05 0	-													
					UTI	LITIES	- AC	CESS									
						Code	s: Fou	r Digit	s (0000	- 9999))						
Access Code	······	-		_													
				PH	ASE DA	TA - V	EHIC		AINGS	9	10	11	12	13	14	15	16
asic Times	Phase:	1	2	3	4	5	6	7	8	_	_	-			_	—	
Minimum Green Passage Time		_5_ _40	_20 _40		_10 _40	_	_	-	—	_	_		_	_			
Maximum No 1		0_	_00	_	_35 _42	_	-	_	_	_		_		—		_	
Yellow Change			_40	_	_40 _20	_	—			_	_	_		_		_	
Red Clearance	i	_0_	_20	-	-	-	-	7	8	9	10	11	12	13	14	15	16
ensity Times Seconds/Actuation	Phase:	1	2	3	4	5	6	-									
Maximum Initial			-	_	_							_			_		
Time B4 Reduction Cars B4 Reduction							_	_		_	_						
Time To Reduce Minimum Gap							_	_	_	_							
		PI	HASE	DAT	A - PED	ESTR	IAN T	IMINO	SS&CC	ONTRO	DL						
edestrian Times	Phase:	1	2 11	3		5	6	7	8	9	10	11	12	13	14	15	16
Walk Pedestrian Clearance.			_13		_11 _13	_			_	_	_						_
edestrian Control	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Flashing Walk Extended Pedestrian C		_	_	-		_				_			_				
Act Rest In Walk		=11						_									
	6	V	rec	Jestna	an Conti	rol Ent	try: "1'	' = Ye	s & "O"	= No							
				PHA	SE DAT	A - VI	EHICL	E CO	NTRO								
h Control	Phase:	1	2	3	4	5		7					40	13	14	15	10
Non-Lock Memory Dual Entry		_1_	_1_		_1_		6	-	8	9	10	11	12			.15	16
Last Car Passage			_		-				·	_				—		-	
Conditional Service No Simultaneous Gap			_		_	_				_				_	_		-
			Ve	hicle	Contro	Entr	y: "1"	= Yes	& "0" =	No			. —	-		_	_
									~ ~ ~	NO							

eneral Control Initialization Non-Act Response Vehicle Recall Pedestrian Recall Recall Delay <u>odes</u> Initialization Non-Act Response Vehicle Recall Pedestrian Recall		1 _1_ 3_	2 -2 -2 -2 -2 -2 -2 -0 NON NON NON NON	IE IE IE	4_1_	5 — — — — — — — — — — — — — — — — — — —	L L	RE TO I MINI PI	NA II Mum Ed	YE	0 1		12	13 4 4 5REEN SOFT 	14
			F	PHASE	DAT	TA - SEC	UEN	CE CON	TROL						0
<u>guence Control</u> Phase Omit Phase - Yellow Phase Omit Call		1_2_	2	3 _4_ 	4	5	6	7 	8	9	10	11	12		3 14
des Phase Omit Phase - Yellow Phase Omit Call	······			1E		01 TO 1 Phase I Phase V When C	s Omi rellow	tted By Is Omi	# - Ph tted By	y # - Pł	nase Y	'ellov	v		
			PH	ASE D	ATA	- VEH [DETE	CTOR	CONTI	ROL					
ontrol Assigned Phase Operation Mode Switch Extend Time Delay Time	······································	1 21-	2_2_	3	4_4_	5_5_	6_2_	7 	8 _4_ 	9	10	11		12	13
Control Assigned Phase Operation Mode Switch Extend Time Delay Time		17	18	19	20	21	22	23	24	25	26	6 2	27	28	29
Codes Operation Mode Assigned Phase Switch	······	N	0 IORM NOI NOI	VEH		Detect	or Is	Of Assign Switc ellow / f	hed T	# - Ph	ase Pha	3 BAR ise ¹ s Gr	Whe	en The	4 BAR B Assigne

Naztec Timing Card

Model: 980 - A0100

District: Simcoe County

Location: Simcoe Rd 27 & Simcoe Rd 1 - Bond Head

Timings								
Phases	1	2	3	4	5	6	7	8
Min Green	8	25		10		25		10
Gap Ext.	3.0	1.0		4.0		1.0		4.0
Max 1	15	25		18		25		18
Max 2	0	0		0		0		0
Yellow Clear	3.0	4.0		4.0	1 A A	4.0		4.0
Red Clear	0.0	2.0		2.0		2.0		2.0
Walk	0	0		15		0		15
Ped Clear	0	0		5		0		5
Red Revert	0.0	0.0		0.0		0.0		0.0
Add Init	0	0		0		0		0
Max Init	0	0						
Gap Reduce								
Time B4								
Cars B4								
Time To								
Reduce By								
Min Gap								
Dynamic Max Limit								
Dynamic Max Step		-						

Options		-			_	-		
Phases	1	2	3	4	5	6	7	8
Enabled	Х	Х		Х		Х		Х
Min Recall								
Max Recall		Х				Х		
Ped Recall								
Soft Recall								
Lock Calls								
Auto Flash Entry								
Auto Flash Exit		Second Second						
Dual Entry		Х		Х		Х		Х
Enable Simulated Gap	Х	Х		Х		х		Х
Garanted Passage								
Rest in Walk								
Conditional Service								
Non Actuated 1		Х				Х		
Non Actuated 2								
Added Init Calc								
Options+								
Reservice								
Ped Clear thu Yellow							10	
Skip Red - No Call								
Red Rest								
Max 2								
Ped Delay								
Conflicting Ph.								
Omit Yellow, Yellow Ph.								
Ped Out/ Ovrlp Ph.								
Start Yellow, Next Ph.								

PROGRAM LOG

Page 20-1

20. EPAC300 PROGRAM LOG

Prepared By		_ Date:///
Approved By		//
Intersection Name	BOND HEAD CRAZ CR88	NOV 22/2004

					UTI	LITIES	AUG	200									
Access Code						Codes	s: Fou	Digit	s (0000) - 9999	9)						
				PH	ASE DA	TA - V	EHICL	E TIN	NINGS								
Basic Times Minimum Green Passage Time Maximum No 1 Maximum No 2 Yellow Change Red Clearance		1	0	NA	4500000	5	6	7	8	9	10	11 	12 	13 	14	15 	16
Density Times Seconds/Actuation Maximum Initial Time B4 Reduction Cars B4 Reduction Time To Reduce Minimum Gap			2			5	6	7	8	9		11 	12 	13 	14	15	16
Pedestrian Times Walk Pedestrian Clearance		1	15 5	3 	4 - PEI	5 	6 	7 	8 	9 		11	12	13	14	15	16
Pedestrian Control Flashing Walk Extended Pedestrian Act Rest In Walk	Clear:	1	2	3	4	5	6	7	8		10			13 	14	15	16
		_	and the second second	edestri	an Con	trol Ent	ry: "1"	= Yes	\$ & "0" :				_				
				PHA	SE DA	TA - VI	EHICL	E CO	NTROL								
Veh Control Non-Lock Memory Dual Entry Last Car Passage Conditional Service			0		4 1 0 0 0	5	6	7	8	9		11		13	14	15	16

Vehicle Control Entry: "1" = Yes & "0" = No

No Simultaneous Gap

Corridor 5

County Road 10

Signal Timing Plans

County Road 10 / Mackenzie Pioneer Intersection Proposed Signal Timing Plan

By: Mark Jamieson, BA Group Date: Dec 9, 2009

Phase		AM Honda Peak ² (6:00am - 9:00am)	Mid Day (9:00am - 2:30pm)	PM Honda Peak (2:30pm - 4:00pm)	All Other
	Min Green	7 sec	7 sec	7 sec	7 sec
SBL Advance	Max Green	10 sec	15 sec	10 sec	15 sec
(Callable)	Amber	3 sec	3 sec	3 sec	3 sec
	Red / SAG	2 sec	2 sec	2 sec	2 sec
	Min Green ¹	55 sec	25 sec	55 sec	25 sec
N-S Main	Max Green ¹	55 sec	40 sec	55 sec	40 sec
	Amber	5 sec	5 sec	5 sec	5 sec
	Red	2 sec	2 sec	2 sec	2 sec
	Min Green	7 sec	7 sec	7 sec	7 sec
WB Mackenzie	Max Green	10 sec	20 sec	10 sec	20 sec
Pioneer / Wal-Mart	Amber	3 sec	3 sec	3 sec	3 sec
(Callable)	Red	2 sec	2 sec	2 sec	2 sec

Notes:

1. NB/SB through approaches will not have detector loops during interim phase. Recommend setting the min=max during Honda peaks to ensure priority for N-S movements. During off-peak times N-S Main can be reduced to a lower minimum if a call is received for SBL or WB approaches.

2. A longer AM peak period is proposed based on input from Honda. There is a manufacturing shift that starts at 6:30 and also a secondary office shift of +/-1,000 people that arrives between 7:00-8:30.

McCORMICK RANKIN CORPORATION

GENERIC SIGNAL TIMING SHEET

ACTUATED	X P	RE-TIMED		SIGNAL TO BE M	AINTAINED	BY:	CONTRACTOR - A	AGI
	SIMCOE COU HONDA ENTR		10 &	SIGNAL TO BE OF	PERATED BY	Y:	CONTRACTOR - A	AGI
MAIN STREET:	SIMC	OE COUNTY	ROAD 10	TIMING DEVELO	PED BY:	MRC – D	OAVE THOMPSON	

DATE TIMING DEVELOPED : REVISED JULY 28, 2008

1

3

GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MUNICIPAL TRAFFIC OFFICE.

OPERATIONAL NOTES:

- If serving F2 or F6, the signal must cycle to F4 or F8 prior to serving a call for F5
- 2 F5 shall timeout concurrently with F2
 - Emergency pre-emption for Ø2 (Northbound) and Ø6 (Southbound) traffic

FUNCTION/OPERATION]	MOVEME	NT (FAZE))		
	Ø1 (NOT USED)	Ø2 NB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 EB (FARM ENTR.)	Ø5 NB LEFT (C.R. 10)	Ø6 SB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 EB THRU (HONDA)
PERMITTED MOVEMENTS	-	X	-	X	X	X	-	X
RED LOCK	-	-	-	-	-	-	-	-
AMBER LOCK	-	-	-	-	-	-	-	-
VEHICLE RECALL	-	-	-	-	-	-	-	-
PEDESTRIAN RECALL	-	-	-	-	-	-	-	-
VEHICLE MAX RECALL	-	Х	-	-	-	X	-	-
OVERLAP A	-	-	-	-	-	-	-	-
OVERLAP B	-	-	-	-	-	-	-	-
PROT/PERM LEFT TURN ARROW	-		-	_	X		-	
PROT/PERM FAST FLASH ADVANCE								
GREEN	-		-	-	-		-	
FULLY PROTECTED LEFT TURN	-		-	-	-		-	
DISPLAY AMBER ON STARTUP	-	-	-	-	-	-	-	-
PLACE PEDESTRIAN CALLS ON STARTUP	-	-	-	-	-	-	-	-
PLACE VEHICLE CALLS ON STARTUP	-	Χ	-	Χ	Χ	X	-	Χ
REST IN WALK		X		-		X		
MOVEMENTS MUST GAP OUT								
SIMULTANEOUSLY	-	-	-	-	-	-	-	-
DOUBLE ENTRY		-		-		-		-
EXCLUSIVE (SEPARATE) PHASING BY APPROACH	-	-	-	X	-	-	-	X

INTERVAL TIMES	MOVEMENT (FAZE)													
	Ø1 (NOT USED)	Ø2 NB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 EB (FARM ENTR.)	Ø5 NB LEFT (C.R. 10)	Ø6 SB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 EB THRU (HONDA)						
WALK	-	8.0	-	8.0	8.0	8.0	-	8.0						
FLASHING DON'T WALK	-	-	-	-	-	7.0	-	7.0						
MINIMUM GREEN	-	-	-	-	-	15.0	-	15.0						
VEHICLE EXTENSION (PASSAGE TIME)	-	5.0	-	3.0	3.0	5.0	-	3.0						
MAXIMUM GREEN (INCLUDES MIN GREEN)	-	35.0		11.0	12.0	35.0	-	58.0						
MAXIMUM GREEN 2 (ALT. MAX. GREEN)	-	-		-		-	-	-						
AMBER CLEARANCE	-	4.0	-	3.5	3.0	4.0	-	4.0						
ALL RED CLEARANCE	-	2.0	-	2.0	-	2.0	-	2.0						
MAX GAP (VEH. EXTENSION)	-				-	-	-	-						
MIN GAP (VEH. EXTENSION)	-	-			-	-	-	-						
REDUCE GAP BY	-	-		1	-	-	-	-						
REDUCE GAP EVERY	-					-	-							
MAX INITIAL GREEN TIME (VARIABLE INIT)	-				-	-	-	-						

DETECTOR SETUP – N/A	MOVEMENT (FAZE)											
	SB LEFT	NB THRU	EB LEFT	WB THRU	NB LEFT	SB THRU	WB LEFT	EB THRU				
DELAY TIME ON PRESENCE DETECTION	-	-	-	-	-	-	-	-				
DELAY TIME ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-				
CARRY-OVER ON PRESENCE DETECTION	-	-	-	-	-	_		-				
CARRY-OVER ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-				

PRE-EMPTION			Μ	OVEME	NT (FAZ	T (FAZE)					
	SB LEFT	NB THRU	EB LEFT	WB THRU	NB LEFT	SB THRU	WB LEFT	EB THRU			
PRE-EMPT HOLD PHASE	-	Х	-	-	-	Х	-	-			
PRE-EMPT EXIT PHASE	-	Х	-	-	-	Х	-	-			
MIN. HOLD TIME	-	10.0	-	-	-	10.0	-	-			
MAX. HOLD TIME	-	60.0	-	-	-	60.0	-	-			
MIN. PEDESTRIAN CLEARANCE	-	0.0	-		-	0.0	_	-			
	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-			
	-	-		-	-	-		-			
	-	-	-	-	-	-	-	-			
	-	-	-	-	-	-	-	-			

TIME OF DAY OPERATIONS	TIMI DA			DAY OF WEEK						MOVEMENT (FAZE)								
	START	END	S	М	Т	W	Т	F	S	Ø1 (NOT USED)	Ø2 NB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 EB ENTR	Ø5 NB LEFT (C.R. 10)	Ø6 SB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 EB THRU (HONDA)	
PHASE OMIT	00:00	23:59	Х	Х	Х	Х	Х	Х	Х	Х		Х				Х		
MAX RECALL		[
PED RECALL																		
MIN RECALL																		
MAX GREEN 2		[[
REST IN WALK	00:00	23:59	Х	Х	Х	Х	Х	Х			Х				Х		[]	
AMBER LOCK																		
RED LOCK										[
							[

REVISED GENERIC SIGNAL TIMING SHEET

ACTUATED	X PRE-TIMED	SIGNAL TO BE MAINTAINED BY	CONTRACTOR - AGI
LOCATION:	SIMCOE C.R. 10 & 14 th LINE	SIGNAL TO BE OPERATED BY:	CONTRACTOR - AGI
MAIN STREET:	SIMCOE C.R. 10	TIMING DEVELOPED BY: MR	RC – DAVE THOMPSON
DATE TIMING	DEVELOPED : July 28, 2008		

GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MUNICIPAL TRAFFIC OFFICE.

OPERATIONAL	1	Emergency pre-emption for Ø2 (Eastbound) and Ø6 (Westbound) traffic
NOTES:	2	
	3	

FUNCTION/OPERATION			I	MOVEME	NT (FAZE))		
	Ø1 (NOT USED)	Ø2 EB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 NBD 14 th LINE	Ø5 (NOT USED)	Ø6 WB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 (NOT USED)
PERMITTED MOVEMENTS		Х		Х		Х		
RED LOCK								
AMBER LOCK								
VEHICLE RECALL		X				X		
PEDESTRIAN RECALL								
VEHICLE MAX RECALL								
OVERLAP A								
OVERLAP B								
PROT/PERM LEFT TURN ARROW					X			
PROT/PERM FAST FLASH ADVANCE								
GREEN								
FULLY PROTECTED LEFT TURN								
DISPLAY AMBER ON STARTUP								
PLACE PEDESTRIAN CALLS ON STARTUP								
PLACE VEHICLE CALLS ON STARTUP		Х		X		Х		
REST IN WALK								
MOVEMENTS MUST GAP OUT								
SIMULTANEOUSLY								
DOUBLE ENTRY								
EXCLUSIVE (SEPARATE) PHASING BY APPROACH								

Page 1 of 2

INTERVAL TIMES			N	IOVEME	NT (FAZE	5)		
	Ø1 (NOT USED)	Ø2 EB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 NBD 14 th LINE	Ø5 (NOT USED)	Ø6 WB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 (NOT USED
WALK	-	7.0	-	7.0	-	7.0	-	-
FLASHING DON'T WALK	-		-		-	-	-	-
MINIMUM GREEN	-	7.0	-	7.0	-	7.0	-	-
VEHICLE EXTENSION (PASSAGE TIME)	-	5.0	-	3.0	-	5.0	-	-
MAXIMUM GREEN (INCLUDES MIN GREEN)	-	53.0	-	26.0	-	53.0	-	-
MAXIMUM GREEN 2 (ALT. MAX. GREEN)	-	-	-		-	-	-	-
AMBER CLEARANCE	-	5.0	-	3.4	-	5.0	-	-
ALL RED CLEARANCE	-	2.2	-	2.2	-	2.2	-	-
MAX GAP (VEH. EXTENSION)	-	5.0	-	3.0	-	5.0	-	-
MIN GAP (VEH. EXTENSION)	-	5.0	-	3.0	-	5.0	-	-
REDUCE GAP BY	-		-		-	-	-	-
REDUCE GAP EVERY	-			-	-	-	-	-
MAX INITIAL GREEN TIME (VARIABLE INIT)	-							

DETECTOR SETUP – N/A	N/A MOVEMENT (FAZE)								
	WB LEFT	EB THRU	SB LEFT	NB RIGHT	EB LEFT	WB THRU	NB LEFT	SB THRU	
DELAY TIME ON PRESENCE DETECTION	-	-	-	5.0	-	-	-	-	
DELAY TIME ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-	
CARRY-OVER ON PRESENCE DETECTION	-	-	-	-	-	-	-	-	
CARRY-OVER ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-	

PRE-EMPTION	MOVEMENT (FAZE)											
	WB LEFT	EB THRU	SB LEFT	NB THRU	EB LEFT	WB THRU	NB LEFT	SB THRU				
PRE-EMPT HOLD PHASE	-	Х	-	-	-	Х	-	-				
PRE-EMPT EXIT PHASE	-	Х	-	-	-	Х	-	-				
MIN. HOLD TIME	-	10.0	-	-	-	10.0	-	-				
MAX. HOLD TIME	-	60.0	-	-	-	60.0	-	-				
MIN. PEDESTRIAN CLEARANCE	-	0.0	-	-	-	0.0	-	-				
	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-				
	-	-	-	-	-	-	-	-				
	-	-	- 1	-	-	-	-	-				

TIME OF DAY OPERATIONS				DAY OF WEEK						MOVEMENT (FAZE)								
	START	END	S	М	Т	W	Т	F	S	Ø1 (NOT USED)	Ø2 EB THRU (C.R. 10)	Ø3 (NOT USED)	Ø4 NBD 14 th LINE	Ø5 (NOT USED)	Ø6 WB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 (NOT USED)	
PHASE OMIT										-		Х		Х		Х		
MAX RECALL										-	-	-	-	-	-	-	-	
PED RECALL										-	-	-	-	-	-	-	-	
MIN RECALL										-	Х	-	-	-	X	-	-	
MAX GREEN 2										-	-	-	-	-	-	-	-	
REST IN WALK											-		-		-		-	
AMBER LOCK										-	-	-	-	-	-	-	-	
RED LOCK										-	-	-	-	-	-	-	-	

REVISED GENERIC SIGNAL TIMING SHEET

ACTUATED	Х	PRE-TIM	IED		SIGNAL TO BE MAINTAINE	D BY:	CONTRACTOR - AGI
LOCATION:		COE C.R. 10 / INI COE C.R. 10 (TO)			SIGNAL TO BE OPERATED	BY:	CONTRACTOR - AGI
MAIN STREET:		SIMCOE C.R. 10	/ IND	USTRIAL DR.	TIMING DEVELOPED BY:	MRC – I	DAVE THOMPSON
DATE TIMING	DEV	ELOPED :	July	28, 2008			

GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MUNICIPAL TRAFFIC OFFICE.

OPERATIONAL 1 If serving F2 or F6, the signal must cycle to F4 or F8 prior to serving a call for F1 NOTES: 2 F1 shall timeout concurrently with F6 3

Emergency pre-emption for Ø2 (Eastbound) and Ø6 (Westbound) traffic

FUNCTION/OPERATION]	MOVEME	NT (FAZE))		
	Ø1 WB LEFT (C.R. 10)	Ø2 EB THRU (INDUSTRIAL)	Ø3 (NOT USED)	Ø4 NBD LEFT (C.R. 10)	Ø5 (NOT USED)	Ø6 WB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 (NOT USED)
PERMITTED MOVEMENTS	Х	X		Х		Х		
RED LOCK								
AMBER LOCK								
VEHICLE RECALL		X				X		
PEDESTRIAN RECALL								
VEHICLE MAX RECALL								
OVERLAP A								
OVERLAP B								
PROT/PERM LEFT TURN ARROW	Х							
PROT/PERM FAST FLASH ADVANCE								
GREEN								
FULLY PROTECTED LEFT TURN								
DISPLAY AMBER ON STARTUP								
PLACE PEDESTRIAN CALLS ON STARTUP								
PLACE VEHICLE CALLS ON STARTUP	Χ	X		Χ		Χ		
REST IN WALK		X						
MOVEMENTS MUST GAP OUT								
SIMULTANEOUSLY								
DOUBLE ENTRY								
EXCLUSIVE (SEPARATE) PHASING BY APPROACH								

Page 1 of 2

INTERVAL TIMES			Ν	IOVEME	NT (FAZE	5)		
	Ø1 WB LEFT (C.R. 10)	Ø2 EB THRU (INDUSTRIAL)	Ø3 (NOT USED)	Ø4 NBD LEFT (C.R. 10)	Ø5 (NOT USED)	Ø6 WB THRU (C.R. 10)	Ø7 (NOT USED)	Ø8 (NOT USED)
WALK	-	7.0	-	7.0	-	7.0	-	-
FLASHING DONT WALK	-	10.0	-	14.0	-	-	-	-
MINIMUM GREEN	7.0	7.0	-	7.0	-	7.0	-	-
VEHICLE EXTENSION (PASSAGE TIME)	3.0	5.0	-	3.0	-	5.0	-	-
MAXIMUM GREEN (INCLUDES MIN GREEN)	11.0	20.0	-	24.0	-	20.0	-	-
MAXIMUM GREEN 2 (ALT. MAX. GREEN)	13.0	33.0	-	29.0	-	33.0	-	-
AMBER CLEARANCE	3.0	3.8	-	3.8	-	3.8	-	-
ALL RED CLEARANCE	-	2.2	-	2.2	-	2.2	-	-
MAX GAP (VEH. EXTENSION)	-	-			-	-		-
MIN GAP (VEH. EXTENSION)	-	-	-		-	-	-	-
REDUCE GAP BY	-	-	-		-	-	-	-
REDUCE GAP EVERY								-
MAX INITIAL GREEN TIME (VARIABLE INIT)					-			

DETECTOR SETUP – N/A			Μ	OVEME	NT (FAZ	E)		
	WB LEFT	EB THRU	SB LEFT	NB THRU	EB LEFT	WB THRU	NB LEFT	SB THRU
DELAY TIME ON PRESENCE DETECTION	-	-	-	-	-	-	-	-
DELAY TIME ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-
CARRY-OVER ON PRESENCE DETECTION	-	-	-	-	-		-	-
CARRY-OVER ON LONG DISTANCE DETECTION	-	-	-	-	-	-	-	-

PRE-EMPTION			Μ	OVEME	NT (FAZ	E)		
	WB LEFT	EB THRU	SB LEFT	NB THRU	EB LEFT	WB THRU	NB LEFT	SB THRU
PRE-EMPT HOLD PHASE	-	Х	-	-	-	Х	-	-
PRE-EMPT EXIT PHASE	-	Х	-	-	-	Х	-	-
MIN. HOLD TIME	-	10.0	-	-	-	10.0	-	-
MAX. HOLD TIME	-	60.0	-	-	-	60.0	-	-
MIN. PEDESTRIAN CLEARANCE	-	0.0	-	-	-	0.0	-	-
	-	-	- 1	-	-	-	-	-
	-		- 1	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	- 1	-	-	-	-	-

TIME OF DAY OPERATIONS				DA	Y (OF V	WE	EK				Μ	OVEME	NT (FAZ	ZE)		
	START	END	S	М	Т	W	Т	F	S	Ø1 WB LEFT	Ø2 EB THRU (INDUSTRIAL)	Ø3 (NOT USED)	Ø4 NB LEFT	Ø5 (NOT USED)	Ø6 wb thru	Ø7 (NOT USED)	Ø8 (NOT USED)
PHASE OMIT										-		Х		Х		Х	
MAX RECALL										-	-	-	-	-	-	-	-
PED RECALL											-	-	-	-	-	-	-
MIN RECALL											Х	-	-	-	Х	-	-
MAX GREEN 2	15:00	16:30		Х	Х	Х	Х	Х	Х	Х	X	-	Х	-	Х	-	-
REST IN WALK											-		-		-		-
AMBER LOCK											-	-	-	-	-		-
RED LOCK										-	-	-	-	-	-	-	-

Page 20-1

PROGRAM LOG

20. EPAC300 PROGRAM LOG		
Prepared By	Date:	//
Approved By	Date:	//
Intersection Name		

UTILITIES - AGCESS

Access Code			15			Codes	: Fou	Digits	s (0000) s	- 9999))						
UNIKNIOWNI	DO1 H	CIN	1	Sec. 1	66. S.S.S.	and and	a.c.a.	1 inter	J. A. la	and St.	1340	1615		1975 -	an Santar		
		場合		PH/	șse da	TA-V	EHICI	BIL	1162	a sh				NGROAD		tin in	
Basic Times	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Minimum Green		0	25	P	8	\mathcal{D}			<u>></u>						—		
Passage Time . [1.9			0		50	0.		<u> </u>	·		—			—	—		
Maximum No 1	:	0	30	0	18	0-	<u> </u>		·	—	—			_	—	—	
Maximum No 2		0_	30	0	18	0_			<u> </u>		—			—	—	—	—
Yellow Change . /.14	?:	30	60	30	46		<u>30</u> .	30	X				—	—	—	—	
Red Clearance .1.1.0	?:	0	20	0	20	0	- N			—	<u> </u>		—		-	—	-
ensity Times	Phase:	1	•2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Seconds/Actuation	•••••••••••••••••••••••••••••••••••••••			_						—				—	—		
Maximum Initial										8						—	
Time B4 Reduction										—				—		—	
Cars B4 Reduction		8								2		1					
Time To Reduce									—		—			—		—	
Minimum Gap		_												—	—		
<u>Pedestrian Times</u> Walk	Phase:	F 1	2	3	4 10	DESTR 5	6	7	8	ontro 9	DL 10	11	12	13	14	15	16
Pedestrian Clearan	ce:				10					—				—	—	—	
Pedestrian Control Flashing Walk	Phase:	1	2	3	- 4	5	6	7	8	9	10	11	12	13	14 	15	16
Extended Pedestria																	
Act Rest in Walk		11															
			Pe	destri	ian Con	trol Ent	ry: "1"	= Yes	s & "O"	= No							
				PHA	se da	TĄ - VI	EHICL	E CO	NTRO		antie Martie						
Veh <u>Control</u>	Phase:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Non-Lock Memory	•														_		_

Veh Control	Phase:	1	2	3	4	5	6	1	8	9	10	11	12	15	14	10	10
Non-Lock Memory	:		<u> </u>		1	·				—			—		—		
Dual Entry	:		1									—	—			—	—
Last Car Passage		_			_							—	—		—		
Conditional Service	:		_				<u> </u>									—	—
No Simultaneous G	ар:			. 				<u>, </u>				—	—		<u> </u>	—	

Vehicle Control Entry: "1" = Yes & "0" = No

1

P TPC		les	PROG	PROGRAMMED BY:	- 		IN LEASE OF ION NAME. 211 ICOL BCA ICOUNT & SUPCE, KATTON NATE. PROGRAMMED BY:	- 21177	10111		DENCEDAN DATE:	ATE:	
			CONTI	CONTROLLER SERIAL	ERIAL #_	CONTROLLER SERIAL # LMJ $Record (3)$ (3) INTERSECTION TELEPHONE (IF DIRECT DIAL);	BCCC (1500 DIRECT DIAL):	15099895)):		SEC	SECURITY CODE		
			SECTION:	ON:						ADD	ADDRESS:		
		đ	PHASE (ON/OFF)	(OFF)						PHAS	PHASE TIMINGS		
INIERVAL	- 2	9	4	8	~	80			2	•	5	0	7 8
MEMORY							MIN GREEN	N	29	12	1	29	12
EXT RECALL			-				PASSAGE	ш	7	3.5,			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MAX RECALL	ON			PI0			YELLOW	>	5.0	4.0		5.0	10
PED RECALL	ON			CN			RED		1.0	3.0		2.0	2.0
CNAI	CN			CN			MAXI		30)or	30	30	5
CNAII							MAX II		30	30		30	30
FL WALK							WALK		=	[]		11	13
SOFT RECALL							PED CLEAR	AR	<i>5</i> ′	ς.		5	5
WALK REST	0M			PUN PUN	t		SIA		0	0		0	0
COND PED						-	ABL		0	Ô		0	0
FWTPCL							Ĕ		0	0		0	0
							MIN GAP	<u>а</u>	0	3.5		0	30.
							MAX VI		0	0 I	· .	0	0
							MAX EXT		0	0		0	0
							AUTO MAX	X	0	Ó		0	0
							AMR		0	0		0	0
		DUACEC LICED	IISED							INITIAL LZF/FL ACH	H		
	1 2	E	-	9 9	2	e 0		IN	INITIALIZE	ENTER FLASH	H EDTT FLASH	ASH	INTERVAL
ON/OFF	ON		NO	この		NO	RING 1 PHASE	ASE 2		0			CODES: 1 * RED
SFOLIENCE	2	1 = SEQ,	2= DUAL	SEQ, 2 = DUAL RNG, 3-7 = SPEC.	SPEC, 8 =	8 = LEAD/LAG	RING 2 PHASE	ASE 6		0	0	10	2 * YELLOW
LEAD/LA	codes (Y USED IF '8'	WAS ENT	TERED FOR	SEQUENC	Ē	INTERVAL						
PAIRS	1 AND 2	3 AND 4	4	S AND 6	~	7 AND 8			POWER	POWER UP/RESTART TIMINGS	TIMINGS		
CODE							NINIM	MINIMUM FLASH	0		(D-127	(D-127 SECONDS)	
	I FADM AG CODES . 1 * NO REV. 2 * ALWAYS REV, 3 * REV BY C/S/O OR CLOCKINPUT	2 = ALWAYS	3 REV. 3 =	REV BY C/S/	O OR CLO	CKINPUT	1 ST ALL RED	1 ST ALL RED AFTER FLASH					

ſ

D. C.

June 2013 Signal Timing Queen Street and Laverock Street, Tottenham

Phase Vehicle Basic Timing Data

June, 2013				Pha	sing			
Function	1	2	3	4	5	6	7	8
Min Green		15		8	8	15		8
Passage		5.0		2.0	2.0	5.0		2.0
Time								
Max #1		45		19	9	31		19
Max #2		45		19	9	31		19
Yellow	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Clearance								
Red		2.0		2.0	2.0	2.0		2.0
Clearance								

Phase Pedestrian Timing Data

June, 2013				Pha	sing			
Function	1	2	3	4	5	6	7	8
Walk		8		7		8		7
Ped Clear		9		8		9		8
Flashing								
Walk								
Extended								
Ped Clear								

November		Pha	sing	
22, 2012			-	
Function	2	<mark>4</mark>	<mark>6</mark>	8
Min Green	8	8	<mark>8</mark>	<mark>8</mark>
Passage	<mark>30</mark>	<mark>30</mark>	<mark>30</mark>	30
Time				
Max #1	<mark>33</mark>	<mark>18</mark>	<mark>33</mark>	<mark>18</mark>
Max #2	<mark>33</mark>	<mark>18</mark>	<mark>33</mark>	<mark>18</mark>
Yellow	<mark>4.0</mark>	<mark>4.0</mark>	<mark>4.0</mark>	<mark>4.0</mark>
Clearance				
Red	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>	<mark>3.0</mark>
Clearance				

November 2012 (Revised) Signal Timing Queen Street and Mill Street, Tottenham

65 second total cycle

Appendix C: Level of Service Definitions

LEVEL OF SERVICE DEFINITIONS AT SIGNALIZED INTERSECTIONS⁽¹⁾

Level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. Specifically, level-of-service (LOS) criteria are stated in terms of the average control delay per vehicle, typically for a 15-min analysis period. The criteria are given in the table below. Delay may be measured in the field or estimated using software such as Highway Capacity Software. Delay is a complex measure and is dependent upon a number of variables, including quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

Level of Service	Features	Control Delay per vehicle (sec)
А	LOS A describes operations with very low delay, up to 10 sec per vehicle. This level of service occurs when progression is extremely favourable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.	≤ 10
В	LOS B describes operations with delay greater than 10 and up to 20 sec per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of average delay.	$> 10 \text{ and } \le 20$
С	LOS C describes operations with delay greater than 20 and up to 35 sec per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.	> 20 and ≤ 35
D	LOS D describes operations with delay greater than 35 and up to 55 sec per vehicle. At level D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavourable progression, long cycle lengths, of high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.	> 35 and ≤ 55
E	LOS E describes operations with delay greater than 55 and up to 80 sec per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.	> 55 and ≤ 80
F	LOS F describes operations with delay in excess of 80 sec per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. It may also occur at high v/c ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.	> 80

(1) Highway Capacity Manual 2000

J:\General Office\Appendix\Capacity Appendix\Signalized\hcs signalized_delay.doc

LEVEL OF SERVICE DEFINITIONS AT UNSIGNALIZED INTERSECTIONS⁽¹⁾

The level of service criteria for unsignalized intersections are given in the table below. As used here, total delay is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position. The average total delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation.

Level of Service	Features	Average Total Delay (sec/veh)
А	Little or no traffic delay occurs. Approaches appear open, turning movements are easily made, and drivers have freedom of operation.	≤10
В	Short traffic delays occur. Many drivers begin to feel somewhat restricted in terms of freedom of operation.	$> 10 \text{ and } \le 15$
С	Average traffic delays occur. Operations are generally stable, but drivers emerging from the minor street may experience difficulty in completing their movement. This may occasionally impact on the stability of flow on the major street.	> 15 and \le 25
D	Long traffic delays occur. Motorists emerging from the minor street experience significant restriction and frustration. Drivers on the major street will experience congestion and delay as drivers emerging from the minor street interfere with the major through movements.	> 25 and ≤ 35
E	Very long traffic delays occur. Operations approach the capacity of the intersection.	$>$ 35 and \leq 50
F	Saturation occurs, with vehicle demand exceeding the available capacity. Very long traffic delays occur.	> 50

(1) Highway Capacity Manual 2000.

J:\Capacity Appendix\Unsignalized\hcs unsignalized_delay.doc

Appendix D: Detailed Synchro Reports

HCM Signalized Intersection Capacity Analysis 11: CR93/Penetanguishene Rd & Golf Link Rd/Vindin St

	≯	-	\mathbf{r}	1	+	•	1	1	1	1	¥	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ę	1	۲	<u>††</u>	۴	٢	<u></u>	1
Volume (vph)	30	80	121	67	51	61	57	323	37	70	460	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0			7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00			1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.93			1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.97	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1723			1772	1547	1623	3539	1296	1750	3505	1463
Flt Permitted		0.93			0.50	1.00	0.44	1.00	1.00	0.52	1.00	1.00
Satd. Flow (perm)		1618			916	1547	758	3539	1296	966	3505	1463
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	35	94	142	79	60	72	67	380	44	82	541	28
RTOR Reduction (vph)	0	38	0	0	0	58	0	0	20	0	0	13
Lane Group Flow (vph)	0	233	0	0	139	14	67	380	24	82	541	15
Confl. Peds. (#/hr)	1					1	2		1	1		2
Heavy Vehicles (%)	3%	1%	2%	6%	2%	3%	11%	2%	22%	3%	3%	8%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2		2	6		6
Actuated Green, G (s)		18.2			18.2	18.2	56.5	51.3	51.3	56.9	51.5	51.5
Effective Green, q (s)		18.2			18.2	18.2	56.5	51.3	51.3	56.9	51.5	51.5
Actuated q/C Ratio		0.19			0.19	0.19	0.60	0.55	0.55	0.61	0.55	0.55
Clearance Time (s)		7.0			7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Vehicle Extension (s)		3.0			3.0	3.0	2.5	4.0	4.0	2.5	4.0	4.0
Lane Grp Cap (vph)		313			177	299	503	1933	708	630	1922	802
v/s Ratio Prot							0.01	0.11		c0.01	c0.15	
v/s Ratio Perm		0.14			c0.15	0.01	0.07	••••	0.02	0.07		0.01
v/c Ratio		0.74			0.79	0.05	0.13	0.20	0.03	0.13	0.28	0.02
Uniform Delay, d1		35.7			36.0	30.8	7.8	10.8	9.8	7.6	11.3	9.7
Progression Factor		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		9.3			20.1	0.1	0.1	0.2	0.1	0.1	0.4	0.0
Delay (s)		44.9			56.1	30.9	7.9	11.1	9.9	7.7	11.7	9.7
Level of Service		D			E	C	A	В	A	A	В	A
Approach Delay (s)		44.9			47.5			10.5			11.1	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	ty ratio		0.39									
Actuated Cycle Length (s)			93.9	S	um of losi	time (s)			19.0			
Intersection Capacity Utilization	on		56.6%		CU Level of)		В			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - AM KL

Synchro 8 Report Page 1

7/18/2013

HCM Signalized Intersection Capacity Analysis 12: CR93/Penetanguishene Rd & PA-RCS/PA-CDN Tire

۰. ٦ * \mathbf{r} Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR †† †† Lane Configurations Ъ î. 89 455 518 Volume (vph) 32 17 26 71 55 46 8 8 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 7.0 6.0 6.0 6.0 3.5 7.0 7.0 3.5 7.0 7.0 1.00 1.00 Lane Util. Factor 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 Frpb, ped/bikes 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.90 1.00 0.88 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 1.00 Flt Protected 0.95 0.95 0.95 1 00 1 00 0.95 Satd, Flow (prot) 1750 1575 1805 1613 1752 3406 1580 1805 3505 1583 Flt Permitted 0.49 1.00 0.74 1.00 0.29 1.00 1.00 0.34 1.00 1.00 Satd. Flow (perm) 897 1575 1399 1613 535 3406 1580 651 3505 1583 Peak-hour factor, PHF 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 58 Adj. Flow (vph) 41 10 22 89 10 33 113 576 90 70 656 RTOR Reduction (vph) 0 17 29 0 59 0 38 0 0 0 0 0 656 Lane Group Flow (vph) 113 576 41 15 0 89 14 0 31 70 20 Confl. Peds. (#/hr) 2 2 1 1 Heavy Vehicles (%) 13% 6% 0% 13% 0% 3% 6% 0% 0% 2% 3% 3% Turn Type pm+pt NA Perm NA pm+pt NA Perm pm+pt NA Perm Protected Phases 7 4 8 5 2 1 6 Permitted Phases 4 8 2 2 6 6 Actuated Green, G (s) 26.5 26.5 14.1 14.1 75.5 40.9 40.9 75.5 40.9 40.9 Effective Green, g (s) 26.5 26.5 14.1 14.1 75.5 40.9 40.9 75.5 40.9 40.9 Actuated g/C Ratio 0.22 0.22 0.12 0.12 0.64 0.35 0.35 0.64 0.35 0.35 Clearance Time (s) 7.0 6.0 6.0 6.0 3.5 7.0 7.0 3.5 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 4.0 3.0 4.0 4.0 3.0 4.0 Lane Grp Cap (vph) 239 352 166 191 696 1175 545 751 1209 546 v/s Ratio Prot c0.01 0.01 0.01 c0.05 0.17 0.03 c0.19 v/s Ratio Perm c0.06 0.02 0.03 0.01 0.03 0.06 v/c Ratio 0.17 0.04 0.54 0.07 0.16 0.49 0.06 0.09 0.54 0.04 Uniform Delay, d1 36.8 36.1 49.1 46.4 9.0 30.6 25.9 8.5 31.3 25.7 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 0.0 33 02 0.5 1.5 0.2 0.2 1.8 0.1 52.4 32.0 33.0 25.9 Delay (s) 37.1 36.1 46.6 9.5 26.1 8.7 Level of Service D D D D С С С С Α A Approach Delay (s) 36.7 28.1 30.3 50.5 Approach LOS D D С С Intersection Summary HCM 2000 Control Delay 31.1 HCM 2000 Level of Service С 0.39 HCM 2000 Volume to Capacity ratio 118.5 Actuated Cycle Length (s) Sum of lost time (s) 23.5 Intersection Capacity Utilization 67.5% ICU Level of Service С Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 93 Baseline - Existing - AM KL

Synchro 8 Report Page 2

7/18/2013

n

HCM Signalized Intersection Capacity Analysis 13: CR93/Penetanguishene Rd & PA-Hugel Ave/Hugel Ave

	۶	-	\mathbf{r}	4	+	×	1	t	1	5	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4Î		٦	•	7	٦	- † †	7	٦	- † †	1
Volume (vph)	23	23	1	84	28	133	4	418	133	156	462	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		6.0	6.0	6.0	7.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1804	1889		1732	1900	1563	1805	3471	1583	1752	3438	1615
Flt Permitted	0.61	1.00		0.74	1.00	1.00	0.45	1.00	1.00	0.37	1.00	1.00
Satd. Flow (perm)	1165	1889		1347	1900	1563	848	3471	1583	675	3438	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	27	27	1	100	33	158	5	498	158	186	550	35
RTOR Reduction (vph)	0	1	0	0	0	139	0	0	104	0	0	11
Lane Group Flow (vph)	27	27	0	100	33	19	5	498	54	186	550	24
Confl. Peds. (#/hr)	1		2	2		1						
Heavy Vehicles (%)	0%	0%	0%	4%	0%	2%	0%	4%	2%	3%	5%	0%
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		6
Actuated Green, G (s)	25.4	25.4		15.1	15.1	15.1	43.0	43.0	43.0	87.6	87.6	87.6
Effective Green, g (s)	25.4	25.4		15.1	15.1	15.1	43.0	43.0	43.0	87.6	87.6	87.6
Actuated g/C Ratio	0.20	0.20		0.12	0.12	0.12	0.34	0.34	0.34	0.70	0.70	0.70
Clearance Time (s)	3.0	6.0		6.0	6.0	6.0	7.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	1.0	1.0	1.0	3.0	1.0	1.0
Lane Grp Cap (vph)	271	380		161	227	187	289	1184	540	824	2390	1122
v/s Ratio Prot	c0.01	0.01			0.02			c0.14		0.07	c0.16	
v/s Ratio Perm	0.01			c0.07		0.01	0.01		0.03	0.08		0.02
v/c Ratio	0.10	0.07		0.62	0.15	0.10	0.02	0.42	0.10	0.23	0.23	0.02
Uniform Delay, d1	40.8	40.7		52.7	49.7	49.4	27.5	31.9	28.3	7.1	7.0	5.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.1		7.2	0.3	0.2	0.1	1.1	0.4	0.6	0.2	0.0
Delay (s)	41.0	40.8		60.0	50.0	49.6	27.6	33.0	28.7	7.7	7.2	6.0
Level of Service	D	D		E	D	D	С	С	С	А	Α	A
Approach Delay (s)		40.9			53.2			31.9			7.3	
Approach LOS		D			D			С			А	
Intersection Summary												
HCM 2000 Control Delay			25.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.35									
Actuated Cycle Length (s)			126.0		um of los				19.0			
Intersection Capacity Utiliza	ation		70.2%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - AM KL

Synchro 8 Report Page 3

7/18/2013

HCM Signalized Intersection Capacity Analysis 14: CR93/Penetanguishene Rd & Mountainview Mall/Huronia Mall

											10/2013	
	≯	→	\mathbf{r}	1	+	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્સ	1		4		ሻ	- † †	1	ሻ	- † †	7
Volume (vph)	15	19	25	39	20	52	35	528	40	70	489	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		2.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor		1.00	1.00		1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.99		0.99		1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes		1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85		0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.98	1.00		0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1856	1530		1698		1752	3505	1615	1805	3406	1615
Flt Permitted		0.80	1.00		0.87		0.32	1.00	1.00	0.41	1.00	1.00
Satd. Flow (perm)		1513	1530		1496		597	3505	1615	774	3406	1615
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	18	23	30	48	24	63	43	644	49	85	596	12
RTOR Reduction (vph)	0	0	26	0	56	0	0	0	14	0	0	8
Lane Group Flow (vph)	0	41	4	0	79	0	43	644	35	85	596	4
Confl. Peds. (#/hr)	5		3	3		5						
Heavy Vehicles (%)	0%	0%	4%	6%	0%	0%	3%	3%	0%	0%	6%	0%
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		4			8		5	2			6	
Permitted Phases	4	-	4	8	Ū		2	2	2	6	v	6
Actuated Green, G (s)		9.1	9.1	Ű	9.1		54.9	54.9	54.9	23.8	23.8	23.8
Effective Green, g (s)		9.1	9.1		9.1		54.9	54.9	54.9	23.8	23.8	23.8
Actuated q/C Ratio		0.12	0.12		0.12		0.71	0.71	0.71	0.31	0.31	0.31
Clearance Time (s)		6.0	6.0		6.0		2.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)		3.0	3.0		3.0		1.0	1.0	1.0	1.0	1.0	1.0
Lane Grp Cap (vph)		178	180		176		862	2499	1151	239	1052	499
v/s Ratio Prot		170	100		170		0.02	c0.18	1131	233	c0.18	433
v/s Ratio Perm		0.03	0.00		c0.05		0.02	00.10	0.02	0.11	00.10	0.00
v/c Ratio		0.03	0.00		0.45		0.02	0.26	0.02	0.36	0.57	0.00
Uniform Delay, d1		30.8	30.0		31.6		3.5	3.9	3.2	20.6	22.3	18.4
Progression Factor		1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.7	0.0		1.00		0.1	0.2	0.0	4.1	2.2	0.0
Delay (s)		31.4	30.1		33.5		3.6	4.1	3.3	24.7	24.5	18.4
Level of Service		51.4 C	30.1 C		33.5 C		3.0 A	4.1 A	3.3 A	24.7 C	24.5 C	10.4 B
Approach Delay (s)		30.9	U		33.5		A	4.0	A	U	24.4	D
Approach LOS		30.9 C			55.5 C			4.0 A			24.4 C	
Intersection Summary												
HCM 2000 Control Delay			16.3	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.40									
Actuated Cycle Length (s)			77.0	S	um of lost	time (s)			15.0			
Intersection Capacity Utilization	1		78.9%		U Level o		e		D			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - AM KL

Synchro 8 Report Page 4

7/18/2013

	٨		,		+					`	1	,
		-	•	1	•			Ť	1	*	÷	*
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	ሻ	ĥ		٦	↑	1	٦	- ††	7	٦	††	1
/olume (vph)	129	142	30	46	77	120	23	404	65	131	365	10
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Fotal Lost time (s)	3.0	3.0		3.0	3.0	3.0	7.0	7.0	7.0	7.0	7.0	7.
ane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.0
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.8
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.0
Satd. Flow (prot)	1752	1803		1687	1827	1482	1656	3406	1538	1687	3343	156
Flt Permitted	0.70	1.00		0.47	1.00	1.00	0.49	1.00	1.00	0.47	1.00	1.0
Satd. Flow (perm)	1284	1803		843	1827	1482	862	3406	1538	838	3343	156
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.8
Adj. Flow (vph)	157	173	37	56	94	146	28	493	79	160	445	12
RTOR Reduction (vph)	0	15	0	0	0	115	0	0	31	0	0	5
ane Group Flow (vph)	157	195	0	56	94	31	28	493	48	160	445	7
Heavy Vehicles (%)	3%	1%	10%	7%	4%	9%	9%	6%	5%	7%	8%	3%
Furn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perr
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2		2	6		
Actuated Green, G (s)	12.1	12.1		12.1	12.1	12.1	34.9	34.9	34.9	34.9	34.9	34.
Effective Green, g (s)	12.1	12.1		12.1	12.1	12.1	34.9	34.9	34.9	34.9	34.9	34.
Actuated g/C Ratio	0.21	0.21		0.21	0.21	0.21	0.61	0.61	0.61	0.61	0.61	0.6
Clearance Time (s)	3.0	3.0		3.0	3.0	3.0	7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	4.0	4.0	4.0	3.0	3.0	3.0
ane Grp Cap (vph)	272	382		178	387	314	527	2085	941	513	2046	96
/s Ratio Prot		0.11			0.05			0.14			0.13	
/s Ratio Perm	c0.12			0.07		0.02	0.03		0.03	c0.19		0.0
//c Ratio	0.58	0.51		0.31	0.24	0.10	0.05	0.24	0.05	0.31	0.22	0.0
Jniform Delay, d1	20.2	19.8		18.9	18.6	18.1	4.4	5.0	4.4	5.3	4.9	4.
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
ncremental Delay, d2	3.0	1.2		1.0	0.3	0.1	0.2	0.3	0.1	1.6	0.2	0.
Delay (s)	23.1	21.0		20.0	19.0	18.2	4.6	5.3	4.5	6.9	5.2	4.
evel of Service	C	C		B	B	B	A	A	A	A	A	
Approach Delay (s)	Ū	21.9		-	18.8	-		5.1			5.5	
Approach LOS		C			B			A			A	
ntersection Summary												
ICM 2000 Control Delay			10.4	н	CM 2000	Level of S	Service		В			
ICM 2000 Volume to Capa	city ratio		0.38	11	2.11 2000	20101010	0011100		5			
Actuated Cycle Length (s)			57.0	S.	um of lost	time (s)			10.0			
ntersection Capacity Utiliza	ation		66.9%			of Service			10.0 C			
Analysis Period (min)			15	10	C LOVEI (v			

Simcoe County TMP - CR 93 Baseline - Existing - AM KL

HCM Signalized Intersection Capacity Analysis 11: CR93/Penetanguishene Rd & Golf Link Rd/Vindin St

	≯	-	\mathbf{r}	1	-	٩.	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ę	1	٦	† †	1	۲	† †	1
Volume (vph)	42	90	134	51	84	77	171	678	67	111	588	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0			7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
Flpb, ped/bikes		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.93			1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1742			1837	1553	1786	3574	1599	1752	3539	1535
Flt Permitted		0.91			0.57	1.00	0.35	1.00	1.00	0.32	1.00	1.00
Satd. Flow (perm)		1602			1069	1553	653	3574	1599	598	3539	1535
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	48	102	152	58	95	88	194	770	76	126	668	45
RTOR Reduction (vph)	0	34	0	0	0	70	0	0	36	0	0	22
Lane Group Flow (vph)	0	268	0	0	153	18	194	770	40	126	668	23
Confl. Peds. (#/hr)	-		-	-			1					1
Heavy Vehicles (%)	0%	1%	1%	4%	0%	4%	1%	1%	1%	3%	2%	3%
Turn Type	Perm	NA	.,.	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	1 Unit	4		T OIIII	8	1 Onn	5	2	1 Onn	1	6	T OIIII
Permitted Phases	4	7		8	0	8	2	2	2	6	0	6
Actuated Green, G (s)	-	20.5		0	20.5	20.5	61.4	52.0	52.0	58.0	50.3	50.3
Effective Green, g (s)		20.5			20.5	20.5	61.4	52.0	52.0	58.0	50.3	50.3
Actuated g/C Ratio		0.21			0.21	0.21	0.62	0.52	0.52	0.58	0.51	0.51
Clearance Time (s)		7.0			7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Vehicle Extension (s)		3.0			3.0	3.0	2.5	4.0	4.0	2.5	4.0	4.0
Lane Grp Cap (vph)		331			220	320	511	1873	838	439	1794	778
v/s Ratio Prot		331			220	520	c0.04	c0.22	000	0.02	0.19	110
v/s Ratio Perm		c0.17			0.14	0.01	0.20	00.22	0.02	0.02	0.15	0.01
v/c Ratio		0.81			0.70	0.06	0.20	0.41	0.02	0.13	0.37	0.01
Uniform Delay, d1		37.5			36.5	31.6	8.4	14.3	11.5	9.4	14.9	12.2
Progression Factor		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		13.6			9.2	0.1	0.3	0.7	0.1	0.3	0.6	0.1
Delay (s)		51.0			45.6	31.7	8.7	15.0	11.6	9.6	15.5	12.3
Level of Service		D 51.0			40.0 D	51.7 C	0.7 A	13.0 B	B	3.0 A	13.5 B	12.J B
Approach Delay (s)		51.0			40.5	0	~	13.6	U	~	14.4	D
Approach LOS		D			40.5 D			B			B	
Intersection Summary												
HCM 2000 Control Delay			21.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	ty ratio		0.52									
Actuated Cycle Length (s)			99.2	S	um of losi	time (s)			19.0			
Intersection Capacity Utilization	on		63.9%		U Level)		В			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - PM KL

Synchro 8 Report Page 1

7/18/2013

HCM Signalized Intersection Capacity Analysis 12: CR93/Penetanguishene Rd & PA-RCS/PA-CDN Tire

	≯	-	$\mathbf{\hat{z}}$	1	+	×	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	f,		٦	4Î		٦	- † †	7	٦	††	ĩ
Volume (vph)	133	20	37	152	18	97	233	688	138	61	791	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	6.0		6.0	6.0		3.5	7.0	7.0	3.5	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	1.00	0.97	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.90		1.00	0.87		1.00	1.00	0.85	1.00	1.00	0.8
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1803	1664		1799	1638		1805	3539	1571	1804	3505	1615
Flt Permitted	0.43	1.00		0.71	1.00		0.17	1.00	1.00	0.23	1.00	1.00
Satd. Flow (perm)	822	1664		1352	1638		327	3539	1571	436	3505	1615
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.8
Adj. Flow (vph)	155	23	43	177	21	113	271	800	160	71	920	126
RTOR Reduction (vph)	0	29	0	0	95	0	0	0	77	0	0_0	7
Lane Group Flow (vph)	155	37	Ű	177	39	Ű	271	800	83	71	920	49
Confl. Peds. (#/hr)	2	01	2	2	00	2	211	000	4	4	020	-
Heavy Vehicles (%)	0%	0%	3%	0%	0%	0%	0%	2%	0%	0%	3%	0%
Turn Type	pm+pt	NA	0,0	Perm	NA	0,0	pm+pt	NA	Perm	pm+pt	NA	Pern
Protected Phases	7	4		T CHI	8		5	2	1 Cilli	1	6	T CIT
Permitted Phases	4	4		8	0		2	2	2	6	0	6
Actuated Green, G (s)	38.8	38.8		18.5	18.5		63.2	45.0	45.0	63.2	45.0	45.0
Effective Green, g (s)	38.8	38.8		18.5	18.5		63.2	45.0	45.0	63.2	45.0	45.0
Actuated g/C Ratio	0.33	0.33		0.16	0.16		0.53	0.38	0.38	0.53	0.38	0.38
Clearance Time (s)	7.0	6.0		6.0	6.0		3.5	7.0	7.0	3.5	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	4.0	4.0	3.0	4.0	4.0
		544					401			442		
Lane Grp Cap (vph)	379			211	255			1343	596		1331	613
v/s Ratio Prot	c0.05	0.02		0.40	0.02		c0.10	0.23	0.05	0.02	c0.26	0.07
v/s Ratio Perm	0.09			c0.13	0.45		0.26		0.05	0.06		0.0
v/c Ratio	0.41	0.07		0.84	0.15		0.68	0.60	0.14	0.16	0.69	0.08
Uniform Delay, d1	29.7	27.4		48.6	43.2		18.3	29.5	24.1	14.6	30.9	23.
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.7	0.1		24.2	0.3		8.8	2.0	0.5	0.8	3.0	0.
Delay (s)	30.4	27.5		72.8	43.5		27.1	31.4	24.6	15.3	33.9	23.8
Level of Service	С	С		E	D		С	С	С	В	С	(
Approach Delay (s)		29.5			60.2			29.6			31.6	
Approach LOS		С			E			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.69									
Actuated Cycle Length (s)			118.5		um of lost				23.5			
Intersection Capacity Utiliz	ation		68.9%	IC	U Level o	of Service	•		С			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - PM KL

Synchro 8 Report Page 2

7/18/2013

HCM Signalized Intersection Capacity Analysis 13: CR93/Penetanguishene Rd & PA-Hugel Ave/Hugel Ave

	٦	→	\mathbf{r}	1	+	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		۲	•	1	ľ	<u>†</u> †	1	ľ	^	1
Volume (vph)	98	65	7	142	89	234	1	679	172	243	710	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		6.0	6.0	6.0	7.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1804	1844		1772	1900	1594	1805	3539	1560	1805	3505	1615
Flt Permitted	0.60	1.00		0.70	1.00	1.00	0.34	1.00	1.00	0.19	1.00	1.00
Satd. Flow (perm)	1130	1844		1310	1900	1594	647	3539	1560	364	3505	1615
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	114	76	8	165	103	272	1	790	200	283	826	86
RTOR Reduction (vph)	0	4	0	0	0	226	0	0	117	0	0	28
Lane Group Flow (vph)	114	80	0	165	103	46	1	790	83	283	826	58
Confl. Peds. (#/hr)	1		8	8		1			3	3		
Heavy Vehicles (%)	0%	0%	14%	1%	0%	0%	0%	2%	1%	0%	3%	0%
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		6
Actuated Green, G (s)	37.5	37.5		21.3	21.3	21.3	42.9	42.9	42.9	75.5	75.5	75.5
Effective Green, g (s)	37.5	37.5		21.3	21.3	21.3	42.9	42.9	42.9	75.5	75.5	75.5
Actuated g/C Ratio	0.30	0.30		0.17	0.17	0.17	0.34	0.34	0.34	0.60	0.60	0.60
Clearance Time (s)	3.0	6.0		6.0	6.0	6.0	7.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	1.0	1.0	1.0	3.0	1.0	1.0
Lane Grp Cap (vph)	406	548		221	321	269	220	1204	531	556	2100	967
v/s Ratio Prot	c0.03	0.04			0.05			c0.22		c0.12	0.24	
v/s Ratio Perm	0.05			c0.13		0.03	0.00		0.05	0.19		0.04
v/c Ratio	0.28	0.15		0.75	0.32	0.17	0.00	0.66	0.16	0.51	0.39	0.06
Uniform Delay, d1	33.2	32.5		49.8	46.0	44.8	27.4	35.3	28.9	15.0	13.2	10.5
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.4	0.1		12.9	0.6	0.3	0.0	2.8	0.6	3.3	0.6	0.1
Delay (s)	33.6	32.6		62.6	46.6	45.1	27.5	38.1	29.6	18.3	13.8	10.6
Level of Service	С	С		E	D	D	С	D	С	В	В	В
Approach Delay (s)		33.2			50.7			36.4			14.6	
Approach LOS		С			D			D			В	
Intersection Summary												
HCM 2000 Control Delay			29.9	H	CM 2000	Level of	Service		С			_
HCM 2000 Volume to Capa	acity ratio		0.59									
Actuated Cycle Length (s)			126.0		um of lost	(.)			19.0			
Intersection Capacity Utiliz	ation		79.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 93 Baseline - Existing - PM

Synchro 8 Report Page 3

7/18/2013

HCM Signalized Intersection Capacity Analysis 14: CR93/Penetanguishene Rd & Mountainview Mall/Huronia Mall

14: CR93/Penetan						ll/Huro	nia Ma	all			7/*	18/2013
	≯	-	\mathbf{i}	4	←	•	1	1	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1		\$		ľ	<u>†</u> †	1	ľ	^	1
Volume (vph)	42	36	90	95	24	65	103	709	66	73	806	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		2.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor		1.00	1.00		1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.98		0.99		1.00	1.00	0.97	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00		0.99		1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85		0.95		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.97	1.00		0.97		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1845	1562		1725		1787	3539	1573	1801	3505	1580
Flt Permitted		0.73	1.00		0.79		0.16	1.00	1.00	0.35	1.00	1.00
Satd. Flow (perm)		1387	1562		1401		300	3539	1573	670	3505	1580
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	47	40	100	106	27	72	114	788	73	81	896	34
RTOR Reduction (vph)	47	40	80	001	31	0	0	007	24	0	090	23
Lane Group Flow (vph)	0	87	20	0	174	0	114	788	49	81	896	23
	9	0/	20	13	174	9	114	/00	49	4	090	1
Confl. Peds. (#/hr)	0%	0%	1%	2%	0%	0%	1%	2%	0%	0%	3%	0%
Heavy Vehicles (%)						U%						
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		4			8		5	2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)		15.1	15.1		15.1		48.9	48.9	48.9	25.0	25.0	25.0
Effective Green, g (s)		15.1	15.1		15.1		48.9	48.9	48.9	25.0	25.0	25.0
Actuated g/C Ratio		0.20	0.20		0.20		0.64	0.64	0.64	0.32	0.32	0.32
Clearance Time (s)		6.0	6.0		6.0		2.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)		3.0	3.0		3.0		1.0	1.0	1.0	1.0	1.0	1.0
Lane Grp Cap (vph)		271	306		274		613	2247	998	217	1137	512
v/s Ratio Prot							0.05	c0.22			c0.26	
v/s Ratio Perm		0.06	0.01		c0.12		0.07		0.03	0.12		0.01
v/c Ratio		0.32	0.06		0.63		0.19	0.35	0.05	0.37	0.79	0.02
Uniform Delay, d1		26.6	25.2		28.4		6.9	6.6	5.3	20.0	23.6	17.7
Progression Factor		1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.7	0.1		4.7		0.7	0.4	0.1	4.9	5.6	0.1
Delay (s)		27.2	25.3		33.1		7.6	7.0	5.4	24.8	29.2	17.8
Level of Service		С	С		С		А	А	А	С	С	В
Approach Delay (s)		26.2			33.1			7.0			28.4	
Approach LOS		С			С			A			С	
Intersection Summary												
HCM 2000 Control Delay			19.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	citv ratio		0.59						-			
Actuated Cycle Length (s)			77.0	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	tion		83.0%		CU Level		9		E			
Analysis Period (min)			15		20.01		-		_			
c Critical Lane Group			10									
s childer Land Group												

Simcoe County TMP - CR 93 Baseline - Existing - PM KL

Synchro 8 Report Page 4

	enetangı											
	≯	-	\mathbf{r}	1	+	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	ኘ	ĥ		٦	•	7	٦	^	7	٦	^	í
Volume (vph)	160	140	53	77	165	171	53	497	43	254	540	21
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	3.0	3.0		3.0	3.0	3.0	7.0	7.0	7.0	7.0	7.0	7.
ane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.0
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.9
-lpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
rt	1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.8
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.0
Satd. Flow (prot)	1784	1822		1719	1881	1530	1769	3539	1482	1736	3505	158
-It Permitted	0.54	1.00		0.48	1.00	1.00	0.42	1.00	1.00	0.44	1.00	1.0
Satd. Flow (perm)	1018	1822		875	1881	1530	781	3539	1482	804	3505	158
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.8
Adj. Flow (vph)	182	159	60	88	188	194	60	565	49	289	614	24
RTOR Reduction (vph)	0	26	0	0	0	148	0	0	20	0	0	10
ane Group Flow (vph)	182	193	0	88	188	46	60	565	29	289	614	14
Confl. Peds. (#/hr)	2		-			2	1				• • •	
Heavy Vehicles (%)	1%	0%	0%	5%	1%	4%	2%	2%	9%	4%	3%	0
Turn Type	Perm	NA	• / •	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perr
Protected Phases		4			8			2			6	
Permitted Phases	4			8	Ū	8	2	2	2	6	Ū	
Actuated Green, G (s)	13.6	13.6		13.6	13.6	13.6	33.4	33.4	33.4	33.4	33.4	33.
Effective Green, g (s)	13.6	13.6		13.6	13.6	13.6	33.4	33.4	33.4	33.4	33.4	33.
Actuated g/C Ratio	0.24	0.24		0.24	0.24	0.24	0.59	0.59	0.59	0.59	0.59	0.5
Clearance Time (s)	3.0	3.0		3.0	3.0	3.0	7.0	7.0	7.0	7.0	7.0	7.
/ehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	4.0	4.0	4.0	3.0	3.0	3.
ane Grp Cap (vph)	242	434		208	448	365	457	2073	868	471	2053	92
/s Ratio Prot	272	0.11		200	0.10	505	457	0.16	000	4/1	0.18	52
/s Ratio Perm	c0.18	0.11		0.10	0.10	0.03	0.08	0.10	0.02	c0.36	0.10	0.0
//c Ratio	0.75	0.44		0.42	0.42	0.13	0.13	0.27	0.02	0.61	0.30	0.1
Jniform Delay, d1	20.1	18.5		18.4	18.4	17.0	5.3	5.8	5.0	7.6	5.9	5.
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
ncremental Delay, d2	12.4	0.7		1.4	0.6	0.2	0.6	0.3	0.1	5.9	0.4	0.
Delay (s)	32.5	19.2		19.8	19.0	17.2	5.9	6.1	5.1	13.5	6.3	5.
evel of Service	02.0 C	13.2 B		10.0 B	13.0 B	ни.2 В	0.5 A	0.1 A	A	10.0 B	0.5 A	0.
Approach Delay (s)	0	25.3		5	18.4	D	~	6.0	~	D	8.0	
Approach LOS		20.0 C			B			A			A	
ntersection Summary												
ICM 2000 Control Delay			11.9	Н	CM 2000	Level of S	Service		В			
ICM 2000 Volume to Capa	citv ratio		0.65		2 2000				5			
ctuated Cycle Length (s)			57.0	S	um of losi	time (s)			10.0			
ntersection Capacity Utiliza	ition		75.8%			of Service			D			
Analysis Period (min) 15												

Simcoe County TMP - CR 93 Baseline - Existing - PM

Synchro 8 Report Page 5

Appendix D2: Detailed Synchro Reports for County Road 44

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

32: CR 44/Rama F								
	- 1	•	T.	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	٦	1	↑	1	٦	↑		
Volume (vph)	10	9	224	18	7	183		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1641	1455	1810	1615	1805	1810		
Fit Permitted	0.95	1.00	1.00	1.00	0.57	1.00		
Satd. Flow (perm)	1641	1455	1810	1615	1076	1810		
Peak-hour factor, PHF	0.70	0.70	0.70	0.70	0.70	0.70		
Adj. Flow (vph)	14	13	320	26	10	261		
RTOR Reduction (vph)	0	12	0	7	0	0		
Lane Group Flow (vph)	14	1	320	19	10	261		
Heavy Vehicles (%)	10%	11%	5%	0%	0%	5%		
Turn Type	NA	Perm	NA	Perm	Perm	NA		
Protected Phases	8	1 01111	2	1 Onn	1 Onn	6		
Permitted Phases	Ū	8	-	2	6	Ū		
Actuated Green, G (s)	2.0	2.0	37.1	37.1	37.1	37.1		
Effective Green, g (s)	2.0	2.0	37.1	37.1	37.1	37.1		
Actuated g/C Ratio	0.04	0.04	0.73	0.73	0.73	0.73		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	2.5	2.5	0.0	0.0	0.0	0.2		
	64	56	1314	1172	781	1314		
Lane Grp Cap (vph)	• •	00		11/2	/81			
//s Ratio Prot	c0.01	0.00	c0.18	0.04	0.04	0.14		
//s Ratio Perm	0.00	0.00	0.07	0.01	0.01	0.00		
v/c Ratio	0.22	0.01	0.24	0.02	0.01	0.20		
Jniform Delay, d1	23.8	23.6	2.3	1.9	1.9	2.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	1.3	0.0	0.4	0.0	0.0	0.3		
Delay (s)	25.0	23.6	2.8	2.0	2.0	2.6		
_evel of Service	С	С	Α	A	Α	A		
Approach Delay (s)	24.4		2.7			2.6		
Approach LOS	С		A			A		
ntersection Summary								
HCM 2000 Control Delay			3.6	H	CM 2000	Level of Service	A	
HCM 2000 Volume to Capa	city ratio		0.24					
Actuated Cycle Length (s)			51.1	S	um of lost	t time (s)	12.0	
Intersection Capacity Utiliza	ation		51.7%			of Service	A	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 33: CR 44/Rama Rd & Fern Resort Rd/CR45/Monck Rd

۰. ٦ • Movement EBL EBT WBL WBT WBR NBL NBT NBR SBL SBT FBR Lane Configurations 4 4 - 4 î. 74 12 327 201 Volume (vph) 3 1 0 15 29 2 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 7.0 7.0 7.2 7.2 7.2 7.2 7.2 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 1.00 1.00 0.98 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 Frt 0.98 1.00 1.00 0.85 1.00 1.00 Flt Protected 0.99 0.96 0.95 1.00 1.00 1.00 0.95 Satd, Flow (prot) 1264 1712 1357 1810 1476 1803 1858 Flt Permitted 0.87 0.75 0.60 1.00 1.00 0.52 1.00 Satd. Flow (perm) 1115 1341 853 1810 1476 982 1858 0.78 Peak-hour factor, PHF 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 37 258 Adj. Flow (vph) 95 0 19 15 419 5 4 RTOR Reduction (vph) 0 0 55 0 0 0 16 0 8 0 0 0 419 262 Lane Group Flow (vph) 59 21 0 6 0 0 0 15 5 0 Confl. Peds. (#/hr) 2 2 Heavy Vehicles (%) 67% 100% 14% 5% 0% 0% 33% 5% 0% 1% 67% 7% Turn Type Perm NA Perm NA Perm NA Perm Perm NA Protected Phases 4 8 2 6 Permitted Phases 4 8 2 2 6 Actuated Green, G (s) 8.5 8.5 29.4 29.4 29.4 29.4 29.4 Effective Green, g (s) 8.5 8.5 29.4 29.4 29.4 29.4 29.4 Actuated g/C Ratio 0.16 0.16 0.56 0.56 0.56 0.56 0.56 Clearance Time (s) 7.0 7.0 7.2 7.2 7.2 7.2 7.2 Vehicle Extension (s) 5.0 5.0 1.0 1.0 1.0 1.0 1.0 Lane Grp Cap (vph) 181 218 481 1021 832 554 1048 v/s Ratio Prot c0.23 0.14 v/s Ratio Perm 0.01 c0.04 0.02 0.01 0.01 v/c Ratio 0.04 0.27 0.03 0.41 0.03 0.01 0.25 Uniform Delay, d1 18.4 19.1 5.0 6.4 5.0 5.0 5.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 1.4 0.1 1.2 0.1 0.0 0.6 Delay (s) 18.5 20.5 5.2 5.1 5.0 7.7 6.3 Level of Service В С Α Α Α Α Α Approach Delay (s) 18.5 20.5 7.4 63 Approach LOS В С А Α Intersection Summary HCM 2000 Control Delay 8.9 HCM 2000 Level of Service А 0.38 HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 52.1 14.2 Sum of lost time (s) Intersection Capacity Utilization 67.8% ICU Level of Service С Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 44 Baseline - Existing - AM KL

Synchro 8 Report Page 1 Simcoe County TMP - CR 44 Baseline - Existing - AM KL

Synchro 8 Report Page 2

7/17/2013

34: Hwy 12/Atherly	7 Rd & C	R 44/F	Rama I	Rd					7/17/2013
	۶	+	Ļ	*	1	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	ኻኻ	<u></u>	≜ 1}		٢	1			
Volume (vph)	384	256	472	38	36	351			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0			
Lane Util. Factor	0.97	0.95	0.95		1.00	1.00			
Frt	1.00	1.00	0.99		1.00	0.85			
Flt Protected	0.95	1.00	1.00		0.95	1.00			
Satd. Flow (prot)	3273	3282	3399		1480	1509			
Flt Permitted	0.43	1.00	1.00		0.95	1.00			
Satd. Flow (perm)	1468	3282	3399		1480	1509			
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86			
Adj. Flow (vph)	447	298	549	44	42	408			
RTOR Reduction (vph)	0	0	12	0	0	128			
Lane Group Flow (vph)	447	298	581	0	42	280			
Heavy Vehicles (%)	7%	10%	4%	18%	22%	7%			
Turn Type	Perm	NA	NA		NA	Perm			
Protected Phases		2	6		4				
Permitted Phases	2					4			
Actuated Green, G (s)	20.5	20.5	20.5		11.5	11.5			
Effective Green, g (s)	20.5	20.5	20.5		11.5	11.5			
Actuated g/C Ratio	0.51	0.51	0.51		0.29	0.29			
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0			
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	752	1682	1741		425	433			
v/s Ratio Prot		0.09	0.17		0.03				
v/s Ratio Perm	c0.30					c0.19			
v/c Ratio	0.59	0.18	0.33		0.10	0.65			
Uniform Delay, d1	6.8	5.2	5.7		10.5	12.5			
Progression Factor	1.00	1.00	1.00		1.00	1.00			
Incremental Delay, d2	3.4	0.2	0.5		0.1	3.3			
Delay (s)	10.3	5.5	6.3		10.6	15.8			
Level of Service	В	Α	Α		В	В			
Approach Delay (s)		8.4	6.3		15.3				
Approach LOS		A	А		В				
Intersection Summary									
HCM 2000 Control Delay			9.4	H	CM 2000	Level of Serv	ice	A	
HCM 2000 Volume to Capa	city ratio		0.61						
Actuated Cycle Length (s)			40.0	Si	um of los	t time (s)		8.0	
Intersection Capacity Utiliza	ation		42.7%	IC	U Level	of Service		A	
Analysis Period (min)			15						
c Critical Lane Group									

Simcoe County TMP - CR 44 Baseline - Existing - AM

Synchro 8 Report Page 3

32: CR 44/Rama R								
	-	•	†	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ኘ	1	•	1	ሻ	↑		
Volume (vph)	59	16	213	40	18	284		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1719	1615	1827	1495	1805	1810		
Flt Permitted	0.95	1.00	1.00	1.00	0.59	1.00		
Satd. Flow (perm)	1719	1615	1827	1495	1120	1810		
Peak-hour factor, PHF	0.77	0.77	0.77	0.77	0.77	0.77		
Adj. Flow (vph)	77	21	277	52	23	369		
RTOR Reduction (vph)	0	18	0	19	0	0		
Lane Group Flow (vph)	77	3	277	33	23	369		
Heavy Vehicles (%)	5%	0%	4%	8%	0%	5%		
Turn Type	NA	Perm	NA	Perm	Perm	NA		
Protected Phases	8		2			6		
Permitted Phases		8		2	6			
Actuated Green, G (s)	5.9	5.9	31.1	31.1	31.1	31.1		
Effective Green, q (s)	5.9	5.9	31.1	31.1	31.1	31.1		
Actuated g/C Ratio	0.12	0.12	0.63	0.63	0.63	0.63		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	2.5	2.5	0.2	0.2	0.2	0.2		
Lane Grp Cap (vph)	206	194	1159	948	710	1148		
v/s Ratio Prot	c0.04		0.15	0.0		c0.20		
/s Ratio Perm	00.01	0.00	0.10	0.02	0.02			
v/c Ratio	0.37	0.00	0.24	0.02	0.02	0.32		
Uniform Delay, d1	19.8	19.0	3.9	3.3	3.3	4.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.8	0.0	0.5	0.1	0.1	0.7		
Delay (s)	20.7	19.0	4.3	3.4	3.4	4.8		
Level of Service	C	B	A.	0.1 A	A	A		
Approach Delay (s)	20.3	U	4.2	A	~ ^	4.8		
Approach LOS	20.5 C		4.2 A			4.0 A		
Intersection Summary								
HCM 2000 Control Delay			6.4	Н	CM 2000	Level of Service	A	
HCM 2000 Volume to Capa	city ratio		0.33					
Actuated Cycle Length (s)			49.0	S	um of los	t time (s)	12.0	
Intersection Capacity Utiliza	ation		51.7%			of Service	A	
Analysis Period (min)			15				<i>*</i> ·	

HCM Signalized Intersection Capacity Analysis 33: CR 44/Rama Rd & Fern Resort Rd/CR45/Monck Rd

	≯	-	\mathbf{r}	1	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$		٢		۴	٢	4Î	
Volume (vph)	1	0	6	48	0	18	28	535	94	19	387	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0			7.0		7.2	7.2	7.2	7.2	7.2	
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	
Frt		0.88			0.96		1.00	1.00	0.85	1.00	1.00	
Flt Protected		0.99			0.96		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1663			1741		1805	1881	1553	1805	1826	
Flt Permitted		0.95			0.78		0.47	1.00	1.00	0.33	1.00	
Satd. Flow (perm)		1583			1406		887	1881	1553	627	1826	
Peak-hour factor, PHF	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Adj. Flow (vph)	1	0	8	62	0	23	36	695	122	25	503	3
RTOR Reduction (vph)	0	8	0	0	58	0	0	0	48	0	0	0
Lane Group Flow (vph)	0	1	0	0	27	0	36	695	74	25	506	0
Heavy Vehicles (%)	0%	0%	0%	2%	0%	0%	0%	1%	4%	0%	4%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)		6.0			6.0		31.2	31.2	31.2	31.2	31.2	
Effective Green, g (s)		6.0			6.0		31.2	31.2	31.2	31.2	31.2	
Actuated g/C Ratio		0.12			0.12		0.61	0.61	0.61	0.61	0.61	
Clearance Time (s)		7.0			7.0		7.2	7.2	7.2	7.2	7.2	
Vehicle Extension (s)		5.0			5.0		1.0	1.0	1.0	1.0	1.0	
Lane Grp Cap (vph)		184			164		538	1141	942	380	1108	
v/s Ratio Prot								c0.37			0.28	
v/s Ratio Perm		0.00			c0.02		0.04		0.05	0.04		
v/c Ratio		0.01			0.16		0.07	0.61	0.08	0.07	0.46	
Uniform Delay, d1		20.1			20.4		4.1	6.3	4.2	4.1	5.5	
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.0			1.0		0.2	2.4	0.2	0.3	1.4	
Delay (s)		20.1			21.4		4.4	8.7	4.3	4.5	6.8	
Level of Service		С			С		А	А	А	Α	Α	
Approach Delay (s)		20.1			21.4			7.9			6.7	
Approach LOS		С			С			А			A	
Intersection Summary												
HCM 2000 Control Delay			8.3	H	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	city ratio		0.54									
Actuated Cycle Length (s)			51.4	S	um of los	t time (s)			14.2			
Intersection Capacity Utiliza	tion		67.8%	IC	U Level	of Service			С			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

Simcoe County TMP - CR 44 Baseline - Existing - PM

Synchro 8 Report Page 1

Simcoe County TMP - CR 44 Baseline - Existing - PM KL

Synchro 8 Report Page 2

7/17/2013

34: Hwy 12/Atherly	[/] Rd & C	r 44/F	Rama I	Rd					7/17/2013
	٦	-	+	•	1	-			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
ane Configurations	ኘካ	† †	≜ 1⊅		۲	1			
Volume (vph)	654	601	380	40	74	637			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0			
Lane Util. Factor	0.97	0.95	0.95		1.00	1.00			
Frt	1.00	1.00	0.99		1.00	0.85			
FIt Protected	0.95	1.00	1.00		0.95	1.00			
Satd. Flow (prot)	3433	3505	3345		1687	1568			
Flt Permitted	0.45	1.00	1.00		0.95	1.00			
Satd. Flow (perm)	1635	3505	3345		1687	1568			
Peak-hour factor, PHF	0.81	0.81	0.81	0.81	0.81	0.81			
Adj. Flow (vph)	807	742	469	49	91	786			
RTOR Reduction (vph)	0	0	20	0	0	142			
ane Group Flow (vph)	807	742	498	0	91	644			
Heavy Vehicles (%)	2%	3%	6%	10%	7%	3%			
Turn Type	Perm	NA	NA		NA	Perm			
Protected Phases		2	6		4				
Permitted Phases	2					4			
Actuated Green, G (s)	16.0	16.0	16.0		16.0	16.0			
Effective Green, g (s)	16.0	16.0	16.0		16.0	16.0			
Actuated g/C Ratio	0.40	0.40	0.40		0.40	0.40			
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0			
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	654	1402	1338		674	627			
v/s Ratio Prot		0.21	0.15		0.05				
v/s Ratio Perm	c0.49					c0.41			
v/c Ratio	1.23	0.53	0.37		0.14	1.03			
Uniform Delay, d1	12.0	9.1	8.5		7.6	12.0			
Progression Factor	1.00	1.00	1.00		1.00	1.00			
Incremental Delay, d2	118.2	1.4	0.8		0.1	43.2			
Delay (s)	130.2	10.6	9.3		7.7	55.2			
Level of Service	F	В	Α		Α	E			
Approach Delay (s)		72.9	9.3		50.3				
Approach LOS		E	A		D				
ntersection Summary									
HCM 2000 Control Delay			55.0	H	CM 2000	Level of Ser	vice	D	
HCM 2000 Volume to Capa	city ratio		1.13						
Actuated Cycle Length (s)			40.0			t time (s)		8.0	
Intersection Capacity Utiliza	ation		57.9%	IC	U Level	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

Simcoe County TMP - CR 44 Baseline - Existing - PM KL

Appendix D3: Detailed Synchro Reports for County Road 24 and County Road 32

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

HCM 2010 Roundabout 44: Poplar SRd & High St

17/07/2013

Intersection							
Intersection Delay, s/veh	6.0						
Intersection LOS	A						
Approach		EB		WB		SB	
Entry Lanes		2		2		2	
Conflicting Circle Lanes		1		1		2	
Adj Approach Flow, veh/h		164		404		332	
Demand Flow Rate, veh/h		174		441		347	
Vehicles Circulating, veh/h		307		26		147	
Vehicles Exiting, veh/h		187		455		320	
Follow-Up Headway, s		3.186		3.186		3.186	
Ped Vol Crossing Leg, #/h		0		0		0	
Ped Cap Adj		1.000		1.000		1.000	
Approach Delay, s/veh		5.6		5.7		6.5	
Approach LOS		Α		Α		Α	
Lane	Left	Right	Left	Right	Left	Right	
Designated Moves	LT	TR	LT	TR	LTR	R	
Assumed Moves	LT	TR	LT	R	LT	R	
RT Channelized							
Lane Util	0.471	0.529	0.333	0.667	0.885	0.115	
Critical Headway, s	5.193	5.193	5.193	5.193	4.293	4.113	
Entry Flow, veh/h	82	92	147	294	307	40	
Cap Entry Lane, veh/h	831	831	1101	1101	1012	1019	
Entry HV Adj Factor	0.942	0.947	0.901	0.925	0.951	1.000	
Flow Entry, veh/h	77	87	132	272	292	40	
Cap Entry, veh/h	783	787	992	1019	963	1019	
V/C Ratio	0.099	0.111	0.134	0.267	0.303	0.039	
Control Delay, s/veh	5.6	5.7	4.9	6.2	6.9	3.9	
LOS	A	Α	A	Α	A	A	
95th %tile Queue, veh	0	0	0	1	1	0	

Simcoe County TMP - CR 124 Baseline - Existing - AM KL

HCM Signalized Intersection Capacity Analysis	
51: CR124/Hurontario St & Poplar SRd	

51: CR124/Huronta					10						7/1	8/2013
	٦	-	\mathbf{r}	•	+	×.	1	1	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1		ę	1	ľ	•	1	ľ	¢Î	
Volume (vph)	34	122	98	29	107	206	92	328	46	116	166	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5		6.5	6.5	4.0	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00	1.00		0.99	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1656	1743	1509		1687	1482	1624	1776	1292	1594	1802	
Flt Permitted	0.66	1.00	1.00		0.89	1.00	0.56	1.00	1.00	0.53	1.00	
Satd. Flow (perm)	1143	1743	1509		1511	1482	950	1776	1292	895	1802	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	40	144	115	34	126	242	108	386	54	136	195	13
RTOR Reduction (vph)	0	0	85	0	0	198	0	000	20	0	3	0
Lane Group Flow (vph)	40	144	30	0	160	44	108	386	34	136	205	Ő
Confl. Peds. (#/hr)	-10	177	00	U	100		3	000	3	3	200	3
Heavy Vehicles (%)	9%	9%	7%	28%	7%	9%	11%	7%	22%	13%	4%	9%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	570
Protected Phases	r enn	4	remi	remi	8	I CIIII	5 pin+pt	2	remi	r enn	6	
Permitted Phases	4	4	4	8	0	8	2	2	2	6	0	
Actuated Green, G (s)	12.0	12.0	12.0	0	12.0	12.0	41.0	41.0	41.0	31.0	31.0	
Effective Green, g (s)	12.0	12.0	12.0		12.0	12.0	41.0	41.0	41.0	31.0	31.0	
Actuated g/C Ratio	0.18	0.18	0.18		0.18	0.18	0.62	0.62	0.62	0.47	0.47	
Clearance Time (s)	6.5	6.5	6.5		6.5	6.5	4.0	6.5	6.5	6.5	6.5	
	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Vehicle Extension (s)												
Lane Grp Cap (vph)	207	316	274		274	269	651	1103	802	420	846	_
v/s Ratio Prot	0.04	0.08	0.00		-0.44	0.00	0.02	c0.22	0.00	0.45	0.11	
v/s Ratio Perm	0.04	0.40	0.02		c0.11	0.03	0.09	0.05	0.03	0.15	0.04	_
v/c Ratio	0.19	0.46	0.11		0.58	0.16	0.17	0.35	0.04	0.32	0.24	
Uniform Delay, d1	22.9	24.1	22.5		24.7	22.8	5.2	6.1	4.9	10.9	10.5	_
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.5	1.0	0.2		3.2	0.3	0.1	0.9	0.1	2.0	0.7	
Delay (s)	23.4	25.1	22.7		27.9	23.1	5.3	6.9	5.0	13.0	11.2	
Level of Service	С	С	С		С	С	Α	A	A	В	B	
Approach Delay (s)		24.0			25.0			6.4			11.9	
Approach LOS		С			С			A			В	
Intersection Summary												
HCM 2000 Control Delay			15.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.44									
Actuated Cycle Length (s)	,		66.0	S	um of los	t time (s)			17.0			
Intersection Capacity Utiliza	ation		73.9%		CU Level		Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 124 Baseline - Existing - AM KL

Synchro 8 Report Page 1

HCM Signalized Intersection Capacity Analysis 52: CR124 & CR91

52: CR124 & CR91	٠		<u> </u>		-	•				1	1	0/2013
	_	-	•	4	•	\sim	<u>_</u>		1	*	ŧ	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			÷.	1		÷		ሻ	f)	
Volume (vph)	40	45	2	20	35	93	1	115	70	82	70	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.5			7.5	7.5		8.0		7.5	7.5	
Lane Util. Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Frpb, ped/bikes		1.00			1.00	1.00		0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00	1.00		1.00		1.00	1.00	
Frt		1.00			1.00	0.85		0.95		1.00	0.98	
Flt Protected		0.98			0.98	1.00		1.00		0.95	1.00	
Satd. Flow (prot)		1558			1351	1468		1631		1639	1605	
Flt Permitted		0.82			0.84	1.00		1.00		0.61	1.00	
Satd. Flow (perm)		1304			1150	1468		1631		1058	1605	
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Adj. Flow (vph)	50	56	2	25	44	116	1	144	88	102	88	12
RTOR Reduction (vph)	0	1	0	0	0	97	0	22	0	0	5	0
Lane Group Flow (vph)	0	107	0	0	69	19	0	211	0	102	95	0
Confl. Peds. (#/hr)							1		1	1		1
Heavy Vehicles (%)	10%	24%	100%	40%	37%	10%	0%	7%	14%	10%	14%	30%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		10.7			10.7	10.7		38.3		38.8	38.8	
Effective Green, q (s)		10.7			10.7	10.7		38.3		38.8	38.8	
Actuated g/C Ratio		0.17			0.17	0.17		0.59		0.60	0.60	
Clearance Time (s)		7.5			7.5	7.5		8.0		7.5	7.5	
Vehicle Extension (s)		5.0			5.0	5.0		0.2		0.2	0.2	
Lane Grp Cap (vph)		216			190	243		968		636	965	
v/s Ratio Prot											0.06	
v/s Ratio Perm		c0.08			0.06	0.01		0.13		0.10	0.00	
v/c Ratio		0.50			0.36	0.08		0.22		0.16	0.10	
Uniform Delay, d1		24.4			23.9	22.7		6.1		5.7	5.4	
Progression Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2		3.7			2.5	0.3		0.5		0.5	0.2	
Delay (s)		28.2			26.3	23.0		6.6		6.2	5.6	
Level of Service		C			C	C		A		A	A	
Approach Delay (s)		28.2			24.3			6.6			5.9	
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			14.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.28									
Actuated Cycle Length (s)			64.5		um of los				15.5			
Intersection Capacity Utilization	on		68.9%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 124 Baseline - Existing - AM KL

Synchro 8 Report Page 2

7/18/2013

47: CR124 & 33/34 S	Sidero	ad Not	tawasa	aga	-						7/1	7/2013
	≯	+	*	4	Ļ	•	•	Ť	*	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		\$			ę	1		ę	7		ę	1
Volume (veh/h)	12	16	11	9	13	33	14	231	9	39	180	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Hourly flow rate (vph)	16	21	14	12	17	43	18	300	12	51	234	12
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)						1						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	701	683	234	696	683	300	245			312		
vC1, stage 1 conf vol	101	000	201	000	000	000	210			012		
vC2, stage 2 conf vol												
vCu, unblocked vol	701	683	234	696	683	300	245			312		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)	7.1	0.0	0.2	7.1	0.0	0.2	7.2			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	95	94	98	96	95	94	99			96		
cM capacity (veh/h)	310	354	810	323	354	744	1292			1243		
							1252			1245		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
/olume Total	51	71	318	12	284	12						
/olume Left	16	12	18	0	51	0						
/olume Right	14	43	0	12	0	12						
cSH	400	853	1292	1700	1243	1700						
Volume to Capacity	0.13	0.08	0.01	0.01	0.04	0.01						
Queue Length 95th (m)	3.4	2.2	0.3	0.0	1.0	0.0						
Control Delay (s)	15.3	12.7	0.6	0.0	1.7	0.0						
Lane LOS	С	В	Α		Α							
Approach Delay (s)	15.3	12.7	0.6		1.7							
Approach LOS	С	В										
ntersection Summary						_						
Average Delay			3.2									
Intersection Capacity Utilization	n		43.4%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Simcoe County TMP - CR 124 Baseline - Existing - AM KL

HCM 2010 Roundabout 44: Poplar SRd & High St

17/07/2013

Intersection							
Intersection Delay, s/veh	5.8						
Intersection LOS	A						
Approach		EB		WB		SB	
Entry Lanes		2		2		2	
Conflicting Circle Lanes		1		1		2	
Adj Approach Flow, veh/h		152		311		336	
Demand Flow Rate, veh/h		166		328		361	
Vehicles Circulating, veh/h		318		38		111	
Vehicles Exiting, veh/h		154		446		255	
Follow-Up Headway, s		3.186		3.186		3.186	
Ped Vol Crossing Leg, #/h		0		0		0	
Ped Cap Adj		1.000		1.000		1.000	
Approach Delay, s/veh		5.8		5.0		6.5	
Approach LOS		Α		Α		А	
Lane	Left	Right	Left	Right	Left	Right	
Designated Moves	LT	TR	LT	TR	LTR	R	
Assumed Moves	LT	TR	LT	R	LT	R	
RT Channelized							
Lane Util	0.470	0.530	0.338	0.662	0.881	0.119	
Critical Headway, s	5.193	5.193	5.193	5.193	4.293	4.113	
Entry Flow, veh/h	78	88	111	217	318	43	
Cap Entry Lane, veh/h	822	822	1088	1088	1040	1045	
Entry HV Adj Factor	0.918	0.917	0.935	0.954	0.925	0.977	
Flow Entry, veh/h	72	81	104	207	294	42	
Cap Entry, veh/h	755	754	1017	1038	961	1021	
V/C Ratio	0.095	0.107	0.102	0.199	0.306	0.041	
Control Delay, s/veh	5.7	5.9	4.5	5.3	6.9	3.9	
LOS	A	A	A	Α	A	A	
95th %tile Queue, veh	0	0	0	1	1	0	

Simcoe County TMP - CR 124 Baseline - Existing - PM KL

HCM Signalized Intersection Capacity Analysis
51: CR124/Hurontario St & Poplar SRd

51: CR124/Hurona												10/2013
	≯	-	\rightarrow	1	-	•	1	T.	1	1	.↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1		ę	1	٦	•	7	٦	ĥ	
Volume (vph)	30	126	149	45	136	125	104	276	23	174	345	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5		6.5	6.5	4.0	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	0.99	
Fit Protected	0.95	1.00	1.00		0.99	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1752	1810	1509		1800	1553	1640	1863	1615	1641	1743	
Flt Permitted	0.57	1.00	1.00		0.87	1.00	0.34	1.00	1.00	0.56	1.00	
Satd. Flow (perm)	1048	1810	1509		1577	1553	579	1863	1615	960	1743	
Peak-hour factor, PHF	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Adj. Flow (vph)	37	156	184	56	168	154	128	341	28	215	426	47
RTOR Reduction (vph)	0	0	102	0	0	121	0	0	11	0	4	0
Lane Group Flow (vph)	37	156	82	0	224	33	128	341	17	215	469	0
Confl. Peds. (#/hr)							4					4
Heavy Vehicles (%)	3%	5%	7%	11%	2%	4%	10%	2%	0%	10%	7%	8%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4		4	8		8	2		2	6		
Actuated Green, G (s)	14.5	14.5	14.5		14.5	14.5	41.0	41.0	41.0	30.6	30.6	
Effective Green, g (s)	14.5	14.5	14.5		14.5	14.5	41.0	41.0	41.0	30.6	30.6	
Actuated g/C Ratio	0.21	0.21	0.21		0.21	0.21	0.60	0.60	0.60	0.45	0.45	
Clearance Time (s)	6.5	6.5	6.5		6.5	6.5	4.0	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	221	383	319		333	328	445	1115	966	428	778	
v/s Ratio Prot		0.09					0.03	c0.18			c0.27	
v/s Ratio Perm	0.04		0.05		c0.14	0.02	0.14		0.01	0.22		
v/c Ratio	0.17	0.41	0.26		0.67	0.10	0.29	0.31	0.02	0.50	0.60	
Uniform Delay, d1	22.1	23.3	22.5		24.8	21.7	7.0	6.8	5.6	13.5	14.4	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	0.7	0.4		5.3	0.1	0.4	0.7	0.0	4.2	3.4	
Delay (s)	22.4	24.0	22.9		30.1	21.9	7.4	7.5	5.6	17.7	17.8	
Level of Service	С	С	С		С	С	А	Α	Α	В	В	
Approach Delay (s)		23.3			26.7			7.3			17.8	
Approach LOS		С			С			А			В	
Intersection Summary												
HCM 2000 Control Delay			17.9	Н	CM 2000	Level of	Service		В			_
HCM 2000 Volume to Capa	acity ratio		0.59									
Actuated Cycle Length (s)			68.5		um of lost				17.0			_
Intersection Capacity Utiliza	ation		71.3%	IC	CU Level of	of Service	9		С			
Analysis Period (min)			15									_
c Critical Lane Group												

Simcoe County TMP - CR 124 Baseline - Existing - PM KL

Synchro 8 Report Page 1

7/18/2013

HCM Signalized Intersection Capacity Analysis 52: CR124 & CR91

52. CK124 & CK91	۶	+	\mathbf{i}	1	+	×	•	t	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ę	1		\$		۲	4Î	
Volume (vph)	34	52	4	82	54	98	2	135	81	117	122	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.5			7.5	7.5		8.0		7.5	7.5	
Lane Util. Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Frpb, ped/bikes		1.00			1.00	0.98		1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00	1.00		1.00		1.00	1.00	
Frt		0.99			1.00	0.85		0.95		1.00	0.96	
Flt Protected		0.98			0.97	1.00		1.00		0.95	1.00	
Satd. Flow (prot)		1715			1658	1549		1624		1656	1700	
Flt Permitted		0.81			0.75	1.00		1.00		0.60	1.00	
Satd. Flow (perm)		1414			1286	1549		1622		1040	1700	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	41	63	5	99	65	118	2	163	98	141	147	53
RTOR Reduction (vph)	0	2	0	0	0	63	0	24	0	0	15	0
Lane Group Flow (vph)	0	107	0	0	164	55	0	239	0	141	185	0
Confl. Peds. (#/hr)	1					1						-
Heavy Vehicles (%)	6%	8%	25%	16%	4%	2%	50%	7%	17%	9%	10%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8	Ū	8	2	-		6	Ŭ	
Actuated Green, G (s)		16.1		Ű	16.1	16.1	-	36.9		37.4	37.4	
Effective Green, g (s)		16.1			16.1	16.1		36.9		37.4	37.4	
Actuated g/C Ratio		0.24			0.24	0.24		0.54		0.55	0.55	
Clearance Time (s)		7.5			7.5	7.5		8.0		7.5	7.5	
Vehicle Extension (s)		5.0			5.0	5.0		0.2		0.2	0.2	
Lane Grp Cap (vph)		332			302	364		873		567	928	
v/s Ratio Prot		002			002	001		010		001	0.11	
v/s Ratio Perm		0.08			c0.13	0.04		c0.15		0.14	0.11	
v/c Ratio		0.32			0.54	0.15		0.27		0.25	0.20	
Uniform Delay, d1		21.7			23.0	20.8		8.5		8.2	7.9	
Progression Factor		1.00			1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2		1.00			3.5	0.4		0.8		1.00	0.5	_
Delay (s)		22.9			26.5	21.2		9.3		9.2	8.4	
Level of Service		22.5 C			20.0 C	C		3.5 A		3.2 A	0.4 A	
Approach Delay (s)		22.9			24.2	0		9.3		~	8.7	
Approach LOS		22.5 C			24.2 C			A			A	
Intersection Summary												
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of	Service		В			_
HCM 2000 Volume to Capaci	ity ratio		0.35									
Actuated Cycle Length (s)			68.5	S	um of los	time (s)			15.5			
Intersection Capacity Utilizati	ion		61.3%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 124 Baseline - Existing - PM KL

Synchro 8 Report Page 2

7/18/2013

47: CR124 & 33/34 \$	Sidero	au Not	lawasa	aya								7/2013
	۶	-	\mathbf{r}	4	-	•	1	t	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$			ę	1		ų	1		ę	1
Volume (veh/h)	3	17	15	13	19	39	13	234	12	57	256	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	4	21	18	16	23	48	16	285	15	70	312	ç
Pedestrians		1			2							
Lane Width (m)		3.6			3.6							
Walking Speed (m/s)		1.2			1.2							
Percent Blockage		0			0							
Right turn flare (veh)						1						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	805	786	313	799	780	287	322			302		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	805	786	313	799	780	287	322			302		
tC, single (s)	7.1	6.6	6.3	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.1	3.4	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	93	97	94	92	94	99			94		
cM capacity (veh/h)	253	297	715	267	306	755	1248			1257		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	43	87	301	15	382	9						
Volume Left	4	16	16	0	70	0						
Volume Right	18	48	0	15	0	9						
cSH	389	644	1248	1700	1257	1700						
Volume to Capacity	0.11	0.13	0.01	0.01	0.06	0.01						
Queue Length 95th (m)	2.9	3.7	0.3	0.0	1.4	0.0						
Control Delay (s)	15.4	14.2	0.5	0.0	1.9	0.0						
Lane LOS	C	В	A		A	•••						
Approach Delay (s)	15.4	14.2	0.5		1.9							
Approach LOS	C	B										
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utilization	n		44.8%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Simcoe County TMP - CR 124 Baseline - Existing - PM KL

Appendix D4: Detailed Synchro Reports for County Road 27

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

HCM Signalized Intersection Capacity Analysis 71: CR27/PA-CR27 & CR90/Dunlop St W 7/18/2013 + < < 4 ٠ t 1 \rightarrow ۴ Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations **↑**↑ **ħ**₽ ĥ ₽ Volume (vph) 635 128 418 207 131 316 18 2 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 7.6 7.6 7.6 3.0 7.6 3.0 7.4 7.4 7.4 Lane Util. Factor 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 Frt 1.00 1.00 0.85 1.00 0.99 1.00 0.86 1.00 0.89 Flt Protected 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1534 1805 3438 1568 1656 3238 1612 1805 1163 Flt Permitted 1.00 1.00 1.00 0.47 1 00 1 00 0.32 0.61 1 00 Satd. Flow (perm) 884 3438 1568 562 3238 1028 1534 1900 1163 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 5 738 367 149 486 21 241 8 152 5 2 RTOR Reduction (vph) 0 0 160 122 0 0 6 0 2 0 0 Lane Group Flow (vph) 5 738 207 149 505 0 241 38 0 5 2 Heavy Vehicles (%) 0% 5% 3% 9% 11% 6% 12% 29% 5% 0% 0% Turn Type Perm NA Perm NA NA Perm NA pm+pt pm+pt Protected Phases 2 6 3 8 4 Permitted Phases 2 4 6 8 Actuated Green, G (s) 62.1 62.1 62.1 73.5 73.5 21.6 21.6 3.6 3.6 Effective Green, g (s) 62.1 62.1 62.1 73.5 73.5 21.6 21.6 3.6 3.6 Actuated g/C Ratio 0.56 0.20 0.03 0.03 0.56 0.56 0.67 0.67 0.20 Clearance Time (s) 7.6 7.6 7.6 3.0 7.6 3.0 7.4 7.4 7.4 Vehicle Extension (s) 4.5 4.5 4.5 1.0 4.5 1.0 3.0 3.0 3.0 Lane Grp Cap (vph) 498 1939 884 458 2161 281 300 62 38 v/s Ratio Prot c0.21 c0.02 0.16 c0.12 0.02 0.00 v/s Ratio Perm 0.01 0.13 0.19 c0.05 0.00 v/c Ratio 0.01 0.38 0.23 0.33 0.23 0.86 0.13 0.08 0.06 Uniform Delay, d1 10.5 13.3 12.1 7.1 7.2 41.9 36.5 51.6 51.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 0.6 0.6 0.2 0.3 21.2 0.2 0.6 0.6 Delay (s) 10.6 13.9 12.7 7.3 7.5 63.1 36.7 52.2 52.2 Level of Service D В В В А А Е D D Approach Delay (s) 13.5 74 52.6 52.2 Approach LOS В А D D Intersection Summary

HCM 2000 Control Delay	19.1	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.50			
Actuated Cycle Length (s)	110.1	Sum of lost time (s)	21.0	
Intersection Capacity Utilization	70.3%	ICU Level of Service	С	
Analysis Period (min)	15			

c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 1

SBR

5

1900

0.86

6

0

0

60%

HCM Signalized Intersection Capacity Analysis 72: CR27 & Ardagh Rd

	4	•	Ť	1	1	Ŧ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ľ	1	•	1	ľ	^			
Volume (vph)	147	137	233	112	142	315			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	7.0	7.0	3.0	7.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1641	1509	1792	1455	1687	1827			
Flt Permitted	0.95	1.00	1.00	1.00	0.52	1.00			
Satd. Flow (perm)	1641	1509	1792	1455	918	1827			
Peak-hour factor, PHF	0.77	0.77	0.77	0.77	0.77	0.77			
Adj. Flow (vph)	191	178	303	145	184	409			
RTOR Reduction (vph)	0	144	0	77	0	0			
Lane Group Flow (vph)	191	34	303	68	184	409			
Heavy Vehicles (%)	10%	7%	6%	11%	7%	4%			
Turn Type	NA	Perm	NA	Perm	pm+pt	NA			
Protected Phases	8		2		1	6			
Permitted Phases		8		2	6				
Actuated Green, G (s)	13.5	13.5	33.5	33.5	45.1	45.1			
Effective Green, g (s)	13.5	13.5	33.5	33.5	45.1	45.1			
Actuated g/C Ratio	0.19	0.19	0.47	0.47	0.63	0.63			
Clearance Time (s)	6.0	6.0	7.0	7.0	3.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	309	284	838	680	670	1150			
v/s Ratio Prot	c0.12		0.17		0.03	c0.22			
v/s Ratio Perm		0.02		0.05	0.14				
v/c Ratio	0.62	0.12	0.36	0.10	0.27	0.36			
Uniform Delay, d1	26.7	24.1	12.2	10.6	5.6	6.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	3.7	0.2	1.2	0.3	0.2	0.9			
Delay (s)	30.3	24.3	13.4	10.9	5.8	7.2			
Level of Service	С	С	В	В	Α	Α			
Approach Delay (s)	27.4		12.6			6.8			
Approach LOS	С		В			А			
Intersection Summary									
HCM 2000 Control Delay			14.0	F	ICM 2000	Level of Servic	e	В	
HCM 2000 Volume to Capa	acity ratio		0.44						
Actuated Cycle Length (s)			71.6	5	Sum of los	t time (s)		16.0	
Intersection Capacity Utiliza	ation		42.4%	10	CU Level	of Service		А	
Analysis Period (min)			15						
0.11 0									

c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 2

7/18/2013

	SS /	×.	+	~	5	ţ		
	•		I			•		
Novement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	Y		†	1	ሻ	†		
olume (vph)	40	71	226	98	115	301		
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
otal Lost time (s)	8.0		8.0	8.0	8.0	8.0		
ane Util. Factor	1.00		1.00	1.00	1.00	1.00		
rpb, ped/bikes	1.00		1.00	1.00	1.00	1.00		
lpb, ped/bikes	1.00		1.00	1.00	1.00	1.00		
it	0.91		1.00	0.85	1.00	1.00		
It Protected	0.98		1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1454		1792	1455	1703	1810		
Fit Permitted	0.98		1.00	1.00	0.54	1.00		
Satd. Flow (perm)	1454		1792	1455	964	1810		
Peak-hour factor, PHF	0.60	0.60	0.60	0.60	0.60	0.60		
Adj. Flow (vph)	67	118	377	163	192	502		
RTOR Reduction (vph)	92	0	0	69	0	0		
ane Group Flow (vph)	93	0	377	94	192	502		
Confl. Peds. (#/hr)	1							
leavy Vehicles (%)	23%	14%	6%	11%	6%	5%		
urn Type	NA		NA	Perm	Perm	NA		
Protected Phases	8		2			6		
Permitted Phases				2	6			
Actuated Green, G (s)	13.1		40.0	40.0	40.0	40.0		
Effective Green, g (s)	13.1		40.0	40.0	40.0	40.0		
Actuated g/C Ratio	0.19		0.58	0.58	0.58	0.58		
Clearance Time (s)	8.0		8.0	8.0	8.0	8.0		
/ehicle Extension (s)	5.0		0.2	0.2	0.2	0.2		
ane Grp Cap (vph)	275		1037	842	558	1047		
/s Ratio Prot	c0.06		0.21			c0.28		
/s Ratio Perm				0.06	0.20			
/c Ratio	0.34		0.36	0.11	0.34	0.48		
Jniform Delay, d1	24.3		7.8	6.6	7.7	8.5		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
ncremental Delay, d2	1.5		1.0	0.3	1.7	1.6		
Delay (s)	25.8		8.7	6.8	9.3	10.1		
evel of Service	С		A	A	A	В		
Approach Delay (s)	25.8		8.2			9.9		
pproach LOS	С		A			A		
ntersection Summary								
ICM 2000 Control Delay			11.3	H	CM 2000	Level of Service	В	
ICM 2000 Volume to Capa	city ratio		0.44					
Actuated Cycle Length (s)			69.1	Si	um of lost	time (s)	16.0	
ntersection Capacity Utiliza	ition		71.7%	IC	U Level of	of Service	С	
analysis Period (min)			15					

Simcoe County TMP - CR 27 Baseline - Existing - AM

Synchro 8 Report Page 3 HCM Signalized Intersection Capacity Analysis 74: CR27 & PA-CR21/Innisfil Beach Rd/CR21/Innisfil Beach Rd

	۶	-	\mathbf{r}	4	-	•	1	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ę	1		ę	1	٦	4Î	
Volume (vph)	0	0	0	107	0	44	0	209	173	170	197	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					6.0	6.0		7.0	7.0	5.0	6.0	
Lane Util. Factor					1.00	1.00		1.00	1.00	1.00	1.00	
Frpb, ped/bikes					1.00	1.00		1.00	0.98	1.00	1.00	
Flpb, ped/bikes					1.00	1.00		1.00	1.00	1.00	1.00	
Frt					1.00	0.85		1.00	0.85	1.00	1.00	
Flt Protected					0.95	1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)					1641	1292		1759	1491	1702	1759	
Flt Permitted					0.76	1.00		1.00	1.00	0.54	1.00	
Satd. Flow (perm)					1308	1292		1759	1491	974	1759	
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Adj. Flow (vph)	0	0	0	134	0	55	0	261	216	212	246	0
RTOR Reduction (vph)	0	0	0	0	0	46	0	0	98	0	0	0
Lane Group Flow (vph)	0	0	Ő	Ő	134	9	0	261	118	212	246	0
Confl. Peds. (#/hr)	Ū	Ū	v	Ū	101	0	Ū	201	1	1	210	Ū
Heavy Vehicles (%)	0%	0%	0%	10%	0%	25%	0%	8%	6%	6%	8%	0%
Turn Type	Perm	070	0/0	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	070
Protected Phases	I CIIII	4		I CIIII	8	I CIIII	I CIIII	2	I CIIII	pin+pi	6	
Permitted Phases	4	4		8	0	8	2	2	2	6	0	
Actuated Green, G (s)	4			0	14.7	14.7	2	50.7	50.7	66.1	66.1	
Effective Green, g (s)					14.7	14.7		50.7	50.7	66.1	66.1	
Actuated g/C Ratio					0.16	0.16		0.55	0.55	0.71	0.71	
Clearance Time (s)					6.0	6.0		7.0	7.0	5.0	6.0	
Vehicle Extension (s)					3.0	3.0		3.0	3.0	3.0	3.0	
						204			814		1252	
Lane Grp Cap (vph)					207	204		961	814	767		_
v/s Ratio Prot					-0.40	0.04		0.15	0.00	c0.03	0.14	
v/s Ratio Perm					c0.10	0.01		0.07	0.08	c0.17	0.00	_
v/c Ratio					0.65	0.04		0.27	0.14	0.28	0.20	
Uniform Delay, d1					36.6	33.1		11.2	10.4	4.6	4.5	_
Progression Factor					1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2					6.8	0.1		0.7	0.4	0.2	0.4	
Delay (s)					43.4	33.2		11.9	10.7	4.8	4.8	
Level of Service					D	С		В	В	A	A	
Approach Delay (s) Approach LOS		0.0 A			40.4 D			11.4 B			4.8 A	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			D						~	
Intersection Summary			12.0		CM 2000	Laural - C						
HCM 2000 Control Delay			13.6	н	CIVI 2000	Level of :	Service		В			
HCM 2000 Volume to Capacit	ly ratio		0.37	~		1			40.0			
Actuated Cycle Length (s)			92.8		um of lost				18.0			
Intersection Capacity Utilization	on		64.3%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									_
c Critical Lane Group												

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 4

7/18/2013

75: CR27 & CR21/Robert St/PA-CR21/Robert St 7/18/2013 1 ٠ ←  $\mathbf{r}$ -----Movement EBL EBT EBR WBL WBT WBR NRI NBT NRR SBT SBR 4î î i Lane Configurations 4 4, 4 275 14 154 167 178 Volume (vph) 0 12 0 0 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 1.00 0.95 1.00 Lane Util. Factor 1.00 Frpb, ped/bikes 1.00 1.00 1.00 0.98 Flpb, ped/bikes 1.00 1.00 1.00 1.00 Frt 0.99 1.00 1.00 0.85 Flt Protected 0.95 1.00 1.00 1.00 Satd, Flow (prot) 1767 3331 1810 1463 Flt Permitted 0.73 0.93 1.00 1.00 Satd. Flow (perm) 1361 3101 1810 1463 Peak-hour factor, PHF 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 Adj. Flow (vph) 344 0 15 18 192 0 0 209 222 0 0 0 RTOR Reduction (vph) 0 74 97 0 0 0 0 0 0 0 0 0 Lane Group Flow (vph) 285 210 209 125 0 0 0 0 0 0 0 0 Confl. Peds. (#/hr) 1 1 Heavy Vehicles (%) 2% 0% 0% 0% 0% 0% 7% 8% 0% 0% 5% 8% Turn Type Perm NA Perm pm+pt NA Perm NA Perm Protected Phases 4 5 2 6 Permitted Phases 4 6 8 2 6 Actuated Green, G (s) 16.2 36.1 36.1 36.1 Effective Green, g (s) 16.2 36.1 36.1 36.1 Actuated g/C Ratio 0.25 0.56 0.56 0.56 Clearance Time (s) 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.5 3.0 3.0 3.0 Lane Grp Cap (vph) 342 1740 1016 821 v/s Ratio Prot c0.12 v/s Ratio Perm c0.21 0.07 0.09 v/c Ratio 0.83 0.12 0.21 0.15 Uniform Delay, d1 22.8 6.6 7.0 6.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.2 0.0 0.5 04 Delav (s) 38.9 6.6 7.4 7.2 Level of Service D Α А Α Approach Delay (s) 38.9 0.0 6.6 7.3 Approach LOS D Α Α Α Intersection Summary HCM 2000 Control Delay 18.5 HCM 2000 Level of Service В HCM 2000 Volume to Capacity ratio 0.42 64.3 Actuated Cycle Length (s) Sum of lost time (s) 15.0 Intersection Capacity Utilization 43.3% ICU Level of Service А Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

HCM Signalized Intersection Capacity Analysis

Synchro 8 Report Page 5

### HCM Signalized Intersection Capacity Analysis 76: CR27 & Hwy89/Queen St/Hwy89/Church St

۰. • ٦ ←  $\mathbf{r}$ 1 Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBT SR Lane Configurations 4 £ 4 4 39 434 380 45 33 133 Volume (vph) 57 18 27 56 19 71 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 Flpb, ped/bikes 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 Frt 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 1.00 1.00 1.00 0.99 1.00 Flt Protected 1 00 0.98 Satd, Flow (prot) 1789 1362 1798 1362 1684 1466 1681 1466 Flt Permitted 0.93 1 00 0.96 1.00 0.60 1 00 0.90 1.00 Satd. Flow (perm) 1668 1362 1737 1362 1032 1466 1535 1466 Peak-hour factor, PHF 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 Adj. Flow (vph) 50 556 73 23 487 35 58 72 24 42 171 91 RTOR Reduction (vph) 12 19 73 0 0 10 0 0 0 0 0 0 606 510 130 213 Lane Group Flow (vph) 63 0 0 23 0 5 0 18 Confl. Peds. (#/hr) 15 15 15 15 15 15 15 15 Heavy Vehicles (%) 13% 5% 13% 5% 13% 5% 13% 13% 13% 5% 5% 5% Turn Type pm+pt NA Perm Perm NA Perm Perm NA Perm Perm NA Perm Protected Phases 5 2 6 Permitted Phases 2 2 6 6 8 8 4 Λ Actuated Green, G (s) 59.2 59.2 59.2 59.2 17.1 17.1 17.1 17.1 Effective Green, g (s) 59.2 59.2 59.2 59.2 17.1 17.1 17.1 17.1 Actuated g/C Ratio 0.67 0.67 0.67 0.67 0.19 0.19 0.19 0.19 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1118 913 1164 913 199 283 297 283 v/s Ratio Prot v/s Ratio Perm c0.36 0.05 0.29 0.02 0.13 0.00 c0.14 0.01 v/c Ratio 0.54 0.07 0.44 0.03 0.65 0.02 0.72 0.06 Uniform Delay, d1 7.5 5.0 6.8 4.9 32.9 28.8 33.3 29.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 05 01 12 01 75 0.0 80 01 Delav (s) 29.1 8.1 5.2 8.0 4.9 40.3 28.8 41.3 Level of Service D С D С Α Α Α Α Approach Delay (s) 7.8 38.5 37.7 78 Approach LOS Α Α D D Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 16.0 В HCM 2000 Volume to Capacity ratio 0.60 Sum of lost time (s) Actuated Cycle Length (s) 88.3 15.0 Intersection Capacity Utilization 92.1% ICU Level of Service F Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 6

7/18/2013

ĸ

HCM Signalized Intersection Capacity Analysis 77: CR27 & CR1/Line 8/Line 8

	≯	-	$\mathbf{F}$	4	+	•	•	Ť	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		۴	1		\$		٦	ĥ			ę	1
Volume (vph)	21	37	157	4	11	1	33	60	0	9	236	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		3.0	6.0			6.0	6.0
Lane Util. Factor		1.00	1.00		1.00		1.00	1.00			1.00	1.00
Frt		1.00	0.85		0.99		1.00	1.00			1.00	0.85
Flt Protected		0.98	1.00		0.99		0.95	1.00			1.00	1.00
Satd. Flow (prot)		1866	1468		1569		1492	1520			1803	1495
Flt Permitted		0.87	1.00		0.92		0.53	1.00			0.99	1.00
Satd. Flow (perm)		1657	1468		1460		833	1520			1793	1495
Peak-hour factor, PHF	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	27	47	199	5	14	1	42	76	0	11	299	32
RTOR Reduction (vph)	0	0	168	0	1	0	0	0	0	0	0	14
Lane Group Flow (vph)	0	74	31	0	19	0	42	76	0	0	310	18
Heavy Vehicles (%)	0%	0%	10%	50%	9%	0%	21%	25%	0%	11%	5%	8%
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases		4			8		5	2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)		10.6	10.6		10.6		44.9	44.9			38.7	38.7
Effective Green, g (s)		10.6	10.6		10.6		44.9	44.9			38.7	38.7
Actuated g/C Ratio		0.16	0.16		0.16		0.67	0.67			0.57	0.57
Clearance Time (s)		6.0	6.0		6.0		3.0	6.0			6.0	6.0
Vehicle Extension (s)		4.0	4.0		4.0		3.0	1.0			1.0	1.0
Lane Grp Cap (vph)		260	230		229		585	1011			1027	857
v/s Ratio Prot							0.00	c0.05				
v/s Ratio Perm		c0.04	0.02		0.01		0.04				c0.17	0.01
v/c Ratio		0.28	0.14		0.08		0.07	0.08			0.30	0.02
Uniform Delay, d1		25.1	24.5		24.3		4.0	4.0			7.4	6.2
Progression Factor		1.00	1.00		1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2		0.8	0.4		0.2		0.1	0.1			0.8	0.0
Delay (s)		25.9	24.9		24.5		4.0	4.1			8.2	6.3
Level of Service		С	C		C		A	А			A	A
Approach Delay (s)		25.2	-		24.5			4.1			8.0	
Approach LOS		С			С			А			A	
Intersection Summary												
HCM 2000 Control Delay			14.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.29									
Actuated Cycle Length (s)			67.5	S	um of lost	time (s)			15.0			
Intersection Capacity Utilizatio	n		65.0%	IC	U Level o	of Service	)		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 78: CR27 & Line 7/CR88/Line 7

1 1 ٦ ←  $\mathbf{i}$ Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBI SBT SBR Lane Configurations 4 £ ĥ 93 138 306 Volume (vph) 3 58 30 11 52 44 17 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.98 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.96 1.00 0.85 1.00 0.96 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 Flt Protected 0.96 0.95 0.95 Satd, Flow (prot) 1729 1678 1233 1501 1561 1612 1827 1051 Flt Permitted 0.99 0.74 1.00 0.53 1.00 0.71 1.00 1.00 Satd. Flow (perm) 1707 1298 1233 830 1561 1198 1827 1051 0.78 Peak-hour factor, PHF 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 392 Adj. Flow (vph) 74 38 119 14 67 56 22 177 5 6 4 RTOR Reduction (vph) 0 23 0 56 0 0 0 0 0 7 0 133 392 Lane Group Flow (vph) 177 0 93 0 0 11 6 71 0 3 Confl. Peds. (#/hr) 2 2 2 Heavy Vehicles (%) 33% 3% 3% 9% 0% 31% 20% 16% 18% 12% 4% 50% Turn Type Perm NA Perm NA Perm Perm NA Perm NA Perm Protected Phases 4 8 2 6 Permitted Phases 4 8 8 2 6 6 Actuated Green, G (s) 12.9 12.9 12.9 53.4 53.4 53.4 53.4 53.4 Effective Green, g (s) 12.9 12.9 12.9 53.4 53.4 53.4 53.4 53.4 Actuated g/C Ratio 0.16 0.16 0.16 0.67 0.67 0.67 0.67 0.67 Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Vehicle Extension (s) 3.0 4.5 3.0 3.0 4.5 4.5 4.5 4.5 Lane Grp Cap (vph) 274 208 198 551 1038 796 1214 698 v/s Ratio Prot 0.05 c0.21 v/s Ratio Perm 0.05 c0.10 0.01 0.01 0.15 0.00 v/c Ratio 0.34 0.64 0.05 0.01 0.07 0.22 0.32 0.00 Uniform Delay, d1 29.9 31.5 28.5 4.5 4.7 5.3 5.7 4.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 07 6.3 0.1 0.0 0.1 0.6 0.7 0.0 Delay (s) 30.7 37.8 28.7 4.6 4.5 4.8 5.9 6.4 Level of Service С D С Α А Α Α Α Approach Delay (s) 30.7 34.8 4.8 6.3 Approach LOS С С Α Α Intersection Summary HCM 2000 Control Delay 14.9 HCM 2000 Level of Service В HCM 2000 Volume to Capacity ratio 0.38 80.3 14.0 Actuated Cycle Length (s) Sum of lost time (s) Intersection Capacity Utilization 80.0% ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 7

7/18/2013

Simcoe County TMP - CR 27 Baseline - Existing - AM KL

Synchro 8 Report Page 8

7/18/2013

79: York CR27/CR2	27 & Hv	/y9									7/1	8/201
	٦	-	$\mathbf{r}$	∢	+	•	1	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦	- <b>†</b> †	1	٦	<b>^</b>	1	٦	<b>^</b>	1	٦	<b>≜</b> î≽	
/olume (vph)	48	697	248	293	307	12	26	62	122	52	302	3
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
ane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
rpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
lpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
rt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99	
It Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1641	3312	1482	1752	3195	1214	1193	3282	1392	1641	3346	
Fit Permitted	0.53	1.00	1.00	0.32	1.00	1.00	0.31	1.00	1.00	0.71	1.00	
Satd, Flow (perm)	918	3312	1482	589	3195	1214	387	3282	1392	1219	3346	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
Adj. Flow (vph)	58	840	299	353	370	14	31	75	147	63	364	3
RTOR Reduction (vph)	0	0+0	17	0	0	4	0	0	123	0	8	
ane Group Flow (vph)	58	840	282	353	370	10	31	75	24	63	392	
Confl. Peds. (#/hr)	50	0+0	202	000	5/0	10	3	15	27	00	002	
leavy Vehicles (%)	10%	9%	9%	3%	13%	33%	51%	10%	16%	10%	5%	19
urn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	10
Protected Phases	renn	2	remi	renn	6	I CIIII	I CIIII	8	I CIIII	I CIIII	4	
Permitted Phases	2	2	2	6	0	6	8	0	8	4	4	
Actuated Green, G (s)	66.0	66.0	66.0	66.0	66.0	66.0	14.4	14.4	14.4	14.4	14.4	
Effective Green, g (s)	66.0	66.0	66.0	66.0	66.0	66.0	14.4	14.4	14.4	14.4	14.4	
Actuated g/C Ratio	0.75	0.75	0.75	0.75	0.75	0.75	0.16	0.16	0.16	0.16	0.16	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
				439		906			226		545	
ane Grp Cap (vph)	685	2472	1106	439	2385	906	63	534	226	198		
/s Ratio Prot	0.00	0.25	0.40	-0.00	0.12	0.04	0.00	0.02	0.00	0.05	c0.12	
/s Ratio Perm	0.06	0.04	0.19	c0.60	0.40	0.01	0.08	0.44	0.02	0.05	0.70	
/c Ratio	0.08	0.34	0.25	0.80	0.16	0.01	0.49	0.14	0.11	0.32	0.72	
Jniform Delay, d1	3.0	3.8	3.5	7.1	3.2	2.9	33.7	31.7	31.5	32.7	35.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ncremental Delay, d2	0.2	0.4	0.6	14.5	0.1	0.0	5.9	0.1	0.2	0.9	4.5	
Delay (s)	3.3	4.2	4.1	21.6	3.3	2.9	39.6	31.8	31.7	33.6	39.6	
evel of Service	A	A	A	С	A	A	D	C	С	С	D	
Approach Delay (s) Approach LOS		4.1 A			12.1 B			32.7 C			38.8 D	
		~						0				
ntersection Summary			45.4		011 0000				-			
ICM 2000 Control Delay			15.1	H	CM 2000	Level of \$	Service		В			
ICM 2000 Volume to Capac	city ratio		0.79									
ctuated Cycle Length (s)			88.4		um of lost				8.0			
ntersection Capacity Utilizat	lion		61.9%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

Simcoe County TMP - CR 27 Baseline - Existing - AM

KI.	

	٨		~		+	4		Ť		7	Т	1
	_	-	•	<ul><li>✓</li></ul>	•			I	1	*	ŧ	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ኘ	- <b>††</b>	1	ኘ	tî≯		٦	4Î		٦	ĥ	
Volume (vph)	26	768	283	141	668	65	446	51	127	84	38	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	7.6	7.6	7.6	3.0	7.6		3.0	7.4		7.4	7.4	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.89		1.00	0.92	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1736	3343	1538	1770	3431		1770	1620		1770	1660	
Flt Permitted	0.34	1.00	1.00	0.25	1.00		0.58	1.00		0.63	1.00	
Satd. Flow (perm)	623	3343	1538	462	3431		1080	1620		1178	1660	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	29	863	318	158	751	73	501	57	143	94	43	5
RTOR Reduction (vph)	0	0	158	0	5	0	0	75	0	0	38	(
Lane Group Flow (vph)	29	863	160	158	819	0	501	125	0	94	60	(
Heavy Vehicles (%)	4%	8%	5%	2%	4%	2%	2%	4%	5%	2%	11%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA		pm+pt	NA		Perm	NA	
Protected Phases		2		1	6		3	8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	61.2	61.2	61.2	73.1	73.1		33.3	33.3		15.3	15.3	
Effective Green, q (s)	61.2	61.2	61.2	73.1	73.1		33.3	33.3		15.3	15.3	
Actuated g/C Ratio	0.50	0.50	0.50	0.60	0.60		0.27	0.27		0.13	0.13	
Clearance Time (s)	7.6	7.6	7.6	3.0	7.6		3.0	7.4		7.4	7.4	
Vehicle Extension (s)	4.5	4.5	4.5	1.0	4.5		1.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	314	1685	775	374	2065		381	444		148	209	
v/s Ratio Prot		c0.26		c0.03	0.24		c0.16	0.08			0.04	
v/s Ratio Perm	0.05		0.10	0.22			c0.20			0.08		
v/c Ratio	0.09	0.51	0.21	0.42	0.40		1.31	0.28		0.64	0.29	
Uniform Delay, d1	15.7	20.1	16.7	11.9	12.6		42.6	34.6		50.4	48.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	1.1	0.6	0.3	0.6		159.3	0.4		8.6	0.8	
Delay (s)	16.2	21.2	17.3	12.2	13.2		201.9	35.0		59.0	48.9	
Level of Service	В	C	В	В	B		F	C		E	D	
Approach Delay (s)	2	20.1	-	2	13.0			154.3		-	53.8	
Approach LOS		C			B			F			D	
Intersection Summary												
HCM 2000 Control Delay			50.4	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.78	11	2000	2010101			5			
Actuated Cycle Length (s)	iony rutio		121.4	S.	um of lost	time (s)			21.0			
Intersection Capacity Utiliza	ation		92.4%		U Level c		<u>,</u>		21.0 F			
Analysis Period (min)			15				,					
			15									

c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 1 HCM Signalized Intersection Capacity Analysis 72: CR27 & Ardagh Rd

	4	•	1	1	× 🖌	Ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	٢	1	•	1	٦	<b>^</b>		
Volume (vph)	76	164	468	127	170	312		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	7.0	7.0	3.0	7.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00	0.99	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1671	1599	1845	1548	1735	1696		
Flt Permitted	0.95	1.00	1.00	1.00	0.32	1.00		
Satd. Flow (perm)	1671	1599	1845	1548	592	1696		
Peak-hour factor. PHF	0.85	0.85	0.85	0.85	0.85	0.85		
	0.85	193	551	0.85	200	367		
Adj. Flow (vph)								
RTOR Reduction (vph)	0	166	0	74	0	0		
Lane Group Flow (vph)	89	27	551	75	200	367		
Confl. Peds. (#/hr)	001	401	0.01	1	1	1001		
Heavy Vehicles (%)	8%	1%	3%	3%	4%	12%		
Turn Type	NA	Perm	NA	Perm	pm+pt	NA		
Protected Phases	8		2		1	6		
Permitted Phases		8		2	6			
Actuated Green, G (s)	9.4	9.4	33.9	33.9	45.0	45.0		
Effective Green, g (s)	9.4	9.4	33.9	33.9	45.0	45.0		
Actuated g/C Ratio	0.14	0.14	0.50	0.50	0.67	0.67		
Clearance Time (s)	6.0	6.0	7.0	7.0	3.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	233	223	927	778	532	1132		
v/s Ratio Prot	c0.05		c0.30		c0.05	0.22		
v/s Ratio Perm	00.00	0.02	00.00	0.05	0.21			
v/c Ratio	0.38	0.12	0.59	0.10	0.38	0.32		
Uniform Delay, d1	26.4	25.4	11.9	8.7	5.3	4.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	1.0	0.2	2.8	0.2	0.4	0.8		
Delay (s)	27.4	25.6	14.7	9.0	5.8	5.5		
Level of Service	27.4 C	20.0 C	14.7 B	9.0 A	5.8 A	5.5 A		
Approach Delay (s)	26.2	U	13.5	A	А	5.6		
Approach LOS	20.2 C		13.5 B			5.0 A		
Approacti LUS	U		В			A	 	
Intersection Summary								
HCM 2000 Control Delay			12.9	H	ICM 2000	Level of Service	В	
HCM 2000 Volume to Capac	city ratio		0.52					
Actuated Cycle Length (s)			67.4		um of los		16.0	
Intersection Capacity Utilizat	tion		55.3%	10	CU Level of	of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 2

7/18/2013

73: CR27 & PA-BC	,33							7/18/201
	•	•	1	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Ý		•	7	٦	<b>↑</b>		
Volume (vph)	8	8	540	1	7	369		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	8.0		8.0	8.0	8.0	8.0		
ane Util. Factor	1.00		1.00	1.00	1.00	1.00		
Frt	0.93		1.00	0.85	1.00	1.00		
Fit Protected	0.98		1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1623		1881	1615	1805	1827		
Flt Permitted	0.98		1.00	1.00	0.42	1.00		
Satd. Flow (perm)	1623		1881	1615	798	1827		
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88		
Adj. Flow (vph)	9	9	614	1	8	419		
RTOR Reduction (vph)	9	0	0	0	0	0		
Lane Group Flow (vph)	9	0	614	1	8	419		
Heavy Vehicles (%)	0%	13%	1%	0%	0%	4%		
Turn Type	NA	1070	NA	Perm	Perm	NA		
Protected Phases	8		2	I CIIII	I CIIII	6		
Permitted Phases	0		2	2	6	0		
Actuated Green, G (s)	2.3		52.2	52.2	52.2	52.2		
Effective Green, q (s)	2.3		52.2	52.2	52.2	52.2		
, , , ,	0.03		0.74	0.74	0.74	0.74		
Actuated g/C Ratio Clearance Time (s)	8.0		8.0	8.0	8.0	8.0		
Vehicle Extension (s)	5.0		0.0	0.0	0.2	0.2		
	52		1392			1352		
ane Grp Cap (vph)				1195	590			
/s Ratio Prot	c0.01		c0.33	0.00	0.04	0.23		
//s Ratio Perm	0.42		0.44	0.00	0.01	0.04		
v/c Ratio	0.18		0.44	0.00	0.01	0.31		
Uniform Delay, d1	33.2		3.5	2.4	2.4	3.1		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
ncremental Delay, d2	3.4		1.0	0.0	0.0	0.6		
Delay (s)	36.6		4.5	2.4	2.4	3.7		
_evel of Service	D		Α	A	A	A		
Approach Delay (s)	36.6		4.5			3.7		
Approach LOS	D		A			A		
ntersection Summary								
HCM 2000 Control Delay			4.7	Н	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	city ratio		0.43					
Actuated Cycle Length (s)			70.5	S	um of lost	time (s)	16.0	
Intersection Capacity Utiliza	ition		55.0%	IC	U Level o	of Service	В	
Analysis Period (min)			15					

٠ *  $\mathbf{r}$ Movement EBL EBT EBR W/RI WBT WBR NBL NBT NBR SBL SBT Lane Configurations 4 ብ Æ ĥ Volume (vph) 258 140 477 303 107 230 0 0 0 0 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 7.0 7.0 5.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.85 1.00 0.85 1.00 1.00 Flt Protected 0.95 1.00 1.00 1.00 1.00 0.95 Satd, Flow (prot) 1728 1482 1863 1509 1719 1863 Flt Permitted 0.76 1.00 1.00 1.00 0.28 1.00 Satd. Flow (perm) 1378 1482 1863 1509 515 1863 Peak-hour factor, PHF 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 161 548 348 123 264 Adj. Flow (vph) 0 0 0 297 0 0 RTOR Reduction (vph) 0 0 0 0 119 0 0 177 0 0 0 Lane Group Flow (vph) 297 42 548 171 123 264 0 0 0 0 0 Confl. Peds. (#/hr) 2 2 Heavy Vehicles (%) 0% 0% 0% 4% 0% 9% 0% 2% 7% 5% 2% 0% Turn Type Perm Perm NA Perm Perm NA Perm pm+pt NA Protected Phases 8 2 1 6 Permitted Phases 2 4 8 8 2 6 Actuated Green, G (s) 27.7 27.7 51.5 51.5 66.4 66.4 Effective Green, g (s) 27.7 27.7 51.5 51.5 66.4 66.4 Actuated g/C Ratio 0.26 0.26 0.49 0.49 0.63 0.63 Clearance Time (s) 6.0 6.0 7.0 7.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 359 386 904 732 423 1165 v/s Ratio Prot c0.29 c0.02 0.14 v/s Ratio Perm c0.22 0.03 0.11 0.16 v/c Ratio 0.83 0.11 0.61 0.23 0.29 0.23 Uniform Delay, d1 36.9 29.8 19.9 15.8 10.7 8.7 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 144 0.1 30 0.7 0.4 0.5 Delay (s) 51.4 29.9 22.9 16.6 11.0 9.1 Level of Service D С С В В Α Approach Delay (s) 0.0 43.8 20.5 97 Approach LOS D С А Α

Intersection Summary 24.2 HCM 2000 Control Delay HCM 2000 Level of Service С 0.65 HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 106.1 Sum of lost time (s) 18.0 79.4% Intersection Capacity Utilization ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 4

7/18/2013

0

0

0

0

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 3 74: CR27 & PA-CR21/Innisfil Beach Rd/CR21/Innisfil Beach Rd

HCM Signalized Intersection Capacity Analysis

٦

75: CR27 & CR21/Robert St/PA-CR21/Robert St 7/18/2013 1 ٠ ← t  $\mathbf{r}$ -----Movement EBL EBT EBR WBL WBT WBR NRI NBT NBR SBT SBR 4î î i Lane Configurations 4 4, 345 22 33 446 241 Volume (vph) 0 0 0 0 289 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 1.00 0.95 1.00 Lane Util. Factor 1 00 Frpb, ped/bikes 1.00 1.00 1.00 0.97 Flpb, ped/bikes 1.00 1.00 1.00 1.00 Frt 0.99 1.00 1.00 0.85 Flt Protected 0.96 1.00 1.00 1.00 Satd, Flow (prot) 1687 3491 1881 1507 Flt Permitted 0.74 0.92 1.00 1.00 Satd. Flow (perm) 1304 3210 1881 1507 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 287 344 Adj. Flow (vph) 411 0 26 0 0 0 39 531 0 0 RTOR Reduction (vph) 72 0 156 0 0 0 0 0 0 0 0 0 Lane Group Flow (vph) 287 188 0 365 0 0 0 0 0 570 0 0 Confl. Peds. (#/hr) 3 6 3 6 5 Heavy Vehicles (%) 0% 0% 6% 9% 0% 0% 0% 3% 3% 0% 1% 4% Turn Type Perm NA Perm pm+pt NA Perm NA Perm Protected Phases 4 5 2 6 Permitted Phases 4 6 8 2 Actuated Green, G (s) 18.0 36.0 36.0 36.0 Effective Green, g (s) 18.0 36.0 36.0 36.0 Actuated g/C Ratio 0.27 0.55 0.55 0.55 Clearance Time (s) 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.5 3.0 3.0 3.0 Lane Grp Cap (vph) 355 1750 1026 822 v/s Ratio Prot 0.15 v/s Ratio Perm c0.28 c0.18 0.12 v/c Ratio 1.03 0.33 0.28 0.23 Uniform Delay, d1 24.0 8.3 8.0 7.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 55.2 0.0 07 06 Delav (s) 79.2 8.3 8.7 8.4 Level of Service Е Α А Approach Delay (s) 79.2 0.0 8.3 86 Approach LOS Е Α Α Α Intersection Summary HCM 2000 Control Delay 27.3 HCM 2000 Level of Service С

HCM 2000 Volume to Capacity ratio 0.59 Actuated Cycle Length (s) 66.0 Sum of lost time (s) 15.0 Intersection Capacity Utilization 74.5% ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - PM

HCM Signalized Intersection Capacity Analysis

Synchro 8 Report Page 5

5

6

Α

### HCM Signalized Intersection Capacity Analysis 76: CR27 & Hwy89/Queen St/Hwy89/Church St

۰. • ٠ ←  $\mathbf{r}$ 1 Movement EBL EBT EBR WBL WBT WBR NBL NBT NRR SBT SRE Lane Configurations 4 £ 4 4 88 597 568 65 142 38 137 Volume (vph) 34 15 35 38 95 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 Flpb, ped/bikes 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 Frt 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 1.00 1.00 Flt Protected 0.99 1 00 1 00 0.98 0.99 Satd, Flow (prot) 1796 1461 1807 1461 1768 1461 1774 1461 Flt Permitted 0.75 1 00 0.98 1 00 0.78 1 00 0.67 1.00 Satd. Flow (perm) 1358 1461 1764 1461 1407 1461 1202 1461 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 102 694 40 17 660 41 76 165 44 44 110 159 RTOR Reduction (vph) 35 126 0 0 10 0 0 14 0 0 0 0 677 241 154 Lane Group Flow (vph) 796 27 33 0 30 0 0 9 0 Confl. Peds. (#/hr) 15 15 15 15 15 15 15 15 Heavy Vehicles (%) 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% Turn Type pm+pt NA Perm Perm NA Perm Perm NA Perm Perm NA Perm Protected Phases 5 2 6 4 Permitted Phases 2 2 6 6 8 8 4 Λ Actuated Green, G (s) 66.2 66.2 66.2 66.2 20.7 20.7 20.7 20.7 Effective Green, g (s) 66.2 66.2 66.2 66.2 20.7 20.7 20.7 20.7 Actuated g/C Ratio 0.67 0.67 0.67 0.67 0.21 0.21 0.21 0.21 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 908 977 1180 977 294 305 251 305 v/s Ratio Prot v/s Ratio Perm c0.59 0.02 0.38 0.02 c0.17 0.01 0.13 0.02 v/c Ratio 0.88 0.03 0.57 0.03 0.82 0.03 0.61 0.11 Uniform Delay, d1 13.1 5.5 8.8 5.5 37.3 31.1 35.5 31.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 95 01 20 01 16.2 0.0 44 02 Delav (s) 53.5 22.6 5.6 10.8 5.6 31.2 39.9 31.8 Level of Service С В D С D С Α А Approach Delay (s) 21.8 10.5 50.0 35.8 Approach LOS С В D D Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 23.8 С HCM 2000 Volume to Capacity ratio 0.89 Sum of lost time (s) Actuated Cycle Length (s) 98.9 15.0 Intersection Capacity Utilization 114.5% ICU Level of Service Н Analysis Period (min) 15 c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 6

7/18/2013

HCM Signalized Intersection Capacity Analysis 77: CR27 & CR1/Line 8/Line 8

	≯	+	1	4	+	×.	•	t	*	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1		÷		ľ	ĥ			ę	1
Volume (vph)	24	16	71	1	53	5	149	264	4	2	81	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		3.0	6.0			6.0	6.0
Lane Util. Factor		1.00	1.00		1.00		1.00	1.00			1.00	1.00
Frt		1.00	0.85		0.99		1.00	1.00			1.00	0.85
Flt Protected		0.97	1.00		1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)		1845	1482		1878		1703	1870			1880	1553
Flt Permitted		0.77	1.00		0.99		0.63	1.00			0.99	1.00
Satd. Flow (perm)		1471	1482		1869		1132	1870			1872	1553
Peak-hour factor, PHF	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Adj. Flow (vph)	30	20	89	1	66	6	186	330	5	2	101	31
RTOR Reduction (vph)	0	0	78	0	5	0	0	1	0	0	0	15
Lane Group Flow (vph)	0	50	11	0	68	0	186	334	0	0	103	16
Heavy Vehicles (%)	0%	0%	9%	0%	0%	0%	6%	1%	25%	0%	1%	4%
Turn Type	Perm	NA	Perm	Perm	NA	070	pm+pt	NA	2070	Perm	NA	Perm
Protected Phases	1 Cilli	4	1 Cilli	1 Cilli	8		5	2		1 GIIII	6	1 Cilli
Permitted Phases	4	7	4	8	0		2	2		6	0	6
Actuated Green, G (s)	7	7.8	7.8	0	7.8		43.6	43.6		0	32.0	32.0
Effective Green, g (s)		7.8	7.8		7.8		43.6	43.6			32.0	32.0
Actuated g/C Ratio		0.12	0.12		0.12		0.69	0.69			0.50	0.50
Clearance Time (s)		6.0	6.0		6.0		3.0	6.0			6.0	6.0
Vehicle Extension (s)		4.0	4.0		4.0		3.0	1.0			1.0	1.0
Lane Grp Cap (vph)		180	182		229		855	1285			944	783
v/s Ratio Prot		100	102		229		0.03	c0.18			944	103
v/s Ratio Perm		0.03	0.01		c0.04		0.03	CU. 10			0.00	0.01
		0.03			0.30		0.12	0.26			0.06	0.01
v/c Ratio		25.2	0.06								0.11	
Uniform Delay, d1			24.6 1.00		25.3 1.00		3.6	3.8 1.00			8.2 1.00	7.9
Progression Factor		1.00	0.2				1.00					1.00
Incremental Delay, d2		1.1 26.4	24.8		1.0 26.3		0.1 3.7	0.5 4.3			0.2 8.5	0.0
Delay (s)		20.4 C	24.8 C		20.3 C							7.9
Level of Service			C				A	A			A	A
Approach Delay (s)		25.3			26.3			4.1			8.3	_
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			10.0	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.28									
Actuated Cycle Length (s)			63.4	S	um of lost	time (s)			15.0			
Intersection Capacity Utilizati	on		65.0%	IC	U Level o	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 7

7/18/2013

## HCM Signalized Intersection Capacity Analysis 78: CR27 & Line 7/CR88/Line 7

	≯	-	$\mathbf{r}$	4	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			÷f	1	ኘ	ĥ		٦	<b>↑</b>	1
Volume (vph)	5	48	12	45	104	138	20	277	93	64	59	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)		7.0			7.0	7.0	7.0	7.0		7.0	7.0	7.
Lane Util. Factor		1.00			1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes		1.00			1.00	1.00	1.00	1.00		1.00	1.00	0.9
Flpb, ped/bikes		1.00			1.00	1.00	1.00	1.00		1.00	1.00	1.0
Frt		0.98			1.00	0.85	1.00	0.96		1.00	1.00	0.8
Flt Protected		1.00			0.99	1.00	0.95	1.00		0.95	1.00	1.0
Satd. Flow (prot)		1820			1833	1524	1802	1779		1656	1776	158
Flt Permitted		0.97			0.87	1.00	0.71	1.00		0.47	1.00	1.00
Satd. Flow (perm)		1770			1619	1524	1348	1779		828	1776	158
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
Adj. Flow (vph)	6	58	14	54	125	166	24	334	112	77	71	
RTOR Reduction (vph)	0	10	0	0	0	132	0	14	0	0	0	
Lane Group Flow (vph)	0	68	0	0	179	34	24	432	0	77	71	
Confl. Peds. (#/hr)							1					
Heavy Vehicles (%)	0%	2%	0%	7%	0%	6%	0%	1%	8%	9%	7%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Pern
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		16.2			16.2	16.2	50.0	50.0		50.0	50.0	50.
Effective Green, g (s)		16.2			16.2	16.2	50.0	50.0		50.0	50.0	50.
Actuated g/C Ratio		0.20			0.20	0.20	0.62	0.62		0.62	0.62	0.6
Clearance Time (s)		7.0			7.0	7.0	7.0	7.0		7.0	7.0	7.
Vehicle Extension (s)		3.0			3.0	3.0	4.5	4.5		4.5	4.5	4.
Lane Grp Cap (vph)		357			327	307	840	1109		516	1107	98
v/s Ratio Prot					02.		0.0	c0.24		0.0	0.04	
v/s Ratio Perm		0.04			c0.11	0.02	0.02	00.21		0.09	0.01	0.0
v/c Ratio		0.19			0.55	0.11	0.03	0.39		0.15	0.06	0.0
Uniform Delay, d1		26.6			28.7	26.1	5.8	7.5		6.3	5.9	5.
Progression Factor		1.00			1.00	1.00	1.00	1.00		1.00	1.00	1.0
Incremental Delay, d2		0.3			1.9	0.2	0.1	1.00		0.6	0.1	0.
Delay (s)		26.8			30.6	26.3	5.9	8.5		6.9	6.0	5.
Level of Service		20.0 C			C	20.0 C	A	A		0.0 A	A	0.
Approach Delay (s)		26.8			28.5	Ŭ		8.4			6.4	,
Approach LOS		C			C			A			A	
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.43									
Actuated Cycle Length (s)			80.2	S	um of los	t time (s)			14.0			
Intersection Capacity Utilization	1		80.0%		CU Level		)		D			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 27 Baseline - Existing - PM KL

Synchro 8 Report Page 8

7/18/2013

	7 & Hv	1.										
	≯	-	$\mathbf{\hat{v}}$	4	+	*	1	t	۲	1	÷.	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	٦	- <b>†</b> †	7	٦	- <b>†</b> †	7	٦	- <b>†</b> †	7	٦	<b>≜</b> 1≽	
Volume (vph)	71	452	68	182	750	7	208	415	207	22	102	50
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
ane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95	
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1703	3252	1369	1787	3438	1392	1626	3471	1482	1626	3267	
FIt Permitted	0.29	1.00	1.00	0.47	1.00	1.00	0.65	1.00	1.00	0.49	1.00	
Satd. Flow (perm)	512	3252	1369	880	3438	1392	1104	3471	1482	833	3267	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	79	502	76	202	833	8	231	461	230	24	113	56
RTOR Reduction (vph)	0	0	42	0	0	4	0	0	140	0	37	(
ane Group Flow (vph)	79	502	34	202	833	4	231	461	90	24	132	(
Heavy Vehicles (%)	6%	11%	18%	1%	5%	16%	11%	4%	9%	11%	5%	5%
Furn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	1 Unit	2	1 01111	1 Onn	6	1 01111	1 Onn	8	1 Unit	1 Onn	4	
Permitted Phases	2	-	2	6	Ŭ	6	8	U	8	4	- 1	
Actuated Green, G (s)	16.2	16.2	16.2	16.2	16.2	16.2	12.2	12.2	12.2	12.2	12.2	
Effective Green, q (s)	16.2	16.2	16.2	16.2	16.2	16.2	12.2	12.2	12.2	12.2	12.2	
Actuated g/C Ratio	0.45	0.45	0.45	0.45	0.45	0.45	0.34	0.34	0.34	0.34	0.34	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
ane Grp Cap (vph)	227	1447	609	391	1530	619	370	1163	496	279	1094	
/s Ratio Prot	221	0.15	009	291	c0.24	019	370	0.13	490	219	0.04	
//s Ratio Perm	0.15	0.15	0.02	0.23	CU.24	0.00	c0.21	0.15	0.06	0.03	0.04	
//c Ratio	0.15	0.35	0.02	0.23	0.54	0.00	0.62	0.40	0.06	0.03	0.12	
	6.6	6.6	5.7	7.3	7.4	5.6	10.2	9.3	8.6	8.3	8.4	
Jniform Delay, d1	1.00	1.00	5.7 1.00	1.00	1.00	5.0 1.00	1.00	9.3 1.00	0.0 1.00	0.3 1.00	0.4 1.00	
Progression Factor	4.2			4.8		0.0		0.2	0.2	0.1		
ncremental Delay, d2		0.7	0.2	4.0	1.4		3.3 13.4		0.2 8.7		0.0 8.4	
Delay (s)	10.8	7.3	5.9		8.8	5.6		9.5		8.4		
Level of Service	В	A	A	В	A	A	В	A	A	A	A	
Approach Delay (s) Approach LOS		7.6 A			9.4 A			10.3 B			8.4 A	
ntersection Summary	_		_	_		_	_		_	_		_
HCM 2000 Control Delay	_	_	9.2		CM 2000	Level of	Convice		A			
ICM 2000 Control Delay ICM 2000 Volume to Capaci	tu rotio			H		Level of a	Service		A			
	ly ralio		0.58									
Actuated Cycle Length (s)			36.4 53.9%						8.0			
ntersection Capacity Utilization	JII			IC	U Level	DI SERVICE			A			
Analysis Period (min)			15									

c Critical Lane Group

Simcoe County TMP - CR 27 Baseline - Existing - PM KL



Appendix D5: Detailed Synchro Reports for County Road 10

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

												<u> </u>
	۶	-	$\mathbf{r}$	1	-	•	1	- Ť	1	-	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ľ	<b>≜</b> î∌		ሻሻ	ħ₽		ľ	•	1	ľ	ĥ	
Volume (vph)	11	391	147	438	185	32	21	16	48	87	299	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	0.95		0.97	0.95		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.96		1.00	0.98		1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3361		3335	3278		1641	1681	1313	1752	1860	
Flt Permitted	0.56	1.00		0.30	1.00		0.29	1.00	1.00	0.74	1.00	
Satd. Flow (perm)	1061	3361		1048	3278		508	1681	1313	1368	1860	
Peak-hour factor, PHF	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.6
Adj. Flow (vph)	16	575	216	644	272	47	31	24	71	128	440	6
RTOR Reduction (vph)	0	92	0	0	27	0	0	0	46	0	13	
Lane Group Flow (vph)	16	699	0	644	292	0	31	24	25	128	490	(
Heavy Vehicles (%)	0%	3%	3%	5%	8%	6%	10%	13%	23%	3%	0%	29
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8		8	4		
Actuated Green, G (s)	16.3	16.3		16.3	16.3		13.6	13.6	13.6	13.6	13.6	
Effective Green, g (s)	16.3	16.3		16.3	16.3		13.6	13.6	13.6	13.6	13.6	
Actuated g/C Ratio	0.43	0.43		0.43	0.43		0.36	0.36	0.36	0.36	0.36	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	456	1445		450	1409		182	603	471	490	667	
v/s Ratio Prot		0.21			0.09			0.01			c0.26	
v/s Ratio Perm	0.02			c0.61			0.06		0.02	0.09		
v/c Ratio	0.04	0.48		1.43	0.21		0.17	0.04	0.05	0.26	0.73	
Uniform Delay, d1	6.2	7.8		10.8	6.8		8.3	7.9	7.9	8.6	10.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	1.2		206.5	0.3		0.4	0.0	0.0	0.3	4.2	
Delay (s)	6.4	8.9		217.3	7.1		8.7	7.9	8.0	8.9	14.8	
Level of Service	А	А		F	А		А	А	А	А	В	
Approach Delay (s)		8.9			147.7			8.2			13.6	
Approach LOS		Α			F			Α			В	
Intersection Summary												
HCM 2000 Control Delay			62.9	H	CM 2000	Level of \$	Service		E			
HCM 2000 Volume to Capa	city ratio		1.11									
Actuated Cycle Length (s)			37.9	Si	um of lost	time (s)			8.0			
Intersection Capacity Utiliza	tion		56.3%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 91: CR10/Industrial Pkw & 15th Line/Mackenzie Pioneer Rd

	1	•	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۲	1	<b>≜</b> î≽		٦	<b>^</b>	
Volume (vph)	54	1	79	33	5	766	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	7.0		5.0	7.0	
Lane Util. Factor	1.00	1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.99		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.85	0.96		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1615	3034		1802	3505	
Flt Permitted	0.95	1.00	1.00		0.60	1.00	
Satd. Flow (perm)	1770	1615	3034		1131	3505	
Peak-hour factor, PHF	0.60	0.60	0.60	0.60	0.60	0.60	
Adj. Flow (vph)	90	2	132	55	8	1277	
RTOR Reduction (vph)	0	2	14	0	0	0	
Lane Group Flow (vph)	90	0	173	0	8	1277	
Confl. Peds. (#/hr)				1	1		
Heavy Vehicles (%)	2%	0%	16%	6%	0%	3%	
Turn Type	NA	Perm	NA		pm+pt	NA	
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green, G (s)	7.7	7.7	79.1		85.6	85.6	
Effective Green, g (s)	7.7	7.7	79.1		85.6	85.6	
Actuated g/C Ratio	0.07	0.07	0.75		0.81	0.81	
Clearance Time (s)	5.0	5.0	7.0		5.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	129	118	2279		928	2849	
v/s Ratio Prot	c0.05		0.06		0.00	c0.36	
v/s Ratio Perm		0.00			0.01		
v/c Ratio	0.70	0.00	0.08		0.01	0.45	
Uniform Delay, d1	47.7	45.2	3.5		2.0	2.9	
Progression Factor	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	15.2	0.0	0.1		0.0	0.5	
Delay (s)	62.8	45.2	3.5		2.0	3.4	
Level of Service	E	D	A		A	A	
Approach Delay (s)	62.5		3.5			3.4	
Approach LOS	E		A			Α	
Intersection Summary							
HCM 2000 Control Delay			6.9	Н	ICM 2000	Level of Service	
HCM 2000 Volume to Capaci	ty ratio		0.50				
Actuated Cycle Length (s)			105.3	S	um of los	t time (s)	
Intersection Capacity Utilization	on		71.7%	IC	CU Level of	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 1

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 2

	•	→	$\rightarrow$	1	+	•	1	1	1	-	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	۲	\$	1		\$		۲	<b>≜</b> î≽			-∱î≽	
Volume (vph)	10	0	22	0	0	0	162	97	0	0	364	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.0	6.0	6.0				3.0	6.0			6.0	6.
Lane Util. Factor	0.95	0.91	0.95				1.00	0.95			0.95	1.0
Frt	1.00	0.87	0.85				1.00	1.00			1.00	0.8
Flt Protected	0.95	0.99	1.00				0.95	1.00			1.00	1.0
Satd. Flow (prot)	1715	1491	1534				1787	3112			3374	161
Flt Permitted	0.95	0.99	1.00				0.41	1.00			1.00	1.0
Satd. Flow (perm)	1715	1491	1534				774	3112			3374	161
Peak-hour factor, PHF	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.6
Adj. Flow (vph)	15	0	32	0	0	0	238	143	0	0	535	74
RTOR Reduction (vph)	0	15	15	0	0	0	0	0	0	0	0	36
Lane Group Flow (vph)	13	2	2	0	0	0	238	143	0	0	535	37
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	1%	16%	0%	0%	7%	0
Turn Type	Split	NA	Perm	Split			pm+pt	NA		Perm	NA	Perr
Protected Phases	4	4		8	8		5	2			6	
Permitted Phases			4				2			6		
Actuated Green, G (s)	8.0	8.0	8.0				51.2	51.2			35.9	35.
Effective Green, q (s)	8.0	8.0	8.0				51.2	51.2			35.9	35.
Actuated g/C Ratio	0.11	0.11	0.11				0.72	0.72			0.50	0.5
Clearance Time (s)	6.0	6.0	6.0				3.0	6.0			6.0	6.
Vehicle Extension (s)	3.0	3.0	3.0				3.0	5.0			5.0	5.
Lane Grp Cap (vph)	192	167	172				731	2237			1701	81
v/s Ratio Prot	c0.01	0.00					c0.06	0.05			0.16	
v/s Ratio Perm			0.00				0.18					c0.2
v/c Ratio	0.07	0.01	0.01				0.33	0.06			0.31	0.4
Uniform Delay, d1	28.3	28.1	28.1				3.4	2.9			10.4	11.
Progression Factor	1.00	1.00	1.00				1.00	1.00			1.00	1.0
Incremental Delay, d2	0.1	0.0	0.0				1.2	0.1			0.5	1.
Delay (s)	28.4	28.1	28.1				4.5	3.0			10.9	13.
Level of Service	С	С	С				Α	Α			В	
Approach Delay (s)		28.2			0.0			4.0			12.3	
Approach LOS		С			А			А			В	
Intersection Summary												
HCM 2000 Control Delay			10.9	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.42									
Actuated Cycle Length (s)			71.2	Si	um of lost	time (s)			20.5			
Intersection Capacity Utiliza	ition		66.3%	IC	U Level o	of Service	9		С			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 93: 14th Line & CR10/Industrial Pkw

	-	$\mathbf{r}$	1	-	1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	<b>††</b>	1	٦	<b>†</b> †	۲	1			
Volume (vph)	237	22	28	395	64	56			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	7.2	7.2	7.2	7.2	5.6	5.6			
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00			
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	0.99			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3374	1615	1530	3438	1805	1561			
Flt Permitted	1.00	1.00	0.51	1.00	0.95	1.00			
Satd. Flow (perm)	3374	1615	819	3438	1805	1561			
Peak-hour factor, PHF	0.57	0.57	0.57	0.57	0.57	0.57			
Adj. Flow (vph)	416	39	49	693	112	98			
RTOR Reduction (vph)	0	12	0	0	0	85			
Lane Group Flow (vph)	416	27	49	693	112	13			
Confl. Peds. (#/hr)						1			
Heavy Vehicles (%)	7%	0%	18%	5%	0%	2%			
Turn Type	NA	Perm	Perm	NA	NA	Perm			
Protected Phases	2			6	8				
Permitted Phases		2	6		-	8			
Actuated Green, G (s)	53.1	53.1	53.1	53.1	10.1	10.1			
Effective Green, g (s)	53.1	53.1	53.1	53.1	10.1	10.1			
Actuated g/C Ratio	0.70	0.70	0.70	0.70	0.13	0.13			
Clearance Time (s)	7.2	7.2	7.2	7.2	5.6	5.6			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	3.0			
Lane Grp Cap (vph)	2357	1128	572	2402	239	207			
v/s Ratio Prot	0.12			c0.20	c0.06				
v/s Ratio Perm		0.02	0.06			0.01			
v/c Ratio	0.18	0.02	0.09	0.29	0.47	0.06			
Uniform Delay, d1	3.9	3.5	3.7	4.3	30.5	28.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.2	0.0	0.3	0.3	1.5	0.1			
Delay (s)	4.1	3.5	4.0	4.6	31.9	28.9			
Level of Service	A	A	A	A	C	C			
Approach Delay (s)	4.1			4.6	30.5				
Approach LOS	A			A	С				
Intersection Summary									
HCM 2000 Control Delay			8.3	Н	CM 2000	Level of Servic	e	A	
HCM 2000 Volume to Capaci	ty ratio		0.32						
Actuated Cycle Length (s)			76.0	S	um of lost	time (s)		12.8	
Intersection Capacity Utilizati	on		34.9%	IC	U Level o	of Service		A	
Analysis Period (min)			15						
c Critical Lane Group									

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 3

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 4

	-	$\rightarrow$	1	+	1	1		
lovement	EBT	EBR	WBL	WBT	NBL	NBR		
ane Configurations	<b>†</b> †	1	۲	<b>^</b>	۲	1		
olume (vph)	137	92	118	320	99	81		
leal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
otal Lost time (s)	6.0	6.0	3.0	6.0	6.0	6.0		
ane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
rpb, ped/bikes	1.00	0.98	1.00	1.00	1.00	0.99		
lpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
rt	1.00	0.85	1.00	1.00	1.00	0.85		
It Protected	1.00	1.00	0.95	1.00	0.95	1.00		
atd. Flow (prot)	3139	1386	1735	3438	1656	1532		
It Permitted	1.00	1.00	0.54	1.00	0.95	1.00		
atd. Flow (perm)	3139	1386	979	3438	1656	1532		
eak-hour factor, PHF	0.59	0.59	0.59	0.59	0.59	0.59		
dj. Flow (vph)	232	156	200	542	168	137		
TOR Reduction (vph)	0	90	0	0	0	111		
ane Group Flow (vph)	232	66	200	542	168	26		
onfl. Peds. (#/hr)	202	1	1	012	100	2		
eavy Vehicles (%)	15%	14%	4%	5%	9%	4%		
urn Type	NA	Perm	pm+pt	NA	NA	Perm		
rotected Phases	2	1 Onn	pm-pt 1	6	8	1 onn		
ermitted Phases	2	2	6	0	0	8		
ctuated Green, G (s)	22.7	22.7	34.1	34.1	11.0	11.0		
ffective Green, g (s)	22.7	22.7	34.1	34.1	11.0	11.0		
ctuated g/C Ratio	0.40	0.40	0.60	0.60	0.19	0.19		
learance Time (s)	6.0	6.0	3.0	6.0	6.0	6.0		
ehicle Extension (s)	5.0	5.0	3.0	5.0	3.0	3.0		
ane Grp Cap (vph)	1247	551	695	2053	319	295		
/s Ratio Prot	0.07	551	c0.04	0.16	c0.10	295		
/s Ratio Perm	0.07	0.05	c0.04	0.10	CU. 10	0.02		
c Ratio	0.19	0.05	0.29	0.26	0.53	0.02		
	11.2	10.12	0.29 5.3	0.20	20.7	18.9		
Iniform Delay, d1								
rogression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
cremental Delay, d2	0.3 11.5	0.4 11.3	0.2 5.6	0.3 5.8	1.6 22.3	0.1 19.1		
elay (s) evel of Service	11.5 B	11.3 B	0.0 A	5.8 A	22.3 C	19.1 B		
	В 11.4	В	A	5.7	20.8	В		
pproach Delay (s) pproach LOS	11.4 B			5.7 A	20.0 C			
tersection Summary		_						
CM 2000 Control Delay			10.5	Н	CM 2000	Level of Service	В	
CM 2000 Volume to Capa	city ratio		0.37		2 2000		-	
ctuated Cycle Length (s)	only runo		57.1	S	um of losi	time (s)	15.0	
tersection Capacity Utiliza	tion		40.6%			of Service	A	
nalysis Period (min)			15		C LOVOI (			

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 5

# HCM Signalized Intersection Capacity Analysis 95: CR10/Tottenham Rd & CR1/8th Line

	≯	-	$\mathbf{r}$	4	+	*	•	t	۲	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			÷			ę	7
Volume (vph)	16	55	17	69	29	40	11	129	41	32	167	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.6			6.6			8.0			8.0	8.0
Lane Util. Factor		1.00			1.00			1.00			1.00	1.00
Frt		0.97			0.96			0.97			1.00	0.85
Flt Protected		0.99			0.98			1.00			0.99	1.00
Satd. Flow (prot)		1702			1609			1532			1587	1429
Flt Permitted		0.91			0.78			0.97			0.92	1.00
Satd. Flow (perm)		1570			1288			1497			1464	1429
Peak-hour factor, PHF	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Adj. Flow (vph)	22	75	23	95	40	55	15	177	56	44	229	21
RTOR Reduction (vph)	0	15	0	0	25	0	0	14	0	0	0	10
Lane Group Flow (vph)	0	105	0	0	165	0	0	234	0	0	273	11
Heavy Vehicles (%)	6%	7%	12%	4%	7%	25%	36%	21%	12%	28%	17%	13%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		6
Actuated Green, G (s)		14.5			14.5			34.0			34.0	34.0
Effective Green, g (s)		14.5			14.5			34.0			34.0	34.0
Actuated g/C Ratio		0.23			0.23			0.54			0.54	0.54
Clearance Time (s)		6.6			6.6			8.0			8.0	8.0
Vehicle Extension (s)		5.0			5.0			5.0			5.0	5.0
Lane Grp Cap (vph)		360			295			806			788	769
v/s Ratio Prot												
v/s Ratio Perm		0.07			c0.13			0.16			c0.19	0.01
v/c Ratio		0.29			0.56			0.29			0.35	0.01
Uniform Delay, d1		20.1			21.5			8.0			8.3	6.8
Progression Factor		1.00			1.00			1.00			1.00	1.00
Incremental Delay, d2		0.9			3.9			0.9			1.2	0.0
Delay (s)		21.0			25.3			8.9			9.5	6.8
Level of Service		С			С			А			А	A
Approach Delay (s)		21.0			25.3			8.9			9.3	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			14.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.41									
Actuated Cycle Length (s)			63.1	S	um of los	t time (s)			14.6			
Intersection Capacity Utiliza	tion		68.3%	IC	CU Level of	of Service	)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 6

		-			Line/N		-					
	۶	-	$\mathbf{r}$	4	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			\$			ę	1		\$	
Volume (vph)	2	23	33	23	3	8	10	126	66	63	197	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)		6.0			6.0			7.0	7.0		7.0	
Lane Util. Factor		1.00			1.00			1.00	1.00		1.00	
Frt		0.92			0.97			1.00	0.85		1.00	
Flt Protected		1.00			0.97			1.00	1.00		0.99	
Satd. Flow (prot)		1662			1568			1807	1583		1795	
Flt Permitted		0.99			0.74			0.96	1.00		0.86	
Satd. Flow (perm)		1647			1197			1739	1583		1566	
Peak-hour factor, PHF	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.5
Adj. Flow (vph)	3	39	56	39	5	14	17	214	112	107	334	
RTOR Reduction (vph)	0	47	0	0	12	0	0	0	44	0	0	(
Lane Group Flow (vph)	0	51	0	0	46	0	0	231	68	0	446	(
Heavy Vehicles (%)	100%	0%	4%	11%	0%	25%	14%	4%	2%	3%	5%	0%
Turn Type	Perm	NA	.,.	Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8	, in the second s		2	-	2	6	, in the second se	
Actuated Green, G (s)	•	9.5		Ū	9.5		-	35.0	35.0	v	35.0	
Effective Green, g (s)		9.5			9.5			35.0	35.0		35.0	
Actuated g/C Ratio		0.17			0.17			0.61	0.61		0.61	
Clearance Time (s)		6.0			6.0			7.0	7.0		7.0	
Vehicle Extension (s)		3.5			3.5			4.0	4.0		4.0	
Lane Grp Cap (vph)		272			197			1058	963		953	
v/s Ratio Prot												
v/s Ratio Perm		0.03			c0.04			0.13	0.04		c0.28	
v/c Ratio		0.19			0.24			0.22	0.07		0.47	
Uniform Delay, d1		20.7			20.8			5.1	4.6		6.2	
Progression Factor		1.00			1.00			1.00	1.00		1.00	
Incremental Delay, d2		0.4			0.7			0.5	0.1		1.6	
Delay (s)		21.1			21.6			5.6	4.7		7.8	
Level of Service		C			C 21.0			0.0 A	A		A	
Approach Delay (s)		21.1			21.6			5.3			7.8	
Approach LOS		С			C			A			A	
Intersection Summary												
HCM 2000 Control Delay			9.1	H	CM 2000	Level of \$	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.42									
Actuated Cycle Length (s)			57.5	Si	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	tion		75.0%			of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 97: CR10/Tottenham Rd & Private Access/Laverock St

	۶	-	$\mathbf{F}$	1	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ų	۴		4			4î þ			4	
Volume (vph)	5	1	30	23	2	27	44	217	8	5	275	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0			6.0			6.0	
Lane Util. Factor		1.00	1.00		1.00			0.95			1.00	
Frpb, ped/bikes		1.00	0.98		0.99			1.00			1.00	
Flpb, ped/bikes		1.00	1.00		1.00			1.00			1.00	
Frt		1.00	0.85		0.93			1.00			1.00	
Flt Protected		0.96	1.00		0.98			0.99			1.00	
Satd. Flow (prot)		1820	1481		1683			3289			1703	
Flt Permitted		0.71	1.00		0.85			0.85			0.99	
Satd. Flow (perm)		1356	1481		1470			2820			1696	
Peak-hour factor, PHF	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Adj. Flow (vph)	6	1	39	30	3	35	57	282	10	6	357	12
RTOR Reduction (vph)	0	0	36	0	32	0	0	2	0	0	1	0
Lane Group Flow (vph)	0	7	3	0	36	0	0	347	0	0	374	0
Confl. Peds. (#/hr)	1		5	5		1	1		2	2		1
Heavy Vehicles (%)	0%	0%	7%	4%	0%	0%	9%	8%	13%	0%	10%	44%
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)		5.2	5.2		5.2			52.5			52.5	
Effective Green, g (s)		5.2	5.2		5.2			52.5			52.5	
Actuated g/C Ratio		0.07	0.07		0.07			0.75			0.75	
Clearance Time (s)		6.0	6.0		6.0			6.0			6.0	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph)		101	110		109			2124			1277	
v/s Ratio Prot												
v/s Ratio Perm		0.01	0.00		c0.02			0.12			c0.22	
v/c Ratio		0.07	0.03		0.33			0.16			0.29	
Uniform Delay, d1		30.0	29.9		30.6			2.4			2.7	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		0.3	0.1		1.8			0.0			0.6	
Delay (s)		30.3	30.0		32.3			2.5			3.3	
Level of Service		С	С		С			Α			A	
Approach Delay (s)		30.0			32.3			2.5			3.3	
Approach LOS		С			С			A			А	
Intersection Summary												
HCM 2000 Control Delay			6.8	H	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capac	city ratio		0.32									
Actuated Cycle Length (s)			69.7	S	um of lost	time (s)			17.0			
Intersection Capacity Utilizat	tion		49.6%	IC	U Level o	of Service	9		А			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 7 Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 8

	≯	-	$\mathbf{r}$	1	+	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ę	1		ę	1		ę	1		ę	ň
Volume (vph)	29	12	33	51	26	49	18	136	8	34	359	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0
Lane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frpb, ped/bikes		1.00	0.96		1.00	0.97		1.00	0.96		1.00	0.96
Flpb, ped/bikes		0.99	1.00		0.99	1.00		1.00	1.00		1.00	1.00
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected		0.97	1.00		0.97	1.00		0.99	1.00		1.00	1.00
Satd. Flow (prot)		1615	1503		1815	1477		1737	1452		1819	1468
Flt Permitted		0.71	1.00		0.76	1.00		0.91	1.00		0.95	1.00
Satd. Flow (perm)		1195	1503		1430	1477		1585	1452		1744	1468
Peak-hour factor. PHF	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Adj. Flow (vph)	45	18	51	78	40	75	28	209	12	52	552	77
RTOR Reduction (vph)	40	0	43	0	40	64	20	203	5	0	0	30
Lane Group Flow (vph)	0	63	43	0	118	11	0	237	7	0	604	47
Confl. Peds. (#/hr)	7	00	14	14	110	7	11	201	12	12	004	1
Heavy Vehicles (%)	18%	0%	3%	0%	0%	6%	21%	7%	7%	3%	4%	6%
, ,	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Turn Type	Pelli		Penn	Penn		Perm	Perm		Penn	Penn		Pelli
Protected Phases		4		0	8	0	0	2	0	0	6	
Permitted Phases	4	07	4	8	0.7	8	2	00.0	2	6	00.0	6
Actuated Green, G (s)		8.7	8.7		8.7	8.7		36.2	36.2		36.2	36.2
Effective Green, g (s)		8.7	8.7		8.7	8.7		36.2	36.2		36.2	36.2
Actuated g/C Ratio		0.15	0.15		0.15	0.15		0.61	0.61		0.61	0.61
Clearance Time (s)		7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		176	222		211	218		974	892		1071	902
v/s Ratio Prot												
v/s Ratio Perm		0.05	0.01		c0.08	0.01		0.15	0.01		c0.35	0.03
v/c Ratio		0.36	0.03		0.56	0.05		0.24	0.01		0.56	0.0
Uniform Delay, d1		22.6	21.5		23.3	21.6		5.1	4.4		6.7	4.5
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2		1.2	0.1		3.2	0.1		0.6	0.0		2.2	0.1
Delay (s)		23.8	21.6		26.5	21.7		5.7	4.4		8.8	4.6
Level of Service		С	С		С	С		Α	Α		Α	ŀ
Approach Delay (s)		22.8			24.6			5.7			8.4	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			11.7	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.56									
Actuated Cycle Length (s)			58.9	Si	um of lost	time (s)			14.0			
Intersection Capacity Utilizat	tion		66.0%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 9

# HCM Signalized Intersection Capacity Analysis 99: Private Access/CR10/Tottenham Rd & Hwy 9

	٦	<b>→</b>	$\mathbf{r}$	4	+	×.	1	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<b>≜</b> †î≽		٢	<u>†</u> †	1		÷		ľ		
Volume (vph)	76	539	1	1	342	39	0	0	5	162	2	277
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00		1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85		0.86		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00		0.95	1.00	
Satd. Flow (prot)	1641	3437		1719	3438	1468		1565		1641	1470	
Flt Permitted	0.46	1.00		0.29	1.00	1.00		1.00		0.75	1.00	
Satd. Flow (perm)	789	3437		526	3438	1468		1565		1300	1470	
Peak-hour factor, PHF	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Adj. Flow (vph)	117	829	2	2	526	60	0	0	8	249	3	426
RTOR Reduction (vph)	0	1	0	0	0	33	0	5	0	0	132	0
Lane Group Flow (vph)	117	830	0	2	526	27	0	3	0	249	297	0
Heavy Vehicles (%)	10%	5%	5%	5%	5%	10%	5%	10%	5%	10%	10%	10%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)	16.4	16.4		16.4	16.4	16.4		11.7		11.7	11.7	
Effective Green, q (s)	16.4	16.4		16.4	16.4	16.4		11.7		11.7	11.7	
Actuated g/C Ratio	0.45	0.45		0.45	0.45	0.45		0.32		0.32	0.32	
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	358	1561		238	1561	666		507		421	476	
v/s Ratio Prot		c0.24			0.15			0.00			c0.20	
v/s Ratio Perm	0.15			0.00		0.02				0.19		
v/c Ratio	0.33	0.53		0.01	0.34	0.04		0.01		0.59	0.62	
Uniform Delay, d1	6.3	7.1		5.4	6.3	5.5		8.3		10.2	10.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.1	0.6	0.1		0.0		2.2	2.6	
Delay (s)	6.8	7.4		5.5	6.9	5.6		8.3		12.4	12.9	
Level of Service	A	А		A	A	A		A		В	В	
Approach Delay (s)		7.4			6.8			8.3		-	12.7	
Approach LOS		A			A			A			В	
Intersection Summary												
HCM 2000 Control Delay			8.9	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	icity ratio		0.57									
Actuated Cycle Length (s)			36.1	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	ation		45.5%	IC	U Level of	of Service			A			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - AM KL

Synchro 8 Report Page 10

	٦	-	$\mathbf{r}$	1	-	*	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	٦	<b>≜</b> î≽		ኻኻ	<b>≜</b> î≽		٦	•	7	٦	ĥ	
Volume (vph)	88	587	149	391	588	112	150	350	398	62	314	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	0.95		0.97	0.95		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.98		1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	3379		3400	3460		1787	1881	1509	1719	1822	
Flt Permitted	0.25	1.00		0.25	1.00		0.31	1.00	1.00	0.34	1.00	
Satd. Flow (perm)	466	3379		895	3460		578	1881	1509	612	1822	
Peak-hour factor, PHF	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.7
Adj. Flow (vph)	121	804	204	536	805	153	205	479	545	85	430	7
RTOR Reduction (vph)	0	56	0	0	38	0	0	0	46	0	17	
Lane Group Flow (vph)	121	952	0	536	920	0	205	479	499	85	490	
Heavy Vehicles (%)	2%	4%	2%	3%	2%	1%	1%	1%	7%	5%	1%	7
Turn Type	Perm	NA	2 /0	Perm	NA	170	Perm	NA	Perm	Perm	NA	
Protected Phases	1 Gilli	2		1 Cilli	6		1 CIIII	8	1 Cilli	1 GIIII	4	
Permitted Phases	2	2		6	0		8	0	8	4	-	
Actuated Green, G (s)	16.0	16.0		16.0	16.0		15.2	15.2	15.2	15.2	15.2	
Effective Green, g (s)	16.0	16.0		16.0	16.0		15.2	15.2	15.2	15.2	15.2	
Actuated q/C Ratio	0.41	0.41		0.41	0.41		0.39	0.39	0.39	0.39	0.39	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0	4.0		4.0	4.0		3.0	4.0	4.0	4.0	4.0	
	190	1379		365	1412		224	729	585	237	706	
Lane Grp Cap (vph)	190	0.28		300	0.27		224	0.25	202	231	0.27	
v/s Ratio Prot	0.00	0.28		0.00	0.27		0.05	0.25	0.00	0.44	0.27	
v/s Ratio Perm	0.26	0.00		c0.60	0.05		c0.35	0.00	0.33	0.14	0.00	
v/c Ratio	0.64	0.69		1.47	0.65		0.92	0.66	0.85	0.36	0.69	
Uniform Delay, d1	9.3	9.6		11.6	9.4		11.4	9.9	11.0	8.5	10.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	15.2	2.9		225.3	2.3		37.5	2.1	11.6	0.9	3.0	
Delay (s)	24.5	12.4		236.9	11.7		48.8	12.0	22.5	9.5	13.0	
Level of Service	С	В		F	В		D	В	С	A	В	
Approach Delay (s)		13.7			92.5			22.8			12.5	
Approach LOS		В			F			С			В	
Intersection Summary												
HCM 2000 Control Delay			42.6	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		1.20									
Actuated Cycle Length (s)			39.2	Si	um of lost	time (s)			8.0			
Intersection Capacity Utiliza	ition		73.7%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 1

HCM Signalized Intersection Capacity Analysis 91: CR10/Industrial Pkw & 15th Line/Mackenzie Pioneer Rd

	1	•	1	1	×	Ŧ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	٢	1	<b>≜</b> 1≽		۲	<u>††</u>			
/olume (vph)	100	9	1301	333	14	608			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
otal Lost time (s)	5.0	5.0	7.0		5.0	7.0			
ane Util. Factor	1.00	1.00	0.95		1.00	0.95			
t	1.00	0.85	0.97		1.00	1.00			
t Protected	0.95	1.00	1.00		0.95	1.00			
atd. Flow (prot)	1719	1455	3418		1805	3195			
Permitted	0.95	1.00	1.00		0.05	1.00			
td. Flow (perm)	1719	1455	3418		99	3195			
ak-hour factor, PHF	0.58	0.58	0.58	0.58	0.58	0.58			
lj. Flow (vph)	172	16	2243	574	24	1048			
OR Reduction (vph)	0	14	18	0	0	0+0			
ine Group Flow (vph)	172	2	2799	0	24	1048			
avy Vehicles (%)	5%	11%	3%	0%	0%	13%			
m Type	NA	Perm	NA	0 /0	pm+pt	NA			
tected Phases	8	I CIIII	2		1	6			
mitted Phases	0	8	2		6	0			
uated Green, G (s)	10.0	10.0	71.7		79.7	79.7			
ective Green, g (s)	10.0	10.0	71.7		79.7	79.7			
uated g/C Ratio	0.10	0.10	0.71		0.78	0.78			
arance Time (s)	5.0	5.0	7.0		5.0	7.0			
nicle Extension (s)	3.0	5.0 3.0	3.0		3.0	3.0			
				_					
e Grp Cap (vph)	169	143	2409		127	2503			
Ratio Prot	c0.10	0.00	c0.82		0.01	c0.33			
Ratio Perm	4.00	0.00	4.40		0.14	0.40			
Ratio	1.02	0.01	1.16		0.19	0.42			
iform Delay, d1	45.9	41.4	15.0		28.7	3.5			
gression Factor	1.00	1.00	1.00		1.00	1.00			
remental Delay, d2	74.0	0.0	77.9		0.7	0.5			
lay (s)	119.8	41.4	92.9		29.5	4.1			
vel of Service	F	D	F		С	А			
proach Delay (s)	113.1		92.9			4.6			
proach LOS	F		F			A			
ersection Summary									
M 2000 Control Delay			70.6	HCM 2000 Level of Service			e	E	
M 2000 Volume to Cap	2000 Volume to Capacity ratio		1.13						
uated Cycle Length (s)			101.7	S	um of los	t time (s)		17.0	
ersection Capacity Utilization			71.7%	IC	CU Level	of Service		С	
alysis Period (min)			15						
Critical Lane Group									

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 2

2: CR10/Industrial Pkw & Honda Plant Entrance/Honda Plant-Farm												
	≯	-	$\mathbf{r}$	∢	+	×	1	1	۲	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	٢	\$	1		\$		۲	<b>≜</b> †}			†î∌	i
Volume (vph)	912	0	283	0	0	0	111	772	0	0	443	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.0	6.0	6.0				3.0	6.0			6.0	6.
Lane Util. Factor	0.95	0.91	0.95				1.00	0.95			0.95	1.0
Frt	1.00	0.99	0.85				1.00	1.00			1.00	0.8
Flt Protected	0.95	0.96	1.00				0.95	1.00			1.00	1.0
Satd. Flow (prot)	1715	1636	1534				1770	3505			3406	161
Flt Permitted	0.95	0.96	1.00				0.16	1.00			1.00	1.0
Satd. Flow (perm)	1715	1636	1534				307	3505			3406	161
Peak-hour factor, PHF	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.5
Adj. Flow (vph)	1546	0	480	0	0	0	188	1308	0	0	751	36
RTOR Reduction (vph)	0	48	221	0	0	0	0	0	0	0	0	25
Lane Group Flow (vph)	804	742	211	0	0	0	188	1308	0	0	751	10
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	2%	3%	0%	0%	6%	09
Turn Type	Split	NA	Perm	Split			pm+pt	NA		Perm	NA	Perr
Protected Phases	4	4		8	8		5	2			6	
Permitted Phases			4				2			6		
Actuated Green, G (s)	58.0	58.0	58.0				50.0	50.0			35.0	35.
Effective Green, g (s)	58.0	58.0	58.0				50.0	50.0			35.0	35.
Actuated g/C Ratio	0.48	0.48	0.48				0.42	0.42			0.29	0.2
Clearance Time (s)	6.0	6.0	6.0				3.0	6.0			6.0	6.
Vehicle Extension (s)	3.0	3.0	3.0				3.0	5.0			5.0	5.
Lane Grp Cap (vph)	828	790	741				274	1460			993	47
v/s Ratio Prot	c0.47	0.45					0.07	c0.37			0.22	
/s Ratio Perm			0.14				0.22					0.0
v/c Ratio	0.97	0.94	0.29				0.69	0.90			0.76	0.2
Uniform Delay, d1	30.2	29.3	18.6				25.4	32.6			38.6	32.
Progression Factor	1.00	1.00	1.00				1.00	1.00			1.00	1.0
Incremental Delay, d2	24.2	18.7	0.2				13.1	8.9			5.4	1.
Delay (s)	54.4	48.0	18.8				38.5	41.5			44.0	33.
Level of Service	D	D	В				D	D			D	(
Approach Delay (s)		44.3			0.0			41.1			40.5	
Approach LOS		D			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			42.4	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.02									
Actuated Cycle Length (s)			120.0	Si	um of lost	time (s)			20.5			
Intersection Capacity Utiliza	ation		80.6%	IC	U Level o	of Service	Э		D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 93: 14th Line & CR10/Industrial Pkw

	-	$\mathbf{r}$	1	-	1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	<u>††</u>	1	٢	<b>^</b>	٢	1			
Volume (vph)	771	87	100	580	85	71			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	7.2	7.2	7.2	7.2	5.6	5.6			
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3539	1615	1787	3374	1736	1482			
Flt Permitted	1.00	1.00	0.20	1.00	0.95	1.00			
Satd. Flow (perm)	3539	1615	370	3374	1736	1482			
Peak-hour factor, PHF	0.62	0.62	0.62	0.62	0.62	0.62			
Adj. Flow (vph)	1244	140	161	935	137	115			
RTOR Reduction (vph)	0	22	0	0	0	52			
Lane Group Flow (vph)	1244	118	161	935	137	63			
Heavy Vehicles (%)	2%	0%	1%	7%	4%	9%			
Turn Type	NA	Perm	Perm	NA	NA	Perm			
Protected Phases	2	1 Unit	1 Unit	6	8	1 Unit			
Permitted Phases	-	2	6	Ŭ	Ŭ	8			
Actuated Green, G (s)	53.1	53.1	53.1	53.1	11.3	11.3			
Effective Green, q (s)	53.1	53.1	53.1	53.1	11.3	11.3			
Actuated g/C Ratio	0.69	0.69	0.69	0.69	0.15	0.15			
Clearance Time (s)	7.2	7.2	7.2	7.2	5.6	5.6			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	3.0			
Lane Grp Cap (vph)	2434	1110	254	2320	254	216			
v/s Ratio Prot	0.35	1110	201	0.28	c0.08	210			
v/s Ratio Perm	0.00	0.07	c0.43	0.20	00.00	0.04			
v/c Ratio	0.51	0.01	0.63	0.40	0.54	0.29			
Uniform Delay, d1	5.8	4.1	6.7	5.2	30.5	29.4			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.8	0.2	11.5	0.5	2.2	0.8			
Delay (s)	6.6	4.3	18.1	5.7	32.7	30.1			
Level of Service	A	A	В	A	C	C			
Approach Delay (s)	6.3		5	7.6	31.5	0			
Approach LOS	A			A	C				
Intersection Summary									
HCM 2000 Control Delay			9.1	Н	CM 2000	Level of Servic	ə	A	
HCM 2000 Volume to Capa	acity ratio		0.62		2000	2010.0100110	•	~	
Actuated Cycle Length (s)		77.2	S	um of lost	t time (s)		12.8		
Intersection Capacity Utilization		49.6%			of Service		12.0 A		
Analysis Period (min)			15					~~	
			15						

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 3 Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 4

94: CR10/Tottenha								
	-	$\mathbf{i}$	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
ane Configurations	<u></u>	1	٦	<u>†</u> †	۲	۴		
/olume (vph)	669	195	157	460	197	151		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
otal Lost time (s)	6.0	6.0	3.0	6.0	6.0	6.0		
ane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
It Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3505	1468	1656	3471	1703	1568		
It Permitted	1.00	1.00	0.13	1.00	0.95	1.00		
Satd. Flow (perm)	3505	1468	224	3471	1703	1568		
Peak-hour factor, PHF	0.61	0.61	0.61	0.61	0.61	0.61		
Adj. Flow (vph)	1097	320	257	754	323	248		
RTOR Reduction (vph)	0	33	0	0	0	186		
ane Group Flow (vph)	1097	287	257	754	323	62		
leavy Vehicles (%)	3%	10%	9%	4%	6%	3%		
urn Type	NA	Perm	pm+pt	NA	NA	Perm		
Protected Phases	2		1	6	8			
Permitted Phases	-	2	6	Ű	Ű	8		
Actuated Green, G (s)	34.7	34.7	49.2	49.2	20.3	20.3		
Effective Green, q (s)	34.7	34.7	49.2	49.2	20.3	20.3		
Actuated g/C Ratio	0.43	0.43	0.60	0.60	0.25	0.25		
Clearance Time (s)	6.0	6.0	3.0	6.0	6.0	6.0		
/ehicle Extension (s)	5.0	5.0	3.0	5.0	3.0	3.0		
ane Grp Cap (vph)	1492	625	337	2095	424	390		
/s Ratio Prot	0.31	020	c0.11	0.22	c0.19	000		
/s Ratio Perm	0.51	0.20	c0.35	0.22	60.13	0.04		
/c Ratio	0.74	0.20	0.76	0.36	0.76	0.16		
Jniform Delay, d1	19.6	16.7	14.9	8.2	28.4	23.9		
Progression Factor	1.00	1.00	14.9	1.00	20.4	1.00		
ncremental Delay, d2	3.3	2.4	9.8	0.5	7.9	0.2		
	22.8	19.1	24.7	8.7	36.3	24.1		
Delay (s) Level of Service	22.8 C	19.1 B	24.7 C	8.7 A	30.3 D	24.1 C		
	22.0	В	U U	A 12.7	31.0	C		
Approach Delay (s) Approach LOS	22.0 C			12.7 B	31.0 C			
Approach LOS	U			D	U			
ntersection Summary								
ICM 2000 Control Delay			20.6	Н	CM 2000	Level of Service	С	
ICM 2000 Volume to Capa	city ratio		0.79					
Actuated Cycle Length (s)			81.5	S	um of lost	time (s)	15.0	
ntersection Capacity Utiliza	tion		51.4%	IC	U Level o	of Service	А	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 95: CR10/Tottenham Rd & CR1/8th Line

1 1 ٦ • ← ŧ -+  $\mathbf{i}$ Movement EBL EBT EBR WBL WBT WBR NBT NRR SBR NBI SBT Lane Configurations 4 4 4 £ Volume (vph) 31 43 69 63 24 268 82 63 180 65 3 33 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.6 6.6 8.0 8.0 8.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.95 0.97 1.00 0.85 Flt Protected 0.98 0.99 1.00 0.99 1.00 1646 1707 1752 1712 1442 Satd. Flow (prot) Flt Permitted 0.83 0.88 0.96 0.78 1.00 Satd. Flow (perm) 1381 1528 1689 1344 1442 Peak-hour factor, PHF 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 Adj. Flow (vph) 32 108 83 43 41 86 4 57 91 83 353 237 RTOR Reduction (vph) 20 0 0 0 35 0 0 14 0 0 0 2 Lane Group Flow (vph) 196 479 320 23 0 129 0 0 0 0 0 0 Heavy Vehicles (%) 19% 11% 0% 5% 4% 5% 8% 4% 7% 14% 8% 12% Turn Type Perm NA Perm NA Perm NA Perm NA Perm Protected Phases 4 8 2 6 Permitted Phases 4 2 6 Actuated Green, G (s) 14.5 14.5 33.4 33.4 33.4 Effective Green, g (s) 14.5 14.5 33.4 33.4 33.4 Actuated g/C Ratio 0.23 0.23 0.53 0.53 0.53 Clearance Time (s) 6.6 6.6 8.0 8.0 8.0 Vehicle Extension (s) 5.0 5.0 5.0 5.0 5.0 Lane Grp Cap (vph) 320 354 902 718 770 v/s Ratio Prot 0.09 c0.13 c0.28 v/s Ratio Perm 0.24 0.02 v/c Ratio 0.40 0.55 0.53 0.45 0.03 Uniform Delay, d1 20.3 21.2 9.5 8.9 6.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 3.2 2.2 2.0 0.1 Delay (s) 22.1 24.3 11.7 10.9 7.0 Level of Service С С В В Α Approach Delay (s) 22.1 24.3 11.7 10.4 Approach LOS С С В В Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 14.8 В HCM 2000 Volume to Capacity ratio 0.54 Actuated Cycle Length (s) 62.5 Sum of lost time (s) 14.6 Intersection Capacity Utilization 70.4% ICU Level of Service С Analysis Period (min) 15

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 5 Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 6

	≯	-	$\mathbf{r}$	1	+	•	1	1	1	1	Ŧ	-
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		\$			\$			ę	1		\$	
/olume (vph)	18	5	30	99	63	105	42	252	57	9	166	1
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Fotal Lost time (s)		6.0			6.0			7.0	7.0		7.0	
ane Util. Factor		1.00			1.00			1.00	1.00		1.00	
Frpb, ped/bikes		0.99			1.00			1.00	1.00		1.00	
lpb, ped/bikes		1.00			1.00			1.00	1.00		1.00	
Frt		0.92			0.95			1.00	0.85		0.99	
It Protected		0.98			0.98			0.99	1.00		1.00	
Satd. Flow (prot)		1615			1674			1816	1468		1780	
Fit Permitted		0.82			0.84			0.90	1.00		0.97	
Satd. Flow (perm)		1341			1432			1645	1468		1728	
Peak-hour factor, PHF	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.5
Adj. Flow (vph)	31	8	51	168	107	178	71	427	97	15	281	2
RTOR Reduction (vph)	0	33	0	0	35	0	0	427	53	0	4	2
ane Group Flow (vph)	0	57	0	0	418	0	0	498	44	0	316	
Confl. Peds. (#/hr)	0	57	1	1	410	0	U	490	44	U	510	
Heavy Vehicles (%)	11%	0%	3%	3%	5%	8%	3%	4%	10%	22%	5%	00
	Perm	NA	J /0	Perm	NA	0 /0	Perm	NA	Perm	Perm	NA	0.
· //··	Perm	NA 4		Pelli	NA 8		Penn	2	Penn	Perm		
Protected Phases		4		0	ð		0	2	0	<u> </u>	6	
Permitted Phases	4	00 5		8	00.5		2	00.0	2	6	00.0	
Actuated Green, G (s)		23.5			23.5			30.3	30.3		30.3	
Effective Green, g (s)		23.5			23.5			30.3	30.3		30.3	
Actuated g/C Ratio		0.35			0.35			0.45	0.45		0.45	
Clearance Time (s)		6.0			6.0			7.0	7.0		7.0	
/ehicle Extension (s)		3.5			3.5			4.0	4.0		4.0	
ane Grp Cap (vph)		471			503			746	665		783	
//s Ratio Prot												
//s Ratio Perm		0.04			c0.29			c0.30	0.03		0.18	
//c Ratio		0.12			0.83			0.67	0.07		0.40	
Jniform Delay, d1		14.7			19.8			14.3	10.3		12.2	
Progression Factor		1.00			1.00			1.00	1.00		1.00	
ncremental Delay, d2		0.1			11.4			4.7	0.2		1.5	
Delay (s)		14.8			31.3			19.0	10.5		13.8	
evel of Service		В			С			В	В		В	
Approach Delay (s)		14.8			31.3			17.6			13.8	
Approach LOS		В			С			В			В	
ntersection Summary												
HCM 2000 Control Delay			20.8	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.74									
Actuated Cycle Length (s)			66.8		um of lost				13.0			
ntersection Capacity Utilization			75.2%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 7

HCM Signalized Intersection Capacity Analysis 97: CR10/Tottenham Rd & Private Access/Laverock St

	≯	-	$\mathbf{r}$	1	+	×.	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1		\$			đ þ			•	
Volume (vph)	25	8	105	15	1	16	105	346	26	24	292	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0			6.0			6.0	
Lane Util. Factor		1.00	1.00		1.00			0.95			1.00	
Frpb, ped/bikes		1.00	0.98		0.99			1.00			1.00	
Flpb, ped/bikes		1.00	1.00		1.00			1.00			1.00	
Frt		1.00	0.85		0.93			0.99			0.99	
Fit Protected		0.96	1.00		0.98			0.99			1.00	
Satd. Flow (prot)		1776	1567		1658			3271			1800	
Flt Permitted		0.75	1.00		0.83			0.76			0.94	
Satd. Flow (perm)		1387	1567		1402			2511			1691	
Peak-hour factor, PHF	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	33	11	138	20	1	21	138	455	34	32	384	24
RTOR Reduction (vph)	0	0	124	0	19	0	0	4	0	0	1	0
Lane Group Flow (vph)	0	44	14	0	23	0	0	623	0	0	439	0
Confl. Peds. (#/hr)	1		6	6		1			3	3		-
Heavy Vehicles (%)	4%	0%	1%	7%	0%	0%	1%	10%	12%	0%	5%	0%
Turn Type	Perm	NA	Perm	Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4		4	8	Ū		2	-		6	· ·	
Actuated Green, G (s)		6.9	6.9	Ű	6.9		-	48.8		Ŭ	48.8	
Effective Green, g (s)		6.9	6.9		6.9			48.8			48.8	
Actuated g/C Ratio		0.10	0.10		0.10			0.72			0.72	
Clearance Time (s)		6.0	6.0		6.0			6.0			6.0	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph)		141	159		142			1809			1218	
v/s Ratio Prot		141	100		172			1005			1210	
v/s Ratio Perm		c0.03	0.01		0.02			0.25			c0.26	
v/c Ratio		0.31	0.09		0.16			0.23			0.36	
Uniform Delay, d1		28.2	27.6		27.8			3.5			3.6	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		1.3	0.2		0.5			0.1			0.8	
Delay (s)		29.5	27.8		28.3			3.6			4.4	
Level of Service		20.0 C	27.0 C		20.0 C			0.0 A			4.4 A	
Approach Delay (s)		28.2	Ŭ		28.3			3.6			4.4	
Approach LOS		20.2 C			20.0 C			A			4.4 A	
Intersection Summary												
HCM 2000 Control Delay			8.2	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.39									
Actuated Cycle Length (s)			67.7	S	um of lost	time (s)			17.0			
Intersection Capacity Utilization	tion		55.7%	IC	U Level o	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 8

	۶	→	$\mathbf{F}$	1	-	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ę	1		ę	1		ę	1		ę	i
Volume (vph)	55	43	49	54	27	94	48	500	50	43	280	3
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)		7.0	7.0		7.0	7.0		7.0	7.0		7.0	7
ane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.0
Frpb, ped/bikes		1.00	0.92		1.00	0.96		1.00	0.90		1.00	0.9
Flpb, ped/bikes		0.99	1.00		0.97	1.00		1.00	1.00		1.00	1.0
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.8
Fit Protected		0.97	1.00		0.97	1.00		1.00	1.00		0.99	1.0
Satd. Flow (prot)		1731	1349		1666	1471		1792	1423		1785	136
Flt Permitted		0.76	1.00		0.71	1.00		0.92	1.00		0.67	1.0
Satd. Flow (perm)		1347	1349		1223	1471		1649	1423		1208	136
Peak-hour factor, PHF	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.6
Adj. Flow (vph)	85	66	75	83	42	145	74	769	77	66	431	5
RTOR Reduction (vph)	0	0	62	0		90	0	0	26	0	0	2
ane Group Flow (vph)	0	151	13	0	125	55	0	843	51	0	497	3
Confl. Peds. (#/hr)	15	131	39	39	125	15	45	045	52	52	431	4
Heavy Vehicles (%)	6%	5%	10%	6%	8%	5%	8%	5%	2%	9%	5%	8
	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Per
	Feilii	4	Feilii	Feilii	8	reilli	reiiii	2	Feilii	reilli	6	rei
Protected Phases	4	4	4	8	0	8	2	2	2	6	0	
Permitted Phases	4	10.0		ð	10.3		2	36.3	36.3	0	36.3	
Actuated Green, G (s)		10.3	10.3			10.3						36
Effective Green, g (s)		10.3	10.3		10.3	10.3		36.3	36.3		36.3	36
Actuated g/C Ratio		0.17	0.17		0.17	0.17		0.60	0.60		0.60	0.6
Clearance Time (s)		7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3
ane Grp Cap (vph)		228	229		207	250		987	852		723	81
//s Ratio Prot												
//s Ratio Perm		c0.11	0.01		0.10	0.04		c0.51	0.04		0.41	0.0
//c Ratio		0.66	0.06		0.60	0.22		0.85	0.06		0.69	0.0
Jniform Delay, d1		23.5	21.1		23.3	21.7		10.0	5.1		8.3	5
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.0
ncremental Delay, d2		7.0	0.1		4.9	0.4		9.3	0.1		5.3	0
Delay (s)		30.6	21.2		28.2	22.1		19.3	5.2		13.6	5
_evel of Service		С	С		С	С		В	A		В	
Approach Delay (s)		27.5			24.9			18.1			12.7	
Approach LOS		С			С			В			В	
ntersection Summary												
HCM 2000 Control Delay			18.6	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.81									
Actuated Cycle Length (s)			60.6	S	um of lost	time (s)			14.0			
ntersection Capacity Utilization			78.4%	IC	U Level o	of Service			D			

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 9

## HCM Signalized Intersection Capacity Analysis 99: Private Access/CR10/Tottenham Rd & Hwy 9

	۶	-	$\mathbf{F}$	4	-	×	1	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<b>≜</b> î≽		٢	<b>^</b>	1		\$		٦	•	
Volume (vph)	327	430	0	8	610	185	2	2	5	101	Ö	103
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00		1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85		0.92		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99		0.95	1.00	
Satd. Flow (prot)	1719	3438		1719	3438	1538		1652		1656	1482	
Flt Permitted	0.27	1.00		0.40	1.00	1.00		0.93		0.75	1.00	
Satd. Flow (perm)	492	3438		724	3438	1538		1556		1305	1482	
Peak-hour factor, PHF	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Adj. Flow (vph)	503	662	0	12	938	285	3	3	8	155	0	158
RTOR Reduction (vph)	0	0	0	0	0	128	0	6	0	0	36	0
Lane Group Flow (vph)	503	662	0	12	938	157	0	8	0	155	122	0
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	5%	5%	5%	9%	9%	9%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6		6	8			4		
Actuated Green, G (s)	19.8	19.8		19.8	19.8	19.8		8.2		8.2	8.2	
Effective Green, g (s)	19.8	19.8		19.8	19.8	19.8		8.2		8.2	8.2	
Actuated g/C Ratio	0.55	0.55		0.55	0.55	0.55		0.23		0.23	0.23	
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	270	1890		398	1890	845		354		297	337	
v/s Ratio Prot		0.19			0.27						0.08	
v/s Ratio Perm	c1.02			0.02		0.10		0.01		c0.12		
v/c Ratio	1.86	0.35		0.03	0.50	0.19		0.02		0.52	0.36	
Uniform Delay, d1	8.1	4.5		3.7	5.0	4.1		10.8		12.2	11.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2	402.2	0.1		0.1	0.9	0.5		0.0		1.7	0.7	
Delay (s)	410.3	4.6		3.8	5.9	4.5		10.8		13.8	12.4	
Level of Service	F	Α		А	А	Α		В		В	В	
Approach Delay (s)		179.8			5.6			10.8			13.1	
Approach LOS		F			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			80.9	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.47									
Actuated Cycle Length (s)			36.0	S	um of los	t time (s)			8.0			
Intersection Capacity Utilizat	tion		57.2%	IC	U Level	of Service			В			
Analysis Period (min)			15									
a Critical Lana Crown												

c Critical Lane Group

Simcoe County TMP - CR 10 Baseline - Existing - PM KL

Synchro 8 Report Page 10



## Appendix E: Context Sensitive Road Design

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



### Table E-1: Example Existing Condition Cross-Sections

Corridor	County F	Road 93	County	Road 27	County Ro	ad 90
	A transfer es				Durni Generation Pal	
Area	Urban	Rural	Urban	Rural	Urban	Rural
Section	Typical Yonge Street (CR 25) to Lanigan Drive	Typical Lanigan Drive to Vindin Street	Typical South of Line 7/CR 88	Typical South of Line 7/CR 88	Typical South of Commerce Road	Typical East of McKinnon Road
Image						
Jurisdiction	Simcoe County	Simcoe County	Simcoe County	Simcoe County	Simcoe County	Simcoe County
Classification	Primary Arterial – Controlled Access	Primary Arterial – Controlled Access	Primary Arterial	Primary Arterial	Primary Arterial	Primary Arterial – Controlled Access
Posted Speed	60 km/h	80 km/h	50 km/h	80 km/h	50 km/h	70 km/h-80 km/h
Annual Average Daily Traffic	14,500-17,900	14,500-17,900	6,100	6,100	14,100	15,100-20,700
Required Right of Way	36.0 m	36.0 m	40.0 m and 36.0 m where constraints exist	40.0 m and 36.0 m where constraints exist	40.0 m	45.0 m
Predominant Land Use	Highway Commercial – HC, Town of Midland	Rural – RU, Town of Midland	Rural Settlement Residential – R4, Rural Settlement Commercial	Agricultural– A, Town of Bradford West Gwillimbury	Core Commercial – C2	Core Commercial – C2, Residential, Low Density,



			– C5, Town of Bradford West Gwillimbury			Detached - R1, Rural - RL/RL-FF , Township of Essa
Municipality Minimum Front Yard Setback ^{1,2}	7.5 m – HC	9.0 m – Single Detached Dwelling 8.0 m – Other Uses	7.0 m – R4 12.5m – C5	15.0 m – A	1.5 m – C2	1.5 m – C2 7.5 m – R1 18.0 m (residential), 30.0 m (agricultural) – RL
County Road Setback ^{3,4}	15 m – basic 1.5 m – parking lot curbing	15.0 m	15.0 m	15.0 m	15.0 m 1.5 m – parking lot curbing	15.0 m
Dedicated Modes	Vehicles, Pedestrians (partial)	Vehicles	Vehicles, Pedestrians	Vehicles	Vehicles, Pedestrians	Vehicles
Cross Section Description	Boulevard-Curb-Lanes-Curb- Boulevard (limited sections with provision of sidewalk)	Ditch-Gravel-Shoulder-Lanes- Shoulder-Gravel-Ditch	Sidewalk-Boulevard-Splash Strip - Curb -Lanes-Curb- Splash Strip- Boulevard-Sidewalk	Ditch-Gravel-Shoulder-Lanes- Shoulder-Gravel-Ditch	Sidewalk-Asphalt Boulevard-Curb- Lanes-Curb-Asphalt Boulevard- Sidewalk	Ditch-Gravel-Shoulder- Lanes-Shoulder-Gravel- Ditch



Corridor	County Road 43		County Road 10         Image:			
Area	Development	Rural	Urban	Rural		
Section	Typical settlements	Typical between settlements	Typical East and North of 14 th Line	Typical South of Industrial Parkway		
Image			Martin Martin S. L. Color			
Jurisdiction	Simcoe County	Simcoe County	Simcoe County	Simcoe County		
Classification	Primary Arterial	Primary Arterial	Primary Arterial – Controlled Access	Primary Arterial – Controlled Access		
Posted Speed	60 km/h-80 km/h	60 km/h-80 km/h	80 km/h	80 km/h		
Annual Average Daily Traffic	1,400-2,700	1,400-2,700	6,400	6,400-7,200		
Required Right of Way	36.0 m	36.0 m	45.0 m	40.0 m		
Predominant Land Use	Rural Residential – RR, General Industrial Inside Storage – MI-2, Township of Springwater	Agricultural – A, Environmental Protection – EP, Township of Springwater	Agriculture –A1, Urban Industrial – UM, Rural Highway Commercial – RHC, Shopping Centre Commercial Exception – SCC*3, Town of New Tecumseth	Agriculture –A1, Town of New Tecumseth		
Municipality Minimum Front Yard Setback ^{1,2}	15.0 m – RR 20.0 m – MI-2	30 m – A	12.5 m – A1 10.0m – UM	12.5 m – A1		
			10.0m – RHC			



## TRANSPORTATION

			12.5m – SCC*3	
County Road Setback ^{3,4}	15.0 m	15.0 m	15.0 m - basic	15.0 m
			45.0 m - buildings/structures for heavy industrial uses	
Dedicated Modes	Vehicles	Vehicles	Vehicles	Vehicles
Cross Section Description	Ditch-Gravel-Shoulder-Lanes-Shoulder- Gravel-Ditch	Ditch-Gravel-Shoulder-Lanes-Shoulder- Gravel-Ditch	Splash Strip-Curb-Lanes-Curb-Splash Strip	Ditch-Gravel-Shoulder-Lanes-Shoulder- Gravel-Ditch

¹Refers to the distance between the front lot line and the nearest main wall of any building or structure on the lot.

² Based on *local municipality* zoning bylaws and provided for information; Simcoe County Setback requirements apply for county roadways.

³Based on *Simcoe County* by-law No. 5064 requiring a specified setback of any building or structure measured from the property (limit) of the highway.

⁴ General exceptions to that 15m setback includes: (1) New buildings or structures in Settlement Areas, as identified in the Official Plan, may have their setback determined as the average of the setback of the adjoining properties or to apply for an exception; (2) New buildings or structures within plans of a subdivision or condominium shall be 10 m plus any road widening conditioned by the county; (3) Buildings or structures for recreational or heavy industrial use shall be 45 m; (3) Sheds to a maximum of 3 square meters without foundation to be set back minimum 3 m; (4) Parking lots and illumination facilities shall be setback 1.5 m from the limit of the highway; and (5) Service roads and window streets shall be setback 7.5 m from the limit of the highway.



Table E-2: Complete Streets Roadway Typology Application

Step	•	Roadway Typology Applicatio		(3) Roadway	Туроlоду		
		Rural	Rural Settlement	Urban-Commercial	Urban – Village Core	Urban – Main Street	Urban - Industrial
	Arterial Classification		as (1) Primary Arterial – Controlled A lume, movement function, right-of-w				lentified in the Official Plan
xt	Posted Speed (km/h)	70-80	50-70	50-60	50-60	50-60	50-70
<ol> <li>Roadway Context</li> </ol>	Typical Volume (vehicles/day)	5,000-20,000	5,000	15,000-20,000	5,000-10,000	10,000-15,000	5,000-15,000
adwa	Number of Lanes	2-4	2	2-4	2	2-4	2-4
1) Ro	Development and Land Uses	Limited development: Rural, Agricultural,	Dispersed Development: Rural, ,Residential, Agricultural,	Developed: Commercial, Mixed-Use	Developed: Commercial, Residential,	Developed: Commercial, Mixed-Use,	Developed: Industrial, Commercial
		Environmental/Recreation, Industrial, Commercial	Environmental/Recreation, Industrial, Commercial		Institutional	Residential, Institutional	
ctives	Transit Potential	•Limited with transit accommodated in travel lanes	•Limited with transit accommodated in travel lanes	•Identify with transit potential and requirements with local municipality	•Limited with transit accommodated in travel lanes	<ul> <li>Identify with transit</li> <li>potential and requirements</li> <li>with local municipality</li> </ul>	•Identify with transit potential and requirements with local municipality
Community Needs and Objectives	Pedestrian Accommodation	•Limited •Pedestrian facilities to be determined from communities requirements	•Limited •Required pedestrian facilities to be determined from adjacent landowners	•High importance to promote an active streetscape	•High importance to promote an active community	•High importance to promote an active community	•Pedestrian facilities provided as an alternative mode choice
unity	Cycling	•Shared roadway	•Shared roadway	•Shared roadway	•Shared roadway	•Shared roadway	•Shared roadway
ששער	Accommodation	•Paved shoulder	•Paved shoulder	•Bicycle lane	•Bicycle lane	•Bicycle lane	•Bicycle lane
2) Co		•Active transportation path	•Active transportation path	•Separated bicycle lane	•Separated bicycle lane	•Separated bicycle lane	•Active transportation path
$\bigcirc$				<ul> <li>Active transportation path</li> </ul>			



Access Management	•Painted medians may be	•Median not required	•Median provided for turn-	•Limited median provided for	•Limited median provided for	•Median provided for turn-
	considered for high volume, high		lanes, pedestrian refuge,	turn-lanes, landscaping and	turn-lanes, landscaping and	lanes, pedestrian refuge,
	speed sections where safety may	• Driveway access determined by	landscaping and access control	access control	access control	landscaping and access
	be improved	entrance by-law				control
			<ul> <li>Driveway access determined</li> </ul>	<ul> <li>Driveway access determined</li> </ul>	<ul> <li>Driveway access determined</li> </ul>	
			by entrance by-law	by entrance by-law	by entrance by-law	<ul> <li>Driveway access determined</li> </ul>
						by entrance by-law

Step	Element			③Roadwa	ay Typology		
		Rural	Rural Settlement	Urban-Commercial	Urban – Village Core	Urban – Main Street	Urban - Industrial
	Curb Lane	3.5 m-3.75 m	3.5 m-3.75 m	3.5 m	3.5 m	3.5 m	3.5 m
	Median Lane	3.5 m-3.75 m	3.5 m-3.75 m	3.3 m-3.5 m	3.3 m-3.5 m	3.3 m-3.5 m	3.3 m-3.5 m
ıts	Shared Cycle Lane	4.0 m-4.5 m	4.0 m-4.5 m	3.3 m-4.0 m	3.3 m-4.0 m	3.3 m-4.0 m	3.3 m-4.0 m
d Elements	Median	No median, 1.0 m or as required for safety	No median, 1.0 m or as required for safety	4.5 m-6.0 m	4.5 m	4.5 m	4.5 m-6.0 m
levaro	On-Street Parking	No parking	No parking	No parking	2.0 m-2.75 m	2.0 m-2.75 m	No parking
(4) Identify Road and Boulevard	Boulevard (width varies)	•Provided where an active transportation path exists	•Provided where an active transportation path exists	•Provided with landscaping, sidewalks, street furniture and public art	•Provided where right-of-way permits with landscaping, sidewalks, street furniture and public art	•Provided where right-of-way permits with landscaping, sidewalks, street furniture and public art	•Provided with consideration of active transportation and landscaping
	Shoulder	<ul> <li>•1.0 m paved</li> <li>•2.5 m gravel</li> <li>•1.2 m-2.0 m paved shoulder cycle</li> </ul>	<ul> <li>•1.0 m paved</li> <li>•2.5 m gravel</li> <li>•1.2 m-2.0 m paved shoulder cycle</li> </ul>	No shoulder	No shoulder	No shoulder	No shoulder
	Bicycle Lane	1.2 m-1.8 m	1.2 m-1.8 m	1.2 m-1.8 m	1.2 m-2.5 m, including buffer,	1.2 m-2.5 m, including buffer,	1.2 m-1.8 m



				where there is parking	where there is parking	
Separated Bicycle Lane	No separated bicycle lane	No separated bicycle lane	2.0 m-3.0 m, including buffer, and dependent on separation	2.0 m-3.0 m, including buffer, and dependent on separation	2.0 m-3.0 m, including buffer, and dependent on separation	No separated bicycle lane
Active Transportation Path	1.8 m-4.0 m	1.8 m-4.0 m	1.8 m-4.0 m	No active transportation path	No active transportation path	1.8 m-4.0 m
Stormwater Management	•Rural ditches	<ul> <li>Rural ditches</li> <li>Curb and gutter (at constraints)</li> </ul>	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration of low impac development principles
Utilities	•Overhead and underground facilities as required	•Overhead and underground facilities as required	•Underground facilities desired	•Underground facilities desired	•Underground facilities desired	•Underground facilities sho be considered



Step	Element			(3) Roadwar	y Typology		
		Rural	Rural Settlement	Urban-Commercial	Urban – Village Core	Urban – Main Street	Urban - Industrial
	Curb Lane	3.5 m-3.75 m	3.5 m-3.75 m	3.5 m	3.5 m	3.5 m	3.5 m
	Median Lane	3.5 m-3.75 m	3.5 m-3.75 m	3.3 m-3.5 m	3.3 m-3.5 m	3.3 m-3.5 m	3.3 m-3.5 m
	Shared Cycle Lane	4.0 m-4.5 m	4.0 m-4.5 m	3.3 m-4.0 m	3.3 m-4.0 m	3.3 m-4.0 m	3.3 m-4.0 m
nents	Median	No median, 1.0 m or as required for safety	No median, 1.0 m or as required for safety	4.5 m-6.0 m	4.5 m	4.5 m	4.5 m-6.0 m
l Eler	On-Street Parking	No parking	No parking	No parking	2.0 m-2.75 m	2.0 m-2.75 m	No parking
entify Road and Boulevard Elements	Boulevard (width varies)	<ul> <li>Provided where an active transportation path exists</li> </ul>	<ul> <li>Provided where an active transportation path exists</li> </ul>	<ul> <li>Provided with landscaping, sidewalks, street furniture and public art</li> </ul>	<ul> <li>Provided</li> <li>where right-of-</li> <li>way permits</li> <li>with</li> <li>landscaping,</li> <li>sidewalks, street</li> <li>furniture and</li> <li>public art</li> </ul>	<ul> <li>Provided</li> <li>where right-of-</li> <li>way permits</li> <li>with</li> <li>landscaping,</li> <li>sidewalks, street</li> <li>furniture and</li> <li>public art</li> </ul>	<ul> <li>Provided with consideration of active transportation and landscaping</li> </ul>
(4) Ide	Shoulder	<ul><li>1.0 m paved</li><li>2.5 m gravel</li></ul>	<ul><li>1.0 m paved</li><li>2.5 m gravel</li></ul>	No shoulder	No shoulder	No shoulder	No shoulder
		•1.2 m-2.0 m paved shoulder cycle	•1.2 m-2.0 m paved shoulder cycle				
	Bicycle Lane	1.2 m-1.8 m	1.2 m-1.8 m	1.2 m-1.8 m	1.2 m-2.5 m, including buffer,	1.2 m-2.5 m, including buffer,	1.2 m-1.8 m



## TRANSPORTATION

				where there is parking	where there is parking	
Separated Bicycle Lane	No separated bicycle lane	No separated bicycle lane	2.0 m-3.0 m, including buffer, and dependent on separation	2.0 m-3.0 m, including buffer, and dependent on separation	2.0 m-3.0 m, including buffer, and dependent on separation	No separated bicycle lane
Active Transportation Path	1.8 m-4.0 m	1.8 m-4.0 m	1.8 m-4.0 m	No active transportation path	No active transportation path	1.8 m-4.0 m
Stormwater Management	•Rural ditches	<ul> <li>Rural ditches</li> <li>Curb and gutter (at constraints)</li> </ul>	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration of low impact development principles	•Curb and gutter with consideration low impact development principles
Utilities	<ul> <li>Overhead and underground facilities as required</li> </ul>	<ul> <li>Overhead and underground facilities as required</li> </ul>	<ul> <li>Underground facilities desired</li> </ul>	<ul> <li>Underground facilities desired</li> </ul>	<ul> <li>Underground facilities desired</li> </ul>	<ul> <li>Underground facilities should be considered</li> </ul>



Appendix F: Roundabout Design

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



### Examples of Roundabouts in Canada



Source: City of Hamilton

Wilson St / Hamilton Dr: *City of Hamilton, ON* (Single-lane roundabout)

#### First roundabout in Hamilton

#### Salient features:

- Near Hwy 403 on/off ramp
- Many driveways located on the approach legs
- Fire station ~50m on the westbound approach leg
- Bus stop on the north and south side of the westbound approach leg
- Provision for an Apron on the inscribed circle
- Year opened 2002



Source: City of Hamilton

Wilson St / Shaver Rd: *City of Hamilton, ON* (Multi-lane roundabout)

#### Multi-lane roundabout

#### Salient features:

- Multi-lane east-west approach lanes
- Double lane circular roadway
- Bus stops on north and south approach legs
- Provision for an Apron on the inscribed circle
- Year opened 2008





Can-Amera Pkwy / Conestoga Blvd: **Cambridge**, *Waterloo, ON* (Single-lane roundabout, with multi-lane approach)



Can-Amera Pkwy / Conestoga Blvd: *Kitchener, Waterloo, ON* (Single-lane roundabout, with multi-lane approach)

## Roundabout in a new subdivision

#### Salient features:

amilton, ON	<ul> <li>Located in a new subdivision</li> <li>In proximity to another roundabout on Fall Fair Way ~400m north</li> <li>Subdivision also has three traffic circles</li> <li>Year opened 2007</li> </ul>
:: ×	Provision for non-motorized modes of transportation
The second secon	Salient features:
dge, Waterloo, ON	<ul> <li>Located in Cambridge near major retail developments to the north</li> <li>Provision of bicycle ramps</li> <li>3-leg roundabout</li> <li>Noticeable grade differential</li> <li>Provision of apron on the central island</li> <li>Multi-lane approach but single lane wide rotary</li> </ul>
	Roundabout boulevard (on Ira
	<ul> <li>Needles)</li> <li>Salient features:</li> <li>Series of 5 roundabouts on Ira Needles Blvd</li> <li>Provision for bicycle ramps</li> <li>Apron provided on central island</li> <li>Consideration for sight distance</li> </ul>
ner, Waterloo, ON ne approach)	<ul> <li>Reduced speed thru the residential area along Ira Needles Blvd</li> </ul>





Source: Google

McKinsey Blvd: *McKinsey Townee, Calgary, AB* (five-leg complex roundabout)

#### Complex roundabout

#### Salient features:

- In proximity to Hwy 2 interchange to the west and Hwy 52 intersection to the east
- Fire station access at from rotary
- Several driveways on the approach legs
- Significant emphasis on landscaping
- 35000-40000 vehicles / day
- Designed 16-17 years ago



## Salient features:

roundabout

• First roundabout on a regional road in Durham

New implementation of a

- Notable public outreach efforts on the website
- Rural location on regional road 8

Source: Google

Can-Amera Pkwy / Conestoga Blvd: **Cambridge**, *Waterloo, ON* (Single-lane roundabout, currently in place as per information on Durham Region website )



### List of Resources on Information for Roundabouts





Transportation Research Board (TRB) Publication- Roundabouts: An Informational Guide Second Edition Includes chapters on: - Roundabout considerations - Planning - Operations analysis - Safety - Geometric design guidelines	Rondabors     Rondabors     Informationalizitian     Informationalizitian
	Federal Highway Administration         Publication - Roundabouts: An Informational         Guide         This publication was published prior to when the         NCHRP 672 was made available, and offers         similar guidance. This is a less detailed version of         the NCHRP 672.         Includes chapters on:         - Planning         - Operation         - Design         - Safety
Federal Highway Administration Publication - Technical Summary: Roundabouts Includes chapters on: - Characteristics - Benefits - User considerations - Location considerations - Operation - Design - Cost	Inducted Summary



#### City of Hamilton

Website:

http://www.hamilton.ca/CityDepartments/PublicWorks/CommunityServicesRelatedPoliciesAndGuidelines/ RoadsTrafficModernRoundabout.htm

Website provides link to:

- Policy on use of roundabouts in City of Hamilton
- Preliminary design drawings on roundabouts that are under implementation
- Live camera feeds on select locations
- Potential locations for roundabouts
- Additional resources

#### **Region of Waterloo**

Website: http://www.regionofwaterloo.ca/en/gettingaround/roundabouts.asp

Website provides link to:

- Public outreach techniques
- Videos to educate roundabout users
- Existing and potential locations of roundabouts

#### **City of Calgary**

Website: <u>http://www.calgary.ca/Transportation/TP/Pages/Safety/Roundabout-Safety/Traffic-roundabouts.aspx</u>

Webpage provides link to:

- Roundabout policy
- Roundabout guidelines
- Educational animated videos for travelling through a roundabout

#### Region of Durham

Website:

http://www.durham.ca/works.asp?nr=/departments/works/roads/traffic/roundabouts/roundabouts.htm

Webpage provides links to:

- Resources on public outreach methods
- Links to websites on roundabouts



**Appendix G: Active Transportation** 

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



## **Table of Contents**

Designin	g Active Transportation Facilities: A Network Designers' Toolbox	1
G.1	INTRODUCTION	1
G.2	USING THE DESIGN GUIDELINES	2
	The Purpose:	2
	How to Use the Guidelines:	2
G.3	CONSIDERATIONS WHEN DESIGNING FOR ACTIVE TRANSPORTATION USERS	2
	G.3.1 THE USER GROUPS	3
	Pedestrians	3
	Cyclists5	
	Skateboarders & Non-Motorized Scooters	6
	All-Terrain Vehicle (ATV) & Snowmobiles	7
	G.3.2 Minimum Operating Dimensions	8
	G.3.3 AT Facilities in Urban, Suburban and Rural Areas	12
	G.3.4 Freight, Transit and Emergency Service Route	13
	G.3.5 Intersections	13
	G.3.6 Interchanges	14
	G.3.7 Transition Points	15
	G.3.8 Accessibility	16
	G.3.9 Personal Security	18
	G.3.10 Multi-modal Integration - "Complete Streets"	19
G.4	SELECTING & DESIGNING ACTIVE TRANSPORTATION FACILITIES	19
	G.4.1 Facility Selection	19
	G.4.2 Active Transportation Facilities	20
	G.4.3 Designing for Intersections & Crossings	34
	C.4.4 Multi-use Trail Surface Type	
	G.4.5 Multi-use Trail Lighting	42
G.5	ACTIVE TRANSPORTATION AMENITIES & STRUCTURES	43
	G.5.1 Multi-use Trail Structures	44
	G.5.2 Trip End Facilities for Commuters	48



	G.5.3	Transit Connections	.48
	G.5.4	Bicycle Parking	48
	G.5.5	Bicycle Friendly Catch Basin Cover	52
	G.5.6	Rest and Staging Areas	53
G.6	SIGNIN	IG THE ACTIVE TRANSPORTATION NETWORK	54



## **G**O DESIGNING ACTIVE TRANSPORTATION FACILITIES: A NETWORK DESIGNERS' TOOLBOX

#### G.1 INTRODUCTION

The guidelines prepared for the design of active transportation facilities in Simcoe County should be treated as a reference for the development and construction of the route network concept. Although they are meant to provide guidance for a range of conditions typically encountered in a County-wide network, they are not intended to address every condition encountered.

The information included in this Appendix is not meant to be prescriptive nor is it intended to replace "sound engineering judgement". The intent is to have regard to the individual guidelines while considering context sensitive conditions when implementing facilities at specific locations to arrive at the most appropriate solution. In some cases an interim solution may be appropriate where the desired long-term solution cannot be achieved in the short or mid-term. When implemented, the interim solution should meet users' needs and safety considerations.

Though the guidelines have been prepared for Simcoe County's reference, those responsible for designing and implementing facilities should use the following design guidelines / standards as the primary reference for facility selection:

- Ontario Traffic Manual (OTM) Book 18 (Cycling Facilities)
- OTM Book 15 (Pedestrians)
- Transportation Associations of Canada Bikeway Control Guidelines
- Accessibility for Ontarians with Disabilities Act, 2005, Amending O. Reg. 191/11. Part IV.1 design of Public Spaces Standards (Accessibility Standards for the Built Environment)



### G.2 USING THE DESIGN GUIDELINES

#### The Purpose:

To assist County and local municipal staff in making informed decisions about active transportation (AT) facility design.

#### How to Use the Guidelines:

- ► The guidelines provide general information on cyclists and pedestrians and their needs.
- Where appropriate, summary tables are provided which highlight recommended design treatments and/or considerations when designing active transportation facility types and amenities.
- The information included in these guidelines is thought to represent accepted design practices in North America, and incorporates ongoing research and experience by the consulting team and other professionals involved in active transportation facility design.

#### **Active Transportation Guidelines**

G-1

**G-2** 

Adopt the active transportation design guidelines presented in **Appendix G** of the Simcoe County Transportation Master Plan Update as the basis for the design of active transportation facilities County-wide.

County and local municipal staff should supplement the active transportation design guidelines with additional resources including but not limited to the Ontario Traffic Manual (OTM) Books 18 and 15 and other best practices as they emerge.

## G.3 CONSIDERATIONS WHEN DESIGNING FOR ACTIVE TRANSPORTATION USERS

Many elements design need to be considered when an AT facility is being developed and implementation. The elements can vary depending on location and are driven by context-sensitive conditions. Some of the characteristics which should be considered when proceeding to the design and implementation stage of facility development include:

- New construction versus upgrading existing trails;
- Trail location;
- Context (urban, rural or suburban);
- Level of separation (on vs. off-road);
- Width;
- Surface type;
- User groups;
- Level of use;
- Seasonal versus year round use;
- Gradient;



- Accessibility;
- Degree of difficulty;
- Length;
- Ownership;
- Sustainability and ability to maintain;
- Access points;
- Transition points / linkages;
- Context sensitive conditions;
- Road crossings; and
- Signage.

Details regarding some of the considerations listed above are provided in sections G.3.1 – G.3.10.

#### G.3.1 THE USER GROUPS

The characteristics and preferences of potential users can be the driver behind how an AT facility is designed. If users experience a sense of comfort and safety when engaging in AT activities they are more likely to continue to do so again.

For the purposes of on and off-road facility design for Simcoe County, pedestrians and cyclists are assumed to be the primary user groups. However, there are also secondary user groups such as inline-skaters, skateboarders, ATVs and Snowmobiles that have also been considered and are expected to be seasonal users of the system.

It is acknowledged that other user groups such as Equestrians, All-Terrain Vehicle (ATV) operators and snowmobilers currently own, operate and use some of the trails found throughout the County. Motorized trail users have not been considered within this guiding document for on and off-road facility design, though there may be some cases where trails intended for non-motorized users overlap with those intended for motorized users. Although the cases may be infrequent, adequate and proper signage related to safe interactions should be implemented.

Definitions of key considerations for the primary user groups are identified below. These should be used by the County and local municipalities when designing and developing AT facilities.

#### Primary User Groups

#### Pedestrians

Pedestrian users are typically those who are travelling by foot. They travel at lower speeds (with the exception of some groups e.g. joggers) than cyclists and generally require less manoeuvering space.

Pedestrians can be further defined based on the activity that they are participating in. They include:

- Walking;
- Hiking; and
- Jogging and running.



People in wheelchairs are also included in this category as they tend to operate at speeds more comparable to pedestrians than cyclists. Design considerations for the three anticipated pedestrian activities are presented in **Table G.1**.

 Table G.1 – Pedestrian Activity Design Considerations

#### Walking

- Interests and Motivators: leisure, relaxation, socializing, exploring, making contact with nature, meditation, fitness, or dog walking.
- Utilitarian Walkers: typically community-driven and engage in trips focusing on shopping and errands or walking to work and school. They are typically found within more urban areas and use sidewalks, parking lots and plazas as well as trails where they are convenient, well designed and properly maintained.
- Facility Considerations: Trails can provide a more convenient "short cut" to traveling on sidewalks to get to a destination. Where no sidewalks are provided and there are no shoulders (in urban and/or rural areas), pedestrians should walk on the edge of the roadway, facing oncoming traffic according to the Ontario Highway Traffic Act. Signs warning motorists of pedestrians ahead are recommended in these locations.

#### Hiking

- Interests and Motivators: Often considered the elite of the recreational walking group and may challenge themselves to cover long distances.
- Types of Facilities & Trips: Typically engage in day trips that may range between 5 and 30 km in length and may be more keenly interested in natural features. They tend to be more adept at map reading, are more self-sufficient than leisure walkers, may expect fewer amenities and are often attracted to challenging terrain and rural areas. Trail planners should assume that there may be hikers even in remote or highway environments despite the fact that the frequency may be very low. In some cases hikers can be willing to walk on sections of rural roadway shoulder considered less safe or less interesting by the majority of leisure walkers.

#### Jogging / Running

- Interests and Motivators: Typically fitness is the driving factor; however, they may share more in terms of profile characteristics with long distance hikers than they do with leisure walkers.
- Types of Facilities & Trips: Typically are accomplishment oriented, enjoy trails at higher speed for distances between 3 and 15 km or more and avoid hard surfaces such as asphalt and concrete and prefer to run on granular, natural (earth) and turf surfaces as they provide more cushioning effect.

95% of all pedestrian trips are less than 2.5 km in length (Transportation Tomorrow Survey, in Hamilton Cycling Aster Plan 1996), though it is to be expected that some walkers who are out for exercise / health / fitness purposes might make trips that are between 5 and 10 km in length.



#### Cyclists

Cyclists include most users that are on wheels. They can travel at higher rates of speed and require more space to manoeuver than users who are on foot. Wheeled users are also typically willing or able to travel longer distances than those on foot but are more susceptible to steep grades.

The average travel speed for a cyclist on a trail can range from 15-20 km/h and 18-30+ km/h on a road, with speeds in excess of 50 km/h while traveling downhill on roads and some hard surface trails. Where excessive speed is a potential issue on trails, speed limits and warnings should be posted to discourage fast riding and aggressive behaviour. When using roads, cyclists generally travel 0.5 – 1.0m from the curb or other obstructions because of the possibility of accumulated debris, uneven longitudinal joints, catch basins, steep cross slopes, or concern over hitting a pedal on the curb or handlebar on vertical obstacles. However, when cyclists use or cross a public roadway they are considered vehicles by law and are expected to follow the same traffic laws as motorized vehicles.

Cyclists other than young children should be discouraged from cycling on sidewalks because of potential conflicts with pedestrians and potentially dangerous intersections with intersecting public road, private driveways and entrances. Many municipalities have prohibited sidewalk cycling through local by-law, however, some municipalities permit sidewalks cycling for children learning to ride (e.g. the City of Guelph).

Cyclists can include a range of different wheeled activities including on-road cycling, mountain biking, hybrid or leisure cycling and the increasingly popular e-bicycle (please refer to **OTM Book 18** for additional details and considerations regarding designing for e-bikes). Mountain bikers are typically able to travel easily over stone dust and gravel surfaces, whereas, traditional narrow-tired touring and racing bicycles require very well compacted granular surfaces or hard surface pavements such as asphalt.

At a high level, cycling can also be defined by the type or purpose of the trip. **Table G.2** is a summary of three different trip types which cyclists could engage in.

#### Table G.2 – Types of Cyclists Trips

#### Utilitarian

**Definition:** Those who use cycling or walking as their day to day mode of transportation to get to and from work, school, errands, etc.

**Key Consideration:** Often use the streets that are part of the trail and cycling network year-round in all weather conditions as opposed to those roads which do not make up part of the formal network. In some cases they may choose to use public transit or other modes of transportation during the winter season. Typically, utilitarian users have good mobility skills and are cognisant of the "rules of the road".

#### Recreational

**Definition:** These pedestrians and cyclists will typically use the network for fitness or leisure purposes.

**Key Consideration**: Trips are typically used for travel on weekends as opposed to weekdays and will consist of trips to and from destinations of cultural or natural significance including off-road recreational trails. They will typically use the secondary / local neighbourhood connections as part of the overall network.



#### Touring

**Definition:** These pedestrians and cyclists use hiking and cycling as a means of exploring areas of significant long-distances from their point of origin.

**Key Consideration:** Trips can vary from full day excursions to multi-day excursions. They may plan their trips in advance and are willing to spend money for accommodation and food at their destination point. In some cases they travel in groups.

**Table G.3** summarizes some key design considerations for cyclists based on the type of activity and trip purposes.

#### Table G.3 – Key Cycling Considerations

- The mechanical efficiency of the bicycle allows users of all ages to travel greater distances at a higher rate of speed than pedestrians.
- Distances covered vary widely from a few kilometres to well over a hundred depending on the fitness level and motivation of the individual cyclist.
- Cyclists have the right to access the public roadway system, with the exception of the 400 series and major provincial highways
- Some cyclists feel unsafe sharing the road with automobiles and do not have the desire or skill level to ride in traffic.
- Some cyclists tend to prefer off-road trails, shared with pedestrians as these facilities offer the less experienced and less confident cyclist a more comfortable environment.
- Cyclists that travel longer are more likely to focus a significant portion of their route on the roadway network, and often seek out quieter, scenic routes over busier roads even if the pavement quality is lower than on busier roads.

#### **Active Transportation Guidelines**

**G-3** 

Planning and design of an active transportation network should be based on the primary user groups – pedestrians and cyclists. Most other modes fall under the two categories:

#### Secondary User Groups

#### Skateboarders & Non-Motorized Scooters

Skateboarding and the use of non-motorized scooters are becoming increasingly popular among all age groups, particularly in urban areas. No consistent guidelines have been widely adopted. In some municipalities, skateboarders and scooter users have been prohibited from using either roadways or sidewalks by local by-laws. Consequently, they are avid users of hard-surface off-road facilities and may travel some distance to reach a facility that suits their needs.

This user group prefers a very smooth, hard surface. Loose sand, gravel, twigs, branches, fallen leaves and puddles can be significant hazards. Though skateboarders and scooter users can quickly become pedestrians by dismounting, they too are vulnerable to the effect of grades (both up and



downhill) and require ample maneuvering space. An inability to come quickly to a complete stop can be a significant concern for all but the most experienced users in this group. Long or steep hills with limited visibility may be viewed as either challenging or terrifying depending on an individual's level of experience.

#### All-Terrain Vehicle (ATV) & Snowmobiles

Since All-Terrain Vehicles and Snowmobiles are motorized vehicles and do not qualify as a sustainable mode of transportation, this document does not directly address their requirements in terms of on and off AT planning and design. However, in the more rural areas of Simcoe County, ATVs and snowmobiles have existing and planned facilities. For the purposes of the route network concept, it has been assumed that in some cases the multi-use trail facilities may be shared between pedestrians, cyclists and ATVs / snowmobiles. As a result, there are a few general guidelines that should be given consideration when planning and designing multi-use trails to ensure that all trail users are able to enjoy them in a safe and comfortable manner:

- Signage should be installed, warning users of potential ATV and snowmobile traffic and vice-versa;
- Trails should be wide enough (where necessary), to allow ATVs and snowmobiles to safely pass other trail users; and
- Trails should be patrolled and monitored to ensure that trail users are acting in a safe manner with respect to each other.

#### **Active Transportation Guidelines**

- G-4 Skateboarders and in-line skaters have more specific design considerations and requirements. These should be considered when designing an on or off-road facility which accommodates a range of user groups.
- G-5 Although ATVs and snowmobiles are not sustainable modes of transportation, their requirements and interactions with users should be considered where their uses are permitted. The County should also consider including informational messaging and signage when a range of user groups are using the same space.



ATV and Snowmobile Use of Trails - Source: gunflint-trail.com



#### G.3.2 Minimum Operating Dimensions

The physical dimensions and operating space of cyclists can vary due to a cyclist's bicycle type, age and ability. Cyclists require a certain amount of space to maintain stability when operating a bicycle. **Figure G.1** illustrates a cyclist's typical operating space.



#### Figure G.1 – Typical Cyclist Operating Space

Source: Based on information from the AASHTO Guide for the Planning, Design and Operation of Bicycle Facilities, 2012 / OTM Book 18 : Cycling Facilities, 2013

Generally, an operating width of 1.2 to 1.5 metres is sufficient to accommodate forward movement by most cyclists. This width is greater than the physical width momentarily occupied by a cyclist in order to accommodate natural side-to-side movement that varies with speed, wind, and cyclist proficiency. Cyclists do not travel in a straight line. Manoeuvring space is needed to allow for side-to-side movement during operation. The operating height of 2.5 metres can generally accommodate an average adult cyclist standing upright on the pedals of a bicycle.

The design of on and off-road active transportation facilities require different considerations with regard to the user's operating space. The minimum operating dimensions referenced above pertain specifically to cyclists using on-road facilities. The design parameters outlined below address typical design considerations required for the design of trail facilities.



#### **Trail Design Parameters**

Careful consideration should be given to the physical, aesthetic and environmental requirements for the different multi-use trail types. In many instances, physical design criteria related to operating space, design speed, alignment and clear zones are often governed by the needs of the fastest, most common user group on the majority of the trails. For the design of on and off-road facilities for Simcoe County, the user group that would fit this profile would be cyclists.

Therefore, many of the physical design criteria outlined in the following sections pertain most specifically to cycling. This is not to say that all multi-use trails need to be designed to meet the requirements for cyclists; however, when multi-use trails are being designed it is prudent to use parameters for the cyclist.

When considering single or specialty uses where part of the trail experience involves maneuvering through challenging conditions (e.g. BMX or mountain biking), the parameters outlined below may not apply. In these instances, designers should consult directly with the user group and/or design manuals that are specific for that use.

Trail user operating space is a measurement of the horizontal space that the user requires. In the case of in-line skating and cycling, the space includes room required for side to side body motion used to maintain balance and generate momentum. **Table G.4** outlines minimum and preferred operating space for different uses.

Operating Condition by Trail User Type	Minimum (metres)	Preferred (metres)
One way travel (one wheelchair user)	1.2	1.5
One way travel (two pedestrians)	1.5	2.0
One way travel (one cyclist)	1.2 (in constrained locations)	1.5+
One way travel (one in-line skater)	2.3	3.0
Two way travel (two cyclists)	3.0	3.0+
Two way travel (two wheelchair users)	3.0	3.0+

#### Table G.4 – Minimum and Preferred Operating Space for Off-Road Trail Users

Horizontal clear distance is the space beside the trail bed that should be kept clear of protruding objects. Vertical clear distance is the space above the head of the user while using the trail (i.e. walking or mounted on their bicycle). **Table G.5** provides minimum and preferred horizontal and vertical clear distance.



#### Table G.5 - Horizontal and Vertical Clear Distance

Clearance Condition	Minimum (metres)	Preferred (metres)
Horizontal clearance to stationary objects	0.5	1.0
Vertical clearance to stationary objects	2.5	3.0

Slope refers to both the measured fall over a given distance and both the centerline (longitudinal slope) and perpendicular to the centerline (cross slope). Cross slope can be configured so that all runoff is directed to one side of the trail, or so that there is centre crown and runoff is shed to either side of the trail. **Table G.6** provides guidance regarding longitudinal and cross slope.

#### **Table G.6** – Longitudinal and Cross Slope

	Longitudinal Grade or Slope
0% to 3%	<ul> <li>Preferred</li> </ul>
5%-10%	<ul> <li>Provide additional trail width where trail segments are greater than 100m in length.</li> <li>Introduce level rest areas every 100 to 150m of horizontal distance.</li> <li>Consider design strategies such as switchbacks.</li> <li>Install signing to alert users of upcoming steep grades.</li> <li>Avoid grades over 5% for off road trails. Where steeper slopes are necessary "trail hardening" should be considered.</li> <li>Note: 10:1 (horizontal distance or run: vertical distance or rise), or 10% over at changes in level between 14mm and 200mm is the maximum permissible slope for meeting accessibility standards.</li> </ul>
10% to 15%	<ul> <li>Consider the use of structures such as steps, step and ramp combinations, or stairways.</li> <li>Consider locating the trail elsewhere.</li> </ul>
15% or over	<ul> <li>Based on local experience, 15% represents the maximum possible longitudinal slope for a sustainable pathway or trail surface. Where slopes approach or exceed 15% significant washouts become and ongoing issue.</li> <li>Structures such as steps, step and ramp combinations and stairways should be employed. Otherwise, an alternative location for the pathway should be sought.</li> </ul>
	Cross Slope
2%	<ul> <li>Minimal, acceptable on hard surfaced trails, may not provide adequate drainage on granular surfaced trails.</li> </ul>
2 to 4%	Preferred range for both hard and granular surfaced trails.



#### Table G.6 – Longitudinal and Cross Slope

Greater than 4%	Avoid wherever possible as excessive cross slopes can be difficult and potentially dangerous for some levels of physical ability and certain user groups as they can result in difficulty maintaining balance, especially among user groups with a high centre of gravity.
-----------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Design speed is used to determine trail width, minimum curve radius, horizontal alignment and banking or super elevation to ensure that trail users have adequate space and time to safely approach and navigate sharper curves along the trail.

The design speed for recreational cyclists is generally considered adequate for all self-propelled trail users including pedestrians, in-line skaters, skateboarders, scooter users and those using mobility devices such as wheelchairs. The average recreational cyclists can maintain speeds of up to 18-25 km/h on some multi-use pathways. For granular surfaced off-road multi-use pathways or trails, a design speed in the area of 25 km/h is usually adequate, whereas a design speed of 40 km/h should be considered for hard surfaced multi-use pathways and trails on steeper descents. Cautionary signing should be used to warn of upcoming steep grades and sharp curves.

Cyclists are the critical user group when designing off-road multi-use pathways and trails for selfpropelled users as they have the highest average travel speed. The minimum radius of a curve on an off-road cycling facility depends on the bicycle speed and super-elevation. The AASHTO Guide for the Development of Bicycle Facilities, published in 2012 recommends that the general design speed should be 29 km/h for multi-use trails where cycling is the highest speed user group. Based on research, 29 km/h represents the 85th percentile for bicycle speed on granular surfaced pathways. The slightly lower design speed will allow for slightly smaller curve radii and potentially less construction impact as compared to multi-use pathways and trails requiring larger radii. For suggested centreline radii for a range of design speeds and super elevations please refer to **Table G.7**.

Design speed (km/h)	Suggested Radius (m) where super elevation = 0.02m/m	Suggested Radius (m) where super elevation = 0.05m/m
25	15	14
30	24	21
35	33	30
40	47	42
45	64	57

<b>Table G.7</b> – Suggested Pathways and Trail Radii Based on Travel Speeds
------------------------------------------------------------------------------

When horizontal curves are sharp (i.e. a very small radius), facility widening should be considered to compensate for the tendency of cyclists to track toward the outside of the curve.

**Table G.8** outlines additional widening requirements for curves on multi-use pathways and trails where the radii are less than the recommended minimum for the design speed selected.



Radius (m)	Additional widening (m)
0-7.5	1.2
7.5-15	0.9
15-22.5	0.6
22.5-30	0.3

 Table G.8 – Additional Trail Widening on the Outside of Curve

Stopping Sight Distance is the distance required for trail users to come to a full controlled stop upon spotting an obstacle. It is a function of the user's perception and reaction time. Stopping sight distances for off-road multi-use pathways and trails are typically governed by the distance required for cyclists since pedestrians and other trail users (with the exception of in-line skaters) can typically stop more immediately than cyclists regardless of the trail configuration. In terms of in-line skaters, though no definitive data currently exists regarding stopping distance, from a number of experiences and observations from in-line skaters, representatives and manufacturers, it can be surmised that a proficient in-line skater travelling close to the same speed as a cyclist can stop in a distance equal to or less than that of a cyclist. Therefore, basing stopping distance on the distance required for a cyclist should accommodate all other expected self-propelled trail users including in-line skaters.

#### **Active Transportation Guidelines**

G-6 The County and its local municipalities should refer to the minimum and preferred trail user operating space widths identified in **Table G.4** when developing or reviewing multi-use pathway designs.

G-7 The County and its local municipalities should refer to the minimum and preferred horizontal and vertical clear distances identified in **Table G.5** when developing or reviewing multi-use pathway designs.

**G-8** The County and its local municipalities should refer to the longitudinal and cross slope guidelines identified in **Table G.6** when developing or reviewing multi-use pathway designs.

G-9 The County and its local municipalities should consider the suggested trail curve radii and additional trail widening dimensions identified in **Table G.7** and **Table G.8** when developing or reviewing multi-use pathway designs.

#### G.3.3 AT Facilities in Urban, Suburban and Rural Areas

Typically urban / suburban users live closer to their destinations than rural users. As such, they are more likely to make short trips and / or utilitarian / commuter trips. Urban and suburban systems will generally have a higher order of infrastructure than rural systems due to a higher density of users.

The application of bike lanes, signed routes, multi-use pathways in the road right-of-way should be considered for those routes found in the urban and suburban areas. Routes in rural areas may accommodate paved shoulders, fewer designated routes and some linear off-road trails (e.g. trails along or within an active or abandoned railway or a utility corridor).



# TRANSPORTATION MASTER PLAN UPDATE

# G.3.4 Freight, Transit and Emergency Service Route

Special consideration should be made for those routes that are designated as freight, transit and / or emergency service routes. The implementation of formal cycling facilities or multi-use trails within the road right-of-way on these routes should be considered to accommodate the operating and design needs of large vehicles which conflict with those of cyclists. Cyclists' level of comfort and overall safety can be compromised due to the presence of large vehicles which may require the implementation of more separated cycling facilities (e.g. bike lanes and / or multi-use pathways outside of the road right-of-way) and / or alternate / parallel routes. In these scenarios, the application of traffic calming measures may not be appropriate because of the potential disturbance that speed bumps tend to create and the turning space required for larger vehicles.

For those transit routes which are identified as part of the overall network, there is the potential for increased conflict points where buses are required to merge over proposed bicycle facilities to access transit stops. In these scenarios, the applications of left-side bike lanes or other design treatments could be considered to accommodate boarding passengers and to reduce the number of conflict points between passengers and cyclists. **Figure G.2** illustrates a design application of a designated cycling facility approaching a transit stop.



Figure G.2 – Transit Stop & Cycling Facility Source: MMM Group, Sherbourne Cycle Tracks, 2012

#### G.3.5 Intersections

An intersection is where two or more roadways come together at grade. At this point different modes of transportation and associated facilities cross paths which can cause conflicts between cyclists and motorists. **OTM Book 18** and **TAC Bikeway Control Guidelines (2012)** sets out measures to decrease roadway user risk by:

 Increasing visibility for both cyclists and motorists and other roadway users (ensure cyclists and motorists can easily see each other);



- Designating and clearly marking a travel path for all roadway and intersection users including cyclists, motorists and pedestrians;
- Introducing designs that minimize the need for complex manoeuvers for cyclists;
- Managing intersection access to mitigate conflict points; and
- Facilitating awareness and understanding between competing modes of transportation.

The most frequently occurring conflicts between motorists and cyclists at an intersection can be broken into right-turn conflicts and left-turn conflicts.

- Right-turn conflicts when a cyclist is trying to make a through movement while a motorist is trying to make a right turn and to do so the motorist must cross over the on-road bicycle facility.
- Left-turn conflicts when cyclists try to merge across one or more lanes of through vehicle traffic in order to turn left using the same path as motorized vehicles.

Both types of conflicts can be mitigated using innovative design solutions that incorporate elements such as pavement markings and signage, pavement colour, designated holding areas for cyclists, medians, and bicycle traffic signals or by adjusting signal timings to accommodate cyclists. **Figure G.3** illustrates the typical bicycle and automobile movements at an intersection which can be used to better understand the different conflict points which can occur at major intersections. For additional details on these conflict areas and mitigation measures, County and local municipal staff should refer to **OTM Book 18** and **TAC's Bikeway Traffic Control Guidelines (2012)**.



The integration of cyclists and pedestrians at interchanges is often more complex. Interchanges possess unique characteristics and functions that present challenges when designing for pedestrians and cyclists especially when retrofitting bicycle facilities on existing interchange structures. Cycling facilities can either be implemented at an existing interchange during an upgrade or retrofitting project, or as part of a new interchange design.

Should the County choose to retrofit any of their existing interchanges the following guidelines should be considered:



#### Figure G.3 – Typical Bicycle and Motorized Vehicle Movements at an Intersection of Multi-lane Roadways and associated Conflict Points

Credit: Based on TAC Geometric Design Guide for Canadian Roads, 1999



- For lower speed merging/diverging ramps (< 70 km/h.), the bicycle lane should continue straight across the ramp using a white, dashed line pavement marking.</p>
- For high speed merging/diverging ramps (> 70 km/h.), the bicycle lane should not be carried straight across the ramp. Instead, it is recommended that for diverging ramps, designers either place a crossing further up the ramp with indicating signage or implement a "jughandle" crossing.

For more details on the design of these facilities, the County and local municipalities should refer to the interchange and ramp crossing design treatments outlined in the OTM Book 18 and TAC's Bikeway Traffic Control Guidelines (2012).

#### G.3.7 Transition Points

The design of active transportation facilities should take into consideration maximizing the consistency for users and decreasing potential conflicts with other modes of transportation. Where possible, active transportation facilities should be built to provide direct connections to destinations within the community, to surrounding municipalities or to key utilitarian or recreational routes. Routes that are isolated only provide short connections, do not access key destinations and/or begin and end abruptly and should not be considered for implementation unless previously identified as part of the route network concept for Simcoe County.

The network should be designed to provide smooth transition points between active transportation facilities. Abrupt transition points make it difficult for pedestrians and cyclists to navigate through the on and off-road routes and could potentially increase the number of conflict points. The County and local municipalities should design facilities to minimize these scenarios at key locations throughout the County.

**Figure G.4** illustrates the proposed signage which can be implemented at transition points to increase driver, pedestrian and cyclists awareness of the presence of bicycle facilities. The County and local municipalities should refer to the signage standards provided in the **TAC Bikeway Traffic Control Guidelines 2012** and the facility design guidelines as part of **OTM Book 18**.





RB-91

RB-92

## Figure G.4 – Transition Point Signage

Credit: TAC Bikeway Traffic Control Guidelines (2012)



#### G.3.8 Accessibility

Approximately one in eight Canadians suffer from some type of physical disability. Mobility, agility, and pain-related disabilities are by far the most common types, each accounting for approximately 10% of reported disabilities nationally. Disability increases with age from 3.3% among children, to 9.9% among working-age adults (15 to 64), and 31.2% among seniors 65 to 74 years of age. Disability rates are highest among older seniors (75 and over), with fully 53.3% in this age group reporting a disability.

The Accessibility for Ontarians with Disabilities Act (AODA) states that "The people of Ontario support the right of persons of all ages with disabilities to enjoy equal opportunity and to participate fully in the life of the province." The stated goal of the AODA is "to make Ontario accessible for people with disabilities by 2025."

The **Accessibility Standards for the Built Environment** is the standard that applies to pathways and trails. The intent is that it will help remove barriers in buildings and outdoor spaces for people with disabilities. The standard will only apply to new construction and extensive renovation.

AODA Criteria which are to be considered when designing for cyclists include: operational experience, width, running slope, cross slope, total slope, surface, changes in level and signage. The guidelines and criteria set out in these documents apply to the development of trail and sidewalk facilities and are not required for consideration when designing and developing on-road cycling facilities.

When designing and implementing cycling facilities, the County should utilize the guidelines outlined in the Built Environment Standards to ensure that the needs of all user groups are accommodated and satisfying the requirements of the AODA to the greatest extent possible, given the context of each trail's location, the surrounding environment and type of trail experience that is desired. Sections 80.8 and 80.10 of the Accessibility Standards for the Built Environment provide the technical requirements for recreational trails. These include:

- Minimum clear width 1.0m;
- Minimum head room clearance of 2.1m above trail;
- Surfaces are to be firm, stable with minimal glare;
- Maximum running/longitudinal slope of 10%;
- Maximum cross slope of 2%;
- High tonal or textural changes to distinguish the edge;
- Standards also address changes in level, openings in the surface, edge protection (e.g. near water); and
- Signage shall be easily understood and detectable by users of all abilities. It is important to ensure that signage and mapping/messaging clearly communicates which pathways are accessible so that users can make an informed personal decision about which pathways they will use.

Universal Trail Design is a concept that takes into consideration the abilities, needs, and interests of the widest range of possible users. For trails, it means planning and developing a range of facilities that can be experienced by a variety of users of all abilities. Principles of universal trail design can be summarized as follows:

Equitable use: provide opportunity for trail users to access, share and experience the same sections of trail rather than providing separate facilities;



- Flexibility in use: provide different options for trail users in order to accommodate a variety of experiences and allow choice;
- Simple, intuitive and perceptible information: whether conveying trail information through signage, maps or a web site, communicate using simple, straightforward forms and formats with easy to understand graphics and/or text;
- Tolerance for error: design trails and information systems so as to minimize exposure to hazards, and indicate to users any potential risks or challenges that may be encountered;
- Low physical effort: trails may provide for challenge but should not exceed the abilities of the intended users; where appropriate, rest areas should be provided; and
- Size and space for approach and use: trails and amenities should provide for easy access, comfort and ease in their usage.



Transition Point Signage: Source: (Left) www.en.wikipedia.org; (Right) www.americantrails.org

Ontario's Best Trails – (2006) provides an in depth discussion of the application of Universal Design principles and their application. Where possible and practical, trails and multi-use pathways should be designed to be accessible to all levels of ability. It must be recognized, that not all trails and multi-use pathways throughout the system can meet all of the accessibility requirements.

Steep slopes are one of the most significant barriers for those with physical disabilities. Designing trails and multi-use pathways to be within the threshold (5%) for universal access will not only overcome this significant barrier but it will help to reduce the potential for erosion of the trail surface. The following are some additional considerations for making existing and new trails accessible:

- Designers should consult the most current standards available;
- Where the trail requires an accessibility solution that is above and beyond what is normally encountered, a representative of the local accessibility advisory committee should be consulted early on in the process to determine if it is practical and desirable to design the specific trail to be fully accessible;
- Where it has been determined that full accessibility is appropriate, the accessibility representative should be consulted during the detailed design process to ensure that the design is appropriate; and



Work collaboratively with the local accessibility advisory committee to consider developing signage/content to clearly indicate trail accessibility conditions, which allow users with mobilityassisted devices to make an informed decision about using a particular trail prior to travelling on it.

#### **Active Transportation Guidelines**

G-10 Every effort should be made to ensure that off-road trails meet or exceed minimum accessibility requirements. Secondary Multi-use Pathways and Internal Park Trails will be designed to meet minimum accessibility requirements where feasible and practical. Hiking / Foot Trails are typically not designed to meet accessibility requirements.

G-11 Signage and maps should be designed to communicate which pathways and trails meet minimum accessibility requirements so that users can make their own advance decision about using the route.

#### G.3.9 Personal Security

To the extent that it is possible, active transportation routes should be designed to allow users to feel comfortable, safe, and secure. Although personal safety can be an issue for all, women, the elderly and children, are among the most vulnerable groups. Principles of Crime Prevention Through Environmental Design (CPTED) should be considered and applied to help address security issues concerning trail use, particularly in locations where trails are lightly used, isolated or in areas where security problems have occurred in the past. The four main underlying principles of CPTED are:

**Natural Access Control:** deters access to a target and creates a perception of risk to the offender.

**Territorial Reinforcement:** Defines clear borders of controlled space from public to semi-private to private, so that users of an area develop a sense of ownership.

**Natural Surveillance:** The placement of physical features and / or activities and people that maximizes natural visibility or observation.

**Maintenance:** Allows for the continued use of space for its intended purpose.

#### **Active Transportation Guidelines**

When implementing networks, the underlying principles of CPTED should always be considered including:

- Natural Access Control;
- G-12
- Natural Surveillance;
- Territorial Reinforcement; and
- Maintenance.



G-13

Signage and maps should be designed to communicate which pathways and trails meet minimum accessibility requirements so that users can make their own advance decision about using the route.

#### G.3.10 Multi-modal Integration - "Complete Streets"

There is a growing desire to evaluate transportation services of roadways from a multimodal perspective. Given the emphasis of contemporary planning concepts such as 'Smart Growth' and 'Complete Streets', alternative modes of travel – specifically transit, cycling and walking – should be considered when exploring the development of a system of on and off-road active transportation routes.

There is an increasing amount of research regarding the design and development of complete streets. There is not a "one size fits all" solution or specific design standard that can be universally applied. The Toronto Centre for Active Transportation (TCAT) recently published a report documenting the benefits, challenges, best practices and design alternatives for complete streets which are being implemented world-wide. Simcoe County and its local municipalities are encouraged to use this reference as a guide for future roadway design.

There are many kinds of complete streets, each are guided by the unique characteristics of the municipality in which they are being developed including but not limited to the community context and land use, the role of the street in the overall transportation network, traffic volumes of the proposed roadway and the existing transportation modes being accommodated. It is important to note that the implementation of a "complete street" approach requires coordination and support from a number of different sources including residents, businesses, planners and policy makers, engineers and landscape architects. Their combined input provides the balance of needs required to accommodate all modes of transportation including cycling while designing a useable space for all.





Credit: www.raisethehammer.org - Example of Complete Street Redesign in Hamilton, ON

# G.4 SELECTING & DESIGNING ACTIVE TRANSPORTATION FACILITIES

#### G.4.1 Facility Selection

Facility selection is an important component in network development. As planning and design active transportation (bicycle and pedestrian) facilities continue, the County and its local municipalities should refer to the facility selection process outlined in **OTM Book 18 Cycling Facility Design**. The



process provides a consistent framework that is easy to apply, technically based (was developed based on current research and knowledge of facility type selection), and allows flexibility to account for the differences in physical and operational characteristics from one site to another.

The selection tool does not tell designers when and when not to provide a certain facility type but rather sets out a process for selecting an appropriate facility type given the context and readily available data.

#### G.4.2 Active Transportation Facilities

Active transportation facilities can be divided into the following two categories:

- On-road Active Transportation Facilities: refers to facilities within the road right-of-way that are located on or along an existing road and may be incorporated into the existing of future street network. This may also include a facility within the road right-of-way that is physically separated from motor vehicle traffic by a curb or shoulder often referred to as a "boulevard" or "verge".
- Off-road Active Transportation Facilities: refers to facilities that are outside the road right-ofway through open spaces, valleys and parklands, as well as linear corridors such as abandoned railway lines, unopened road allowances and utility corridors.

Within these categories, there are a range of different facility types. The facility types are often described in terms of their degree of separation from motor vehicles (see graphic below). For a more detailed description of each please refer to sections G.4.2.1 - G.4.2.3. As mentioned above, the information presented in this document should be supplemented with the bicycle and pedestrian facility design guidelines outlined in OTM Book 18, OTM Book 15 and TAC's Bikeway Traffic Control Guidelines (2012).

Shared Facilities	Dedicated Facilities	Separated Facilities
<ul> <li>Signed-only Bike</li> <li>Routes on Local Roads</li> <li>Signed-only Bike Routes on Wide Travelled Lanes</li> <li>Signed Bike Routes with "Sharrow" Symbols</li> <li>Bikeway Boulevards</li> <li>Edge Lines</li> </ul>	<ul> <li>Signed Bike Routes with Paved Shoulders</li> <li>Signed Bike Routes with Buffered Paved Shoulders</li> <li>Bike Lanes</li> <li>Buffered Bike Lanes</li> </ul>	<ul> <li>Multi-use Pathway in place of a sidewalk</li> <li>Multi-use Trails outside the Road Right-of-Way</li> <li>Rails with Trails</li> </ul>
Least Separation Generally associated with lower volume, lower speed roads		Most Separation Generally associated with higher volume, higher speed roads





#### **G.4.2.1 Shared Facilities**

Signed-only Cycling Routes on Local Roads				
Definition	Signed-only Bike Routes are routes where both motorists and cyclists share the same vehicular travel lane and 'Bicycle Route Marker' signs are used to provide route guidance. Aside from 'Bicycle Route Marker' signs, there are generally no other provisions used for Signed-only Bike Routes.			
Considerations	<ul> <li>Bicycles and motor vehicles share the right-most travel lane, no physical space is dedicated for bicycle use only;</li> <li>Design does not include pavement markings for bicycles;</li> <li>Marked with 'Bicycle Route Marker' signs which may be supplemented by optional 'Share the Road' signs;</li> <li>Should typically only be signed as onroad bike routes where acceptable (e.g. lower) motor vehicle operating speeds and traffic volumes exist; and</li> <li>Should be supported by education programming for both cyclists and motorists.</li> </ul>			
Typical Application	Typical for residential streets where motor vehicle traffic volumes and speeds are low, and rural roads where traffic volumes are low.			
Pedestrian Uses	Pedestrians use the sidewalk in residential areas, and may use the road shoulder in rural areas.			
<b>Guideline G-14:</b> Signed-only Bike Routes may be used on roads where traffic volume is considered relatively low and adequate sightlines exist. Adding edge lines in urban areas may be suitable where there is sufficient width or removal of on-street parking for bike lanes is not supported by the local neighbourhood.				

FINAL REPORT- SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



# TRANSPORTATION

Signed-only Cycling Routes on Wide Travelled Lanes		
Definition	Similar to Signed-only Bike Routes with the exception that the travel lane shared by motorists and cyclists is wider than the standard motor vehicle travel lane (e.g. 4.0 to 5.0 m). The extra width allows motorists and cyclists to travel side- by-side more comfortably. Travelled lane widths should not be more than 5.0 m wide as this may encourage unsafe passing by motorists.	
Considerations	<ul> <li>Bicycles and motor vehicles share the right-most travel lane, no physical space is dedicated for bicycle use only;</li> <li>Design does not include pavement markings for bicycles;</li> <li>Marked with 'Bicycle Route Marker' signs which may be supplemented by optional 'Share the Road' signs;</li> <li>'Share the Road' signs and sharrows should be considered at pinch points; and</li> <li>Wide travelled lanes should have sufficient width to allow motorists to pass cyclists without encroaching on an adjacent travel lane (if one exists).</li> </ul>	Travel Lane   4.0 - 4.5 m
Typical Application	Typical for multi-lane roads with wide right-most travelled lanes which may be created by narrowing the inside travel lanes.	
Pedestrian Uses	Pedestrians use the sidewalk in urban areas, and may use the road shoulder in rural areas.	THE ROAD

**Guideline G-15:** Signed-only Bike Routes on Wide Travelled Lanes may be retrofitted on 4-lane cross-sections by narrowing the inside travel lane. Supplementary 'Share the Road' signs and sharrows should be considered at pinch points to make both cyclists and motorists aware of narrow zones.



Signed Bike Routes with Sharrow Symbols			
Definition	Shared use lane markings, also called "sharrows", are symbols placed on the pavement surface in the intended area of bicycle travel. Sharrows provide added route guidance and help cyclists position themselves appropriately in the travelled lane. Sharrows also increase driver awareness of the presence of cyclists and help deter unsafe passing manoeuvres by motorists.		
Considerations	<ul> <li>Bicycles and motor vehicles share the right-most travel lane;</li> <li>Pavement markings indicate appropriate positioning for cyclists. Cyclists align their front wheel with the point on the chevron;</li> <li>Especially useful in congested areas where traffic is generally moving slowly (e.g. a "downtown" street or urban centre);</li> <li>Clear pavement markings and signs illustrate the concept of "Share the Road" within space-confined roadways; and</li> <li>Can be an appropriate solution for urban downtown / main street areas where on-street parking cannot be removed to implement dedicated bike lanes.</li> </ul>	Travel Lane 3.0 - 4.0 m	
Typical Application	Placement of the Sharrow symbol indicates to cyclists where they should be traveling on the road (e.g. approximately 1.0 m from the curb where there is no on-street parking and 3.4 m from the curb where there is on-street parking on a multi-lane road).	SHARE THE ROAD 0.1 m - 1.0 m - 1.0 m - 1.0 m	
Pedestrian Uses	Pedestrians use the sidewalks in urban areas		
Guideline G-16:	Signed-only Bike Routes with Sharrows n	nay be used on congested local and	

Guideline G-16: Signed-only Bike Routes with Sharrows may be used on congested local and county roads where traffic generally moves slowly and at pinch points to make both cyclists and motorists aware of narrow zones.





#### **Bikeway Boulevard (Bicycle Priority Streets)** In some areas, particularly residential neighbourhoods, calming traffic techniques such as through travel restrictions for cars, traffic circles and reduction in the number of stop signs can Median opening allow picyclists to cross arter Definition be used to create "bicycle priority streets" which allow the cyclist to travel more d median prevents motorists efficiently by not having to break from cutting through momentum and stop at frequently placed four way stops. Design strategies and elements are employed to encourage through-travel for Considerations cyclists and enable them to maintain momentum, yet discourage or restrict Stop signs on cross-streets vor through bicycle movem through travel by motorists. Bicycle boulevard signs and pavement markings serve as wayfinding devices and reinforce that bicyclists Typically reserved for local roadways and re on a preferred route **Typical** residential street and include traffic Mini traffic circles and speed hump Application calming measures to encourage an rve as traffic calmi na device increased comfort level for cvclists. Pedestrian Pedestrians use the sidewalk in Uses residential areas.

**Guideline G-17:** Bikeway Boulevards or Bicycle Friendly Design Applications may be used on local roads and residential streets where a formal bicycle facility is not required however, with the introduction of traffic calming measures cycling may increase due to a greater sense of comfort.



# TRANSPORTATION MASTER PLAN UPDATE

Edge Lines			
Definition	Signed-only Bike Routes may be supplemented with edge lines. Edge lines are a creative way of providing cyclists with operating space outside the motor vehicle travelled portion of the roadway without affecting on-street parking since on-street parking is still permitted. This may be a useful first step towards implementing future bicycle lanes where the removal of on-street parking is an issue with neighbouring residents, yet demand is low.		
Considerations	<ul> <li>Bicycles and parked motor vehicles share the space to the right of the edge line;</li> <li>Design does not include pavement markings for bicycles;</li> <li>Marked with 'Bicycle Route Marker' signs;</li> <li>Should only be signed as on-road bike routes where acceptable (e.g. lower) motor vehicle operating speeds and traffic volumes exist; and</li> <li>Should be supported by education programming for both cyclists and motorists.</li> </ul>	Travel Lane	1.5 m Blvd
Typical Application	Typical for residential streets where motor vehicle traffic volumes are low and speeds are low to moderate. Edge lines may be a useful first step towards implementing future bicycle lanes along a roadway where the removal of on-street parking is an issue with neighbouring residents but parking demand is low.	1.5m 3.8m 3	.8m 1.5m
Pedestrian Uses	Pedestrians use the sidewalk in residential areas		
<b>Guideline G-17:</b> Edge lines should be considered as an option in residential areas with on-street parking where providing cyclist operating space outside the motor vehicle travelled portion of the roadway is desired but providing dedicated bicycle lanes are not feasible or appropriate given the content.			





Signed Cycling Route with Paved Shoulder			
Definition	Signed Bike Routes with Paved Shoulders provide a convenient place for cyclists to ride, on a road with a rural road cross section (no curbs). A buffer made up of two edge lines with or without diagonal hatching or with a rumble strip in between can be used to provide cyclists riding on the paved shoulder with added separation.		
Considerations	<ul> <li>Provides a space for cyclists on rural road cross-sections (no curb and gutter);</li> <li>Where motor vehicle speeds or volumes are high, a wide shoulder and / or painted buffer enables more separation between the cyclists and the motor vehicle, and also reduces the impact of wind-shear on the cyclist;</li> <li>The paved shoulder provides a convenient location for cyclists to travel;</li> <li>Rumble strips can be added to the painted buffer as an additional cue, provided that there are clearly marked breaks at regular intervals, allowing the cyclists to move in or out of the paved shoulder areas to overtake slower moving cyclists, safely pass stalled vehicles or to make a left turn; and</li> <li>'Bike Route Marker' signs and 'Share the Road' signs may be used.</li> </ul>	Travel Lane       Paved Shoulder       Granular         3.0 - 3.75 m       1.2 - 1.5 m       0.5 m         Image: Constraint of the second sec	
Typical Application	Implemented on rural cross-sections (no curbs) where motor vehicle traffic volume and speeds are higher.		
Pedestrian Uses	Pedestrians may use the paved shoulder or the remaining portion of the gravel shoulder. Pedestrians must walk facing on-coming traffic in accordance with the Highway Traffic Act.	ROUTE SHARE THE ROAD	
Guideline G-18	Signed Bike Routes with Paved Shoulders	may form part of the County's activ	

Guideline G-18: Signed Bike Routes with Paved Shoulders may form part of the County's active transportation network along rural road cross sections.



## **G.4.2.2 Separated Facilities**

Bike Lanes				
Definition	A Bike Lane is a portion of a roadway which has been designated by pavement markings and signage for preferential or exclusive use by one way cyclist traffic often along the right-most curb or edge of road.			
Considerations	<ul> <li>Motor vehicles are typically not permitted to park or stand in the bike lane, but right turning motor vehicles can enter the bike lane at intersections to complete their turn (enforced through municipal bylaw);</li> <li>Width of the bike lane (or adding a buffer zone) should be increased (to a maximum of 2.0 m) where motor vehicle traffic volumes, percentages of trucks and commercial vehicles and motor vehicle speeds are higher;</li> <li>Sufficient space should be provided to mitigate conflict between cyclists and open car doors on streets where on-street parking is permitted; and</li> <li>Consistency in the design and signing of bike lanes and other bikeway facilities is crucial to educate and inform cyclists and motorists on their proper use.</li> </ul>			
Typical Application	Typically implemented on a cross-section road where motor vehicle traffic volume and speeds are higher than typical threshold values for shared space routes.			
Pedestrian Uses	Pedestrians use sidewalks in urban areas (sidewalks would be installed at least on one side of the road along designated AT routes where none currently exist in the urban area).			
<b>Guideline G-19:</b> Bike lanes should be provided on urban arterial and major collector roads that are part of the AT network where traffic volume and speed are higher. Bike lanes should also be clearly				

identified on roadways with bicycle symbol pavement markings and 'Reserved Bicycle Lane' signs.





#### **Road Diet (Reallocation of Space for Bike Lanes)**

	Road Dict (Reallocation of opace to	
Definition	Retrofitting existing roadways without roadway widening involves the reallocation of space for the implementation of bicycle facilities.	
Considerations	<ul> <li>Narrowing of vehicular travel lane where practical and safe;</li> <li>Reducing the number of through vehicular travel lanes;</li> <li>Reconfiguring on-street parking or removing it on roadways with low demand; and</li> <li>Redistributing existing road space to accommodate cycling facilities can in some cases be a more appropriate and affordable solution.</li> </ul>	4-Lane Collector; On-street parking low demand; and Moderate to h speeds for this
Typical	<ul> <li>Wide curb lanes may allow for easy implementation of shared lane markings (sharrows) or even conventional bicycle lanes. On rural road cross-sections, gravel shoulders may be paved to provide cyclists with an area for riding that is adjacent to vehicular travel lanes offering separation between bicycle traffic and vehicular traffic.</li> <li>Bicycle lanes have a preferred design</li> </ul>	location (high spe an ongoing proble
Application	<ul> <li>width of 1.5m to edge of pavement (design minimum of 1.5m to face of curb) and 1.8 – 2.0m wide if adjacent to a parking lane.</li> <li>Additional width can be obtained from the adjacent travel lanes and/or parking lanes.</li> <li>In constrained corridors, over short distances, bicycle lanes should not be</li> </ul>	
Pedestrian Uses	less than 1.2 m wide including the gutter. N/A	2.57 m 1-8 m PABAING EIGHT TRAVEL LANE
Guideline G-20: Where applicable, the County should consider retrofitting exis		



arking permitted, but d; and

to high operating this neighbourhood gh speed is noted as problem).





ng existin<u>g roadways to</u> accommodate cycling facilities including edge lines or bike lanes at a minimum width of 1.5m to the edge of the pavement or 1.8m – 2.0m wide if beside a parking lane.



# TRANSPORTATION MASTER PLAN UPDATE

Buffered Bike Lanes				
Definition	Buffered Bike Lanes provide additional space/separation between the cyclist and motor vehicles and can use a number of separation alternatives to address this, including pavement markings, rumble strips, planters, etc.			
Considerations	<ul> <li>There are various types of physical buffers that are available and can be used to create separation but not all barrier types completely restrict the encroachment of motorized vehicles into the bicycle lane.</li> <li>Where a barrier is used to separate the bike lane from vehicle traffic (e.g., bollard, curb, planters etc.), this type of facility is commonly referred to as a Cycle Track.</li> <li>For a separated bicycle facility, a designated buffer space separates the bicycle lane from the adjacent motor vehicle travel lane.</li> <li>Signage and wayfinding provide additional guidance to cyclists, motorists and other road users.</li> </ul>	Travel Lane       0.5 - 1.5 - 1.5 - 1.8 m       Blvd         3.0 - 3.75 m       0.3 m gutter		
Typical Application	Typically implemented along urban roadways with high motor vehicle volumes and/or speed where increased separation is required. Could also be implemented on roadways with on-street parking and high parking turnover where double parking is an issue or major corridors that provide direct and convenient access to key destination points (i.e., corridors with heavy cycle traffic) or in front of schools. Pedestrians use sidewalks in urban areas			
Pedestrian Uses Guideline G-21: I	(sidewalks would be installed at least on one side of the road along designated AT routes where none currently exist in the urban area). Buffered Bike lanes should be provided on u	urban arterial and major collector roads		
that are part of the AT network where traffic volume and speed exceed threshold levels for the				

FINAL REPORT- SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

implementation of Conventional Bike Lanes.





#### G.4.2.3 Off-Road Facilities

Multi-use Trails (In Place of a Sidewalk)		
Definition	Is a bicycle path or a combined bicycle/pedestrian path physically separated from motor vehicle traffic by a strip of grass (often referred to as a "boulevard" or "verge") within the roadway right-of-way or in place of an existing or previously proposed sidewalk. This facility type is typically designed for a wide range of non-motorized users including pedestrians, cyclists, in-line skaters, and skateboarders.	
Considerations	<ul> <li>Surface may be compacted granular (e.g., Limestone Screening) or hard surface (e.g., Asphalt) to accommodate different users and a yellow centre line may be used on busier asphalt surface;</li> <li>Should not be applied in locations where lot frontages are narrow and there are numerous intersections per kilometre;</li> <li>Separation or setback from the road is a very important consideration. Where separation cannot be achieved, one direction of cycling traffic is required to ride against motor vehicle traffic;</li> <li>When the available right-of-way is too narrow it may be prudent to consider a reduction of the existing or proposed widths of elements such as travel lane and shoulder widths (any reduction to less than MTO, TAC, AASHTO or municipal approved design criteria should be supported by a documented engineering analysis);</li> <li>Some cyclists may continue to use the roadway even if an multi-use pathway is provided which may lead to conflicts with motorists who feel all cyclists should be on the path</li> </ul>	



ммм	GROUP
· ·	
CAMBIUM	

		Г
	<ul> <li>provided; and</li> <li>Consideration should be given to motorists falsely expect cyclists to stop or yield at all cross-streets and driveways.</li> </ul>	SHARED SHARED
Typical Application	The application of Multi-use Pathways adjacent to a roadway, especially as a cycling facility, should only be considered for cycling when an on-road facility is not feasible or when a municipality seeks to provide a primarily recreational path for pedestrians and cyclists and cannot or chooses not to provide a parallel on-road facility for cycling. This is an appropriate facility choice in areas where there is high cycling demand and a large proportion of the users are youth or seniors with a low to moderate level of experience and where there are few intersections/conflict points per kilometre.	Travel Lane Bivd Varies 3.0 - 4.0 m
Pedestrian Uses	A Multi-use Pathway in place of a sidewalk can take on two forms, one where the bicycle path is distinct from the sidewalk and the other where a single path is shared by cyclists and pedestrians. On the Shared Use Active Transportation Path pedestrians are able to use the facility type along with cyclists and other user groups (e.g., in-line skaters, skateboarders, etc.).	
<b>Guideline G-22:</b> Multi-use Trails (in place of sidewalks) should be considered in areas where there is high cycling demand and a large proportion of the users are youth or seniors with a low to moderate		

high cycling demand and a large proportion of the users are youth or seniors with a low to moderate level of experience and where there are few intersection /conflict points per kilometre (typical for residential streets where motor vehicle traffic volumes and speeds are low, and rural roads where traffic volumes are low).



Off-Road Multi-use Trails Outside of the Road Right-of-Way					
Definition	Off-Road Multi-Use Trails are shared facilities located outside the road right-of-way for use by cyclists and other non-motorized users. If permitted, multi-use trails may also be used by recreational motorized vehicles.				
Considerations	<ul> <li>Generally used to provide a recreational opportunity and may also be appropriate to provide a direct cycling commuter route in corridors not served directly by on-road facilities.</li> <li>Surface may vary, may be granular in rural areas and asphalt in urban areas to accommodate a wider range of users.</li> <li>Designers must consider the specific users when determining the operating and design characteristics of the offroad facility.</li> <li>Signage and/or painted centrelines can be utilized to identify separate lanes for opposing directions of travel and encourage the practice of keeping to the right side of the trail.</li> </ul>				
Typical Application	Typically located outside the road right-of- way through a park, public open space corridor, along a utility corridor, or other linear facilities such as within an abandoned railway corridor.				
Pedestrian Uses	Multi-use trails accommodate the widest range of Active Transportation user groups including cyclists, pedestrians, in- line skaters, skateboarders, and wheelchair users depending on the trail surface. If permitted, equestrians and recreational motorized vehicles including snowmobiles and all-terrain vehicles may also be permitted to use certain sections of a multi-use trail outside of the road right-of-way.				

**Guideline G-23:** Off-Road Multi-use Trails provide for the widest range of user ability and should be considered as an integral part of the active transportation network. They also provide connections to local/secondary trails.



Rails with Trails					
Definition	Rails with Trails are off-road trail facilities which are implemented adjacent to abandoned or existing railways.				
Considerations	<ul> <li>Under certain conditions active rail rights-of-way may also be able to accommodate an active transportation function.</li> <li>In cases where abandoned rail lines currently host multi-use trails and need to be converted to active rail use in the future consideration should be given to reinstating rail infrastructure without losing the use of the multi-use trail by moving the trail to the edge of the right-of-way.</li> </ul>				
Typical Application	Candidates for "rails with trails" are those with a wide enough right-of-way to safely accommodate a multi-use trail in addition to existing rail operations, low speed, and low frequency railways.				
Pedestrian Uses	Trails accommodate cyclists as well as pedestrians in both urban and rural applications.				
Guideline G-24: Where applicable, rails with trails should be considered to best utilize active or non- active railways throughout the County and to accommodate, in a safe and effective manner, both					

pedestrians and cyclists.

The design concepts and guidelines prepared for Simcoe County are intended to be used by staff as well as those responsible for the design and implementation of active transportation facilities through the County and local municipalities including but not limited to the conservation authorities, representatives from cycling and / or trail groups and organizations, the County as well as private land owners. The following trail design concepts from **G.5** to **G.27** should be considered for the design and implementation of the active transportation network for Simcoe County.



# G.4.3 Designing for Intersections & Crossings

A significant challenge when implementing an active transportation network is how to accommodate users when crossing various physical barriers and roads. The following section provides guidance on crossing design.

#### G.4.3.1 Minor Roads

In the case of lower volume and lower speed roads, the crossing should include the following:

- Creation and maintenance of an open sight triangle at each crossing point;
- Access barriers to prevent unauthorized motorized users from accessing the pathway;
- Advisory signing along the roadway in advance of the crossing point to alert motorists to the upcoming crossing;
- Signing along the pathway to alert users of the upcoming roadway crossing;
- Alignment of the crossing point to achieve as close to possible a perpendicular crossing of the roadway, to minimize the time that users are in the traveled portion of the roadway;
- Concrete ramp in boulevard between the sidewalk and roadway; and
- Curb ramps on both sides of the road.

Pavement markings, to delineate a crossing, should not be considered at "uncontrolled" trail intersections with roads as trail users are required to wait for a gap in traffic before crossing at these locations. Pavement markings designed to look like a pedestrian cross over may give pedestrian and trail users the false sense that they have the right-of-way over motor vehicles, which is contrary to the Highway Traffic Act of Ontario for uncontrolled intersections. In some locations, signing on the trail may not be enough to get trail users to stop before crossing the road. Under these circumstances or in situations where the sight lines for motorists are reduced and/or where there is a tendency for motorists to travel faster than desirable, the addition of other elements into the trail crossing may be necessary. Changing the trail alignment may help to get trail users to slow and stop prior to crossing. Changes to the streetscape may also provide a cue and traffic calming effect for vehicles.

## **Active Transportation Guidelines**

G-25 Trail crossings of local minor roads at mid-block locations include advance advisory pedestrian crossing signs on the roadway approaches and a yield or stop sign on the trail approaches.

## G.4.3.2 Crossing with Median Refuge Island

Pedestrian refuge islands are medians that are placed in the centre of the roadway separating opposing lanes of traffic. They allow trail users to cross one direction of traffic at a time, resting on the refuge island in the centre. They are particularly suited for roadways with multiple lanes since the cognitive requirements to select a gap in traffic traveling in two directions in multiple lanes is considerably higher than that required for cross two lanes of traffic. A number of jurisdictions have implemented Pedestrian Refuge Islands. Guidelines for the typical design elements for a pedestrian refuge island are as follows:



- Islands are typically a minimum of 6 m in length;
- Islands should be a width of at least 1.8 m wide, but 2.4 m is preferred to accommodate wheelchairs in a level landing 1.2 m wide plus 0.6 m wide detectable warning devices on each side. The 2.4 m width will also accommodate bicycles in the refuge;
- Curb ramps are provided to allow access to the roadway and island for wheelchair users, and detectable warning devices (0.6 m in width) should be placed at the bottom of the curb ramps;
- The pathway on the island is constructed of concrete, not asphalt. Users with low vision or complete visual impairment can better detect the change in texture and contrast in colour supplemented by the detectable warning devices to locate the refuge island;
- Appropriate tapers are required to diverge traffic around the island based on the design speed of the roadway;
- The pathway on the island can be angled so that pedestrians are able to view on-coming traffic as they approach the crossing;
- Illumination should be provided on both sides of the crossing;
- Signage associated with the pedestrian refuge island includes "Keep Right" and "Object Marker" warning signs installed on the island facing traffic, and "Pedestrian Crossing Ahead" warning signs installed on the roadway approaching the crossing. "Wait for Gap" warning signs can be installed on the far side of the crossing and on the refuge island if pedestrians are failing to cross in a safe manner;
- Crosswalk markings are not provided unless the crossing is at an intersection controlled by signals, stop or yield signs, or controlled by a school crossing guard; and
- Railings on the island to control pedestrian access are not recommended because they are a hazard in potential collisions (spearing of driver or pedestrian). Some pedestrians will walk in front of or behind the island to avoid the railings, a less safe refuge location than on the island.

The graphic on the following page illustrates an application of a midblock pedestrian signal with a median refuge.

There are a number of design alternatives which could be used to ensure the safe crossing of roadways by pedestrians and cyclists when on trails. One of the design alternatives that has recently emerged is a cross-ride. A cross-ride can be used by pedestrians and cyclists when crossing a roadway and provides a designated space for both users and helps to prevent possible conflict areas at crossings. Recently implemented in communities such as the City of Mississauga and the City of Burlington, this innovative design features is now endorsed and promoted by **OTM Book 18**.







Mid-block Pedestrian Signal with Median Refuge Credit: MMM Group, 2010



Midblock Pedestrian Signal Without Median Credit: MMM Group, 2012

#### **G.4.3.3 Midblock Pedestrian Signal**

The midblock pedestrian signal is a device to assist pedestrians crossing major streets and is a more positive and effective pedestrian crossing device than a pedestrian crossover (PXO).

A midblock pedestrian signal includes standard traffic signal indications to control traffic on the major street and standard pedestrian "Walk" and "Don't Walk" signals, activated by push buttons, for pedestrians wishing to cross the major street at the designated crossing point. Midblock pedestrian signals may be considered when:

- A multi-use path or trail crosses a high volume and/or multi-lane road;
- A grade separation is not practical; and
- Crossing nearby.

The graphic above illustrates an application of a midblock pedestrian signal.

#### **Active Transportation Guidelines**

G-26 At-grade mid-block multi-use pathways crossings of collector and arterial roadways should be controlled by a pedestrian signal or pedestrian cross over where possible.

#### G.4.3.4 Active Railways

Currently, in order to establish a pathway crossing of an active rail line, proponents must submit their request directly to the railroad company. Submissions need to identify the crossing location and its basic design. Designs should be consistent with Draft RTD-10, Road/Railway Grade Crossings: Technical Standards and Inspection, Testing and Maintenance Requirements (2002) available from Transport Canada. In the event that an agreement cannot be reached on some aspect of the crossing, then an application may be submitted to the Canadian Transportation Agency, who will mediate a resolution between the parties.



The graphics below illustrates an at-grade crossing of an active railway in Newmarket, Ontario and some design concepts and considerations which could be explored for a similar location.



At-Grade Trail Crossing of a Railway - Location: Newmarket, ON Credit (Right / Left): MMM Group, 2012

## G.3.3.5 Abandoned Rail Lines

In rural areas where abandoned rail corridors are being considered for multi-use trails, owners of farming operations who have property on both sides of the corridor and/or are using a portion of the corridor to gain access to their fields are sometimes apprehensive when plans are made for trails as they see this important access being restricted or discontinued.

Where site specific concerns are identified it is important for trail designers and managers work with the adjacent landowner(s) to develop a mutually beneficial solution.

Successful solutions have been developed elsewhere in Ontario and have included:

- Post and wire fencing along both sides of the corridor in the section of concern;
- Lockable wire or metal gates in locations that serve the landowner's needs, with a local that remains in the possession of the landowner;
- Access ramp(s) to reach the trail bed, which may already be in place and require only minor improvements such as grading, culverts or drainage;
- Trail widening where the machinery must cross and / or along the length of the segment that the owner may be required to travel on the trailbed (in the case of a diagonal or offset crossing);
- Cautionary signs to warn trail users in advance of the crossing point or zone that the machinery needs to use the trailbed; and
- Signs at trailheads to forewarn trail users that they may expect to encounter farm machinery crossing or using the trail, and that this may be more frequent during certain times of the year.

#### G.3.3.6 Bridges

Where possible, the active transportation network should make use of existing bridges, including pedestrian bridges, vehicular bridges and abandoned railway bridges in appropriate locations. In



cases where this is not possible, a new structure will be needed and the type and design of a structure needs to be assessed on an individual basis.

The following are some general considerations: In most situations the prefabricated steel truss bridge is a practical, cost effective solution;

- In locations where crossing distances are short, a wooden structure constructed on site may be suitable;
- Railings should be considered if the height of the bridge deck exceeds 60cm above the surrounding grade, and should be designed with a "rub rail" to prevent bicycle pedals and handlebars from becoming entangled in the pickets;
- When considering barrier free access to bridges, an appropriate hardened surface should be employed on the trail approaches and bridge decking should be spaced sufficiently close to allow easy passage by a person using a mobility-assisted device;
- Decking running perpendicular to the path of travel is preferred over decking running parallel, as the latter is more difficult for use by wheelchairs, strollers, in-line skates and narrow tired bicycles;
- Maintenance considerations; and
- Accessibility.



Sample Pathways on Bridges - Top: Brampton, ON; Bottom: St. John's, Nfld. Credit: MMM Group, 2012

#### G.4.3.6 Underpasses & Tunnels

Often an underpass or tunnel is the only way to cross significant barriers such as elevated railways and multi-lane highways. Designing trails through underpasses and tunnels can be challenging because of the confined space.

Underpasses should be wide enough to accommodate all active transportation users whether they are traveling by foot, bicycle, in-line skates, wheelchair or other forms of active transportation. Where feasible, it is suggested that trail widths through underpasses be equal to or greater than that of the approaching trail. The guidelines provided below outline key considerations for the development of an underpass crossing.



#### **Active Transportation Guidelines**

- The minimum recommended underpass or tunnel width for a multi-use pathway is 3.5m. Where the structure exceeds 20m in length, in high traffic and/or urban areas the width should be increased to 4.2m or greater where possible;
- For shorter length underpasses, a vertical clearance of 2.5m is usually sufficient;
- For longer structures a vertical clearance of 3.0m should be considered. If service and/or emergency vehicles are to be accommodated within the underpass, an increase in vertical clearance may also need to be provided;
- G-27 Underpasses and tunnels can be a security concern and also present maintenance challenges. To address these issues, tunnels should be well lit with special consideration made to security, maintenance and drainage. Approaches and exits should be clear and open to provide unrestricted views into and beyond the end of the structure wherever possible;
  - Abutments should be appropriately painted/marked with reflective hazard markings; and
  - Ideally, the transition between the multi-use pathway and underpass crossing should be level and provide for accessibility. In the case where an underpass crosses beneath ground-level travel/road ways, ramps should be provided to allow a transition down to the lower grade under the passage, with grade or alignment changes being taken up by the access ramps wherever possible.

#### C.4.4 Multi-use Trail Surface Type

There are a number of options for trail surfaces, each with advantages and disadvantages related to cost, availability, ease of installation, lifespan and compatibility with various trail users groups. **Table G.9** is a summary of the most commonly used trail surfacing materials along with some advantages and disadvantages for each. There is no one surface material that is appropriate in all locations, and material selection during the design stage must be considered in the context of the anticipated users and location.

Advantage		Disadvantage
Con	cre	te
Smooth surface, can be designed with a		High cost to install.
variety of textures and colours, providing flexibility for different urban design		Requires expansion joints which can create discomfort for users with mobility aids.
treatments.		Must be installed by skilled trades people.
Long lasting, easy to maintain.		Is not flexible; Cracking can lead to heaving and shifting, sometimes creating large step joints.

#### Table G.9 Comparison of Trail Surfacing Materials



Table G.9– Comparison of Trail Surfacing Materials

Advantage			Disadvantage
Unit I		Pav	
	Relatively smooth surface, available in a variety of patterns and colours to meet urban design needs. Long lasting, can be easily repaired by lifting and relaying.		High cost to install. Users with mobility aids may find textured surface difficult to negotiate. Must be installed by skilled trades people.
	As	pha	lt
	Smooth surface, moulds well to surrounding grades, and is easily negotiated by a wide range of trail user groups. Relatively easy to install by skilled trades people. Patterned and coloured surface treatments are available, however patterning in surface may be difficult for some user groups to negotiate, and may not satisfy AODA requirements. Retains heat and dries more quickly in comparison to other materials, allowing for easier use during the winter months.	* *	Moderate-high cost to install. Must be installed by skilled trades people. Has a lifespan of 15-20 years depending on the quality of the initial installation. Poor base preparation can lead to significant reduction in lifespan. Cracking and "alligatoring" occurs near the edges, grass and weeds can invade cracks and speed up deterioration. Must be appropriately disposed of after removal.
	Granulars (fe	or b	ases only)
	Pit Run: Mixed granular material "straight from the pit" containing a range of particle sizes from sand to cobbles. Excellent for creating a strong sub base, relatively inexpensive (for bases only).		Not appropriate for trail surfacing.
	'B' Gravel: Similar characteristics to Pit Run with regulated particle size (more coarse than 'A' Gravel). Excellent for creating strong, stable and well drained sub bases and bases. Relatively inexpensive (for bases only).		Not appropriate for trail surfacing.
	'A' Gravel: Similar characteristics to 'B' Gravel, with smaller maximum particle size. Excellent for trail bases, may be appropriate for trail surfacing of rail trails in rural areas and woodlands. Easy to spread and regrade where surface deformities develop (for bases only).		Subject to erosion on slopes. Some users have difficulty negotiating surface due to range in particle size and uneven sorting of particles that can take place over time with surface drainage.



# Table G.9– Comparison of Trail Surfacing Materials

	Advantage	Disadvantage	
	Granulars		
•	Clear stone: Crushed and washed granular, particles of uniform size, no sand or fine particles included. Excellent bedding for trail drainage structures and retaining wall backfilling, if properly leveled and compacted, makes an excellent base for asphalt trails. (for bases only)	<ul> <li>Not appropriate for trail surfacing.</li> </ul>	
	Ston	ne Dust	
	Stone dust (Screenings): Mixture of fine particles and small diameter crushed stone. Levels and compacts very well and creates a smooth surface that most trail users can negotiate easily. Easy to spread and regrade where surface deformities develop. Inexpensive and easy to work with. Widely used and accepted as the surface of choice for most granular surfaced trails. Crushed 3/8" Limestone material. This surfacing material has been used successfully by some municipalities where	<ul> <li>Subject to erosion on slopes.</li> <li>Wheelchair users have reported that stone shards picked up by wheels can be hard on hands.</li> <li>May not be suitable as a base for hard surfaced trails in some locations.</li> </ul>	
	finer stone dust has washed out.		
		d Wood Chips	
	Bark or wood chips, particle size ranges from fine to coarse depending on product selected, soft under foot, very natural appearance that is aesthetically appropriate for woodland and natural area settings. Some user groups have difficulty negotiating the softer surface, therefore this surface can be used to discourage some uses such as	<ul> <li>Breaks down over time, therefore requires "topping up".</li> <li>Source of material must be carefully researched to avoid unintentional importation of invasive species (plants and insects).</li> </ul>	
	cycling. Generally does not meet AODA requirements.		
	May be available at a very low cost depending on source, and easy to work with.		
		tural Surface	
	Native soils existing in situ. Only cost is labour to clear and grub out vegetation and regrade to create appropriate surface. Appropriate for trails in natural areas provided that desired grades can be	Some user groups will have difficulty	



**Table G.9**- Comparison of Trail Surfacing Materials

Advantage	Disadvantage
achieved and that soil is stable (do not use organic soils). May not meet AODA requirements.	negotiating surface.
Soil Cement and S	Soil Binding Agents
Soil Cement is a mixture of Portland Cement and native/parent trail material. When mixed and sets it creates a stable surface that can be useful for "trail hardening" on slopes, particularly in natural settings. Soil Binding Agents=mix of granulars and polymers that create a solid, yet flexible surface that may be appropriate for "trail hardening" on slopes in natural areas. May not meet AODA requirements. Limits volume and weight of materials to be hauled into remote locations.	<ul> <li>Useful for specific locations only.</li> <li>Soil binding agents tend to be expensive and have been met with mixed success.</li> </ul>
W	ood
Attractive, natural, renewable material that creates a solid and level travel surface. Choose rough sawn materials for deck surfacing for added traction.	<ul> <li>Requires skill to install, particularly with the substructure.</li> <li>Wood gradually decomposes, this can be accelerated in damp and shady locations, and where wood is in contact with soil.</li> <li>Expensive to install.</li> </ul>

# G.4.5 Multi-use Trail Lighting

Lighting multi-use pathways must be carefully considered and can be a key element for designing trail facilities to reflect CPTED principles. Very few municipalities make the decision to light their entire trail system for a number of important reasons, including:

- The cost of initial installation can be prohibitive. General budget figures range from \$130,000 to \$160,000 per kilometre including cabling, transformers, power supply and fixtures;
- Staff time and material cost to properly monitor, maintain lamp fixtures and replace broken and burned out bulbs on an ongoing basis;
- A tendency for vandals to target light bulbs, however, light fixtures can designed to protect bulbs;
- Energy consumption, however, options for energy-efficiency lighting are available;
- Excessive light pollution, especially in residential rear yards and adjacent to natural areas (though this can be controlled with proper shielding);



- Potential detrimental effects on flora and fauna, especially with light pollution in natural areas such as woodlands and tributary buffers;
- Lighting can promote use which may create greater security if users increase their presence; and
- Inability of the human eye to adapt to the high contrast resulting from brightly lit and dark shadowed areas adjacent one another.

Although generally not recommended, there may be some locations along multi-use pathways where lighting may be appropriate. The decision of whether or not to light segments of the multi-use pathway network should be made on a location-specific basis. Some criteria for pathway lighting include:

- Main connections to important attractions such major parks;
- Heavily used commuter routes (anecdotal information on volume of use supported by user counts);
- Key school routes; and
- Numerous requests for lighting, supported by similar results through public consultation.

Where it has been determined that lighting is appropriate, the quality and intensity of lighting should be consistent with prevailing standards that fit the setting being considered.



**Examples of Different Off-road Trail Lighting Designs** Credit: fayettevilleflyer.com (left); vistacorp.mwnewsroom.com (right)

# G.5 ACTIVE TRANSPORTATION AMENITIES & STRUCTURES

The design and implementation of active transportation amenities and structures is sometimes overlooked even though they are considered essential features to promote safe use of active transportation facilities. Developing and maintaining a comprehensive network does not automatically mean people will use the routes and facilities. A user needs to feel comfortable and safe using the system with access to adequate on and off-road active transportation facilities at strategic locations. This section outlines some of the amenities that should be considered during the design and implementation of the active transportation network to complement the implementation of facilities.



#### G.5.1 Multi-use Trail Structures

#### G.5.1.1 Gate and Barrier System

Access barriers are intended to allow free flowing passage by permitted user groups, and prohibit access by others. Barriers typically require some mechanism to allow access by service and emergency vehicles. Depending on site conditions, it may also be necessary to provide additional treatments between the ends of the access barrier and limit of the multi-use pathway right of way to prevent bypassing of the barrier altogether.

Within the context of Simcoe County, consideration should be given to the design of each existing or proposed access point. The County should explore the evaluation of select access points to determine if additional treatments are necessary. Additional treatments can consist of plantings, boulders, fencing or extension of the barrier treatment depending on the location. There are many design alternatives for trail access barriers, with some proving to be more successful than others. Gates and barrier features can generally be grouped into three categories:

- Bollards;
- Offset Swing Gates; and
- Single Swing Gates.

In general, the County should assume that the design of the gates and bollards should be done in a way that encourages cyclists to dismount.

#### **Bollards**

The bollard is the simplest and least costly barrier. The structure can range from permanent, direct buried wood or metal posts, to more intricately designed cast metal units that are removable by maintenance staff. An odd number of bollards (usually one or three) can be placed in the multi-use pathway bed to create an even number of "lanes" for users to follow as they pass through the barrier.

Although the removable bollard system provides flexibility to allow service vehicle access, they can be difficult to maintain as the metal sleeves placed below grade can be damaged by equipment and can become jammed with gravel and debris from the trail bed.

#### **Swing Gates**

A single swing gate combines the ease of opening for service vehicle access, with the ease of passage of the bollard. Gates also provide a surface / support for mounting signage. The swing gate should provide a permanent opening to allow permitted users to flow freely through the barrier. The width of the permanent opening must be carefully considered so that it will allow free passage by wheelchairs, wide jogging, double strollers and bicycle trailers and electric scooters. However, they should not be designed to allow passage by unauthorized vehicles such as snowmobiles and all-terrain vehicles.

The offset gate is similar to the single swing gate, except that barriers are paired and offset from one another. Although they can be effective in limiting access by unauthorized users and can be easily opened by operations staff, some groups including cyclists, especially cyclists pulling trailers and



wheelchair users, can have difficulty negotiating the offset swing gate if the spacing between the gates is not adequate.

In urban areas, the single swing gate or bollard is quite effective for most applications. For large parks, park service access/pathway routes, more rural settings and locations where unauthorized access is an ongoing problem, a more robust single swing gate should be employed.

#### G.5.1.2 Boardwalks

Where multi-use pathways and trails pass through sensitive environments such as marshes, swamps, or woodlands with a large number of exposed roots, an elevated trail-bed or boardwalk is usually required to minimize impacts on the natural features. If these areas are left untreated, trail users tend to walk around obstacles such as wet spots, gradually creating a wider, often braided trail through the surrounding vegetation. The turnpike and low profile boardwalk are two relatively simple yet effective methods for some trails found within park spaces or those designed specifically for hiking or pedestrian traffic.

The turnpike is a low tech, low cost method that works very well in areas where organic soils are encountered. Various geosynthetic products have also been successfully used to overcome difficult soil conditions. The United States Department of Agriculture (Forest Service) has evaluated many products and design applications in the construction of trails in heavily used parks and on backcountry trails.

Low profile boardwalks have been successfully employed by trail managers across Ontario. In some cases, the simple construction method provides a great opportunity for construction by supervised volunteers where precast "deck blocks" have been used for the foundation of the boardwalk.

Where the trail is in a high profile location, where it is necessary to provide a fully accessible trail, or where the trail surface must be greater than 60cm above the surrounding grade, a more sophisticated design and installation is necessary. This is likely to include engineered footings or abutments, structural elements and railings. A professional who is trained in structural design and approval requirements should be retained for these types of applications. The graphics below illustrate potential design alternatives for trail boardwalks.





Boardwalk Examples- Hamilton, ON (left) & Boardwalk Foundation on Helical Piles (Halton Hills) (right) Credit: MMM Group

#### G.5.1.3 Switchbacks and Stairs

Pedestrian and some self-propelled users are capable of ascending grades of 30% or more whereas some users are limited to grades of less than 10%. For example, a slope of 5% is the threshold for a fully accessible facility. Once trail slopes exceed this threshold and slopes are long (i.e. more than 30m) it is important to consider alternative methods of ascending slopes. Two alternatives to consider are switchbacks and stairs.

Where construction is feasible, switchbacks are generally preferred because they allow wheeled users such as cyclists to maintain their momentum, and there is less temptation to create shortcuts, as might be the case where stairways are used. Switchbacks are constructed with turns of about 180 degrees and are used to decrease the grade of the multi-use pathway. A properly constructed switchback also provides outlets for runoff at regular intervals, thus reducing the potential for erosion. Switchbacks typically require extensive grading and are more suited to open locations where construction activity will not cause major disruption to the surrounding environment. Switchbacks can be difficult to implement in wooded areas without significant impacts to surrounding trees.

When designing switchback and stair structures on trails the following should be considered:

- Use slip resistant surfacing materials, especially in shady locations.
- Incorporate barriers on either side of the upper and lower landing to prevent trail users from bypassing the stairs; and
- Provide signs well in advance of the structure to inform users that may not be able to climb stairs.

The following graphics illustrate a sample switch-back design concept and design concept for stairs which could be implemented on a steep trail.



# TRANSPORTATION MASTER PLAN UPDATE





Switchback Example (left) and Woven Metal Stairs, Dundurn Stairs, Hamilton (top) Credit: MMM Group, Word Press

In addition, there are a number of design concepts which can be considered for trails which are designed in a space with a greater than permitted slope.

#### **Active Transportation Guidelines**

When slopes exceed 15%, or where there is inadequate room to develop a switchback or another accessible solution, a stairway system should be considered. In these situations the site should be carefully studied so that the most suitable design can be developed. The following are some considerations for stairway design:

- Provide a gutter integrated into the stairway for cyclists to push their bicycles up and down (where appropriate to have bicycles);
- G-28 Develop a series of short stair sections with regularly spaced landings rather than one long run of stairs;
  - For long slopes, provide landings at regular intervals (e.g. every 8-16 risers) and an enlarged landing at the mid-way point complete with benches to allow users the opportunity to rest; and
  - On treed slopes, lay the stairway out so that the minimum number of trees will be compromised or removed.



#### G.5.2 Trip End Facilities for Commuters

Installation of showers and lockers at workplaces and educational institutions help to promote the use of the network for utilitarian purposes. Lockers can be used to store personal belongings such as cycling accessories and a change of clothing. Businesses or institutions with employees who commute by bicycle, in-line skating, or other modes should be encouraged to offer these facilities. The facilities which could be considered may include:

- Bicycle Parking which can include a variety of types from the simple post and ring style rack for 2 bicycles to larger and more elaborate systems for large numbers of bicycles at destinations where use/demand is high; and
- Change and Shower Facilities at the cyclist's destination.

#### **Active Transportation Guidelines**

G-29

Simcoe County and its partners should provide trip-end facilities for employees and visitors at all public buildings where feasible, and the private sector should be encouraged to do the same for residential, commercial and institutional developments.

#### G.5.3 Transit Connections

Providing defined access for cyclists to and from a bus stop is extremely important. Transit stops, particularly bus stops, should be designed in a way that provides safe, convenient, and comfortable places for people to wait. Desirable features at bus stops also include waste-recycling receptacles, seating, lighting and bike racks.

Bike racks on buses is one example of a cycling-transit link. It allows cyclists to ride their bike to a transit stop or station, attach it to a bus-mounted bike rack, travel to their stop, disembark and continue on their bicycle to their final destination. The cycling-transit link can also make access to transit less expensive. In suburban neighbourhoods, population densities are often too low to offer transit service within the typical walking distance of 500 metres of every commuter. Within the last 20 years, many transit agencies built expansive motor vehicle park-and-ride lots or centralized depots as an alternative to costly feeder bus service. Many of these facilities are within easy cycling distance, provide opportunities to increase cycling and transit ridership and reduce taxpayer costs, traffic congestion and air pollution.

#### **Active Transportation Guidelines**

Transit terminals and hubs (e.g. GO Train station) within Simcoe County should provide safe and convenient cycling access, including direct links to sidewalks, trails and major destinations

#### G.5.4 Bicycle Parking

G-30

The provision of bicycle parking facilities is essential for encouraging more bicycle use in Simcoe County. The lack of adequate bicycle parking supply or type can deter many from considering using their bicycle as a basic mode of transportation. Bicycle parking can be divided into two categories bicycle racks and bicycle lockers.



### **Bicycle Racks**

When designing bicycle racks the following components presented in **Table G.10** must be considered. Additional considerations and guidelines can be found in the **TAC Manual** as well as **OTM Book 18**.

Table G.10	- Design	Considerations	for	Bicycle	Racks
------------	----------	----------------	-----	---------	-------

The Rack Element	The Rack	The Rack Area	
Definition: The portion of a bicycle rack that supports the bicycle.	Definition: A grouping of rack elements. Key Considerations:	<b>Definition:</b> The "bicycle parking lot" or area where more than one bicycle rack is installed. Bicycle racks are separated by aisles, much like a typical motor vehicle parking lot.	
<ul> <li>Can be joined on any common base or arranged in a regular array and fastened to a common mounting surface.</li> <li>May be used to accommodate a varying number of bicycles securely in a particular location.</li> <li>Various types of available bicycle rack designs e.g. "Ribbon" rack, the "Ring" rack, the "Ring and Post" rack and the "Swerve" rack.</li> <li>Rack should support the bicycle by its frame in two places and prevent the wheel from tipping over.</li> <li>Should allow front-in parking and back-in parking with a U-lock able to lock the front and the rear wheel.</li> </ul>	<ul> <li>Consist of a grouping of the rack elements either by attaching them to a single frame or allowing them to remain as single elements mounted in close proximity to one another.</li> <li>Should be securely fastened to a mounting surface to prevent the theft of a bicycle attached to a rack.</li> <li>Be easily and independently accessed by the user.</li> <li>Should be arranged to allow enough room for two bicycles to be secured to each rack element.</li> <li>Should be arranged in a way that is quick, easy and convenient for a cyclist to lock and unlock their bicycle to and from the rack.</li> </ul>	<ul> <li>The recommended minimum width between aisles should be 1.2 m.</li> <li>Aisle widths of 1.8 m are recommended in high traffic areas.</li> <li>A 1.8 m depth should be provided for each row of parked bicycles.</li> <li>Large bicycle rack areas with a high turnover rate should have more than one entrance to help facilitate user flow.</li> <li>If possible, the rack area should be sheltered to protect the bicycles from the elements.</li> <li>Bicycle racks should be placed as close as possible to the entrance, no more than 15 m, and should be clearly visible</li> </ul>	
		<ul> <li>along a major building approach line but not impede pedestrian traffic.</li> <li>To avoid excessive bicycle riding on the grass, bicycle racks</li> </ul>	



 Table G.10
 - Design Considerations for Bicycle Racks

The Rack Element	The Rack	The Rack Area			
		should only be placed on grass surfaces located within close proximity to a paved cycling route, such as on off-road multi-use trail, or an on-road route.			
Additional Considerations:					
Bicycle racks should not only allow for a secure lock between the bicycle and the rack, but should also provide support for the bicycle frame itself. The rack element should also be designed to resist being cut or detached by common hand tools such as bolt and pipe cutters, wrenches and pry bars which can easily be concealed in backpacks.		<ul> <li>Bicycle racks should not be placed in the following areas:</li> <li>Bus loading areas;</li> <li>Goods delivery zones;</li> <li>Taxi zones;</li> <li>Emergency vehicle zones;</li> <li>Hotel loading zones;</li> <li>Hotel loading zones;</li> <li>Within 4.0 m of a fire hydrant;</li> <li>Within 2.5 m of a driveway or access lane; and</li> <li>Within 10.0 m of an intersection.</li> </ul>			





### Sample Bicycle Parking Design Concepts and Applications Credit: APBP

### **Bicycle Lockers**

**Definitions:** Bicycle lockers are individual storage units. They are weather-protected, enclosed and operated by a controlled access system that may use keys, swipe card (key fob) or an electronic key pad located on a locker door. Some locker systems are set up for multiple users (i.e. coin operated or secured with personal locks). On average, two standard car parking spaces (of 5.6 m x 2.6 m each) can accommodate 10 individual bicycle locker spaces but this may differ depending on the locker model.

Key Considerations:

Security and durability are important to consider when selecting a bicycle locker.

Design Alternatives:

- Transparent panels are available on some models to allow surveillance of locker contents;
- Stackable models can double bicycle parking capacity on site;
- Options for customer access can vary from a simple, single-use key system to a multi-user system that allows secure access through smart card technology or electronic key pads;



- Bike Lockers require a level surface, clearance for locker doors and should be located close to building entrances or on the first level of a parking garage and within range of security surveillance. Bicycle Lockers are best placed away from sidewalks and areas with high pedestrian traffic. High quality, durable models should be able to withstand regular use, intense weather conditions and potential vandalism; and
- The installation of lockers and showers at workplaces and educational institutions helps to promote the use of cycling for utilitarian purposes. Businesses or institutions with more than 20 employees commuting by bicycle should be encouraged to offer these facilities.

The graphics below illustrate sample bike box lockers as a potential bicycle parking facility.



Sample Design for Bike Lockers Credit: www.transportation.ubc.ca (left) and www.winnipegtransit.com (right)

### **Active Transportation Guidelines**

G-31 Using the criteria outlined the type of bicycle parking facility, number of available spaces and location should be carefully considered on a site by site basis.

**G-32** The County and its partners should build upon any infrastructure previously implemented and consider initiating a program to install racks on an as requested basis for destinations throughout the County.

### G.5.5 Bicycle Friendly Catch Basin Cover

Catch basin grates and utility covers are potential obstructions to cyclists, as well as in-line skaters. Therefore, bicycle-safe grates should be used, and grates and covers should be located in a manner which will minimize severe and/or frequent manoeuvring by the cyclist. Catch basin grates with slots parallel to the roadway, or a gap between the frame and the grate, can trap the front wheel of a bicycle, causing loss of steering control. If the slot spacing is wide enough, narrow bicycle wheels can



drop into the grates. Conflicts with grates may result in serious damage to the bicycle wheel and frame as well as injury to the cyclist.

Key Considerations:

- When new curbed roadways are constructed or rehabilitated, curb face inlets should be considered to minimize the number of potential obstructions.
- Catch basin grates and utility covers should be placed or adjusted to be flush with the adjacent pavement surface.

These grates should be replaced with bicycle-safe, hydraulically efficient versions. All on-road cycling facilities in urban areas with curb gutter and storm drains should be made bicycle-friendly through the provision of bicycle-friendly catch basin covers. The Region of Niagara has recently adopted a new standard for catch basin covers that is bicycle friendly. Simcoe County may want to consider a standard similar to the one used in the Region of Niagara and develop a standard bicycle-friendly catch basin cover.

### **Active Transportation Guidelines**

## G-33

Simcoe County should ensure that all catch basin covers are bicycle-friendly. Catch basin covers on proposed bicycle routes as part of the active transportation network for Simcoe County, should receive priority for adjustments.

### G.5.6 Rest and Staging Areas

Rest areas should be provided along routes where users tend to stop, such as interpretative stations, lookouts, restaurants, museums and other attractions / services, which are logical locations for rest areas.

Ideally, there should be a rest area at least every five kilometres on popular rural recreational trails or at major intersections and gathering places near on-road facilities or along sidewalks and boulevard trails.

In urban centres, rest areas should be provided more frequently, and in areas where trail/AT route demand is high such as popular urban trails, trails near seniors' centres, along waterfront promenades etc., opportunities for resting/seating should be much more tightly spaced (e.g. consider intervals of 100 - 250 m). In addition to seating, a number of other amenities should be considered for rest areas including:

- ► Tables;
- Washrooms and potable water;
- Waste receptacles;
- Parking for automobiles;
- Information signing complete with mapping; and
- Bicycle parking facilities.

The following graphics illustrate elements which could be considered for implementation in Simcoe County and its local municipalities.





Pathway Seating & Rest Areas Credit: Confederation Trail Georgetown PEI, (Left) MMM Group, Caledon Trailway, Palgrave, ON (Right) MMM Group

### **Active Transportation Guidelines**

G-34

Rest and staging areas should be provided at strategic locations such as gathering points, attractions and destinations, as well as other locations where cyclists and pedestrian area expected to stop. Simcoe County and its partners should work together to identify and implement rest and staging areas where necessary.

### G.6 SIGNING THE ACTIVE TRANSPORTATION NETWORK

The design and construction of the network should incorporate a hierarchy of signs each with a different purpose and message. This hierarchy is organized into a "family" of signs with unifying design and graphic elements, materials and construction techniques. The unified system becomes immediately recognizable by the user and can become a branding element. Generally the family of signs includes:

### **Orientation & Trailheads**

### **Description:**

- Typically located at key destination points and major network junctions.
- Provide orientation to the network through mapping, network information and rules and regulations.
- Useful landmark where network nodes are visible from a distance.
- Used as an opportunity to sell advertising space to offset cost of signs.

**Guideline:** Orientation signs could be considered for implementation when entering the County or at trail junctions. Additional design concepts and considerations for orientation signs and trailhead alternatives are presented in **Figure G.13** and **G.15**.



### **Application:**





Trailhead Sign Examples Ottawa, ON (Right); Credit – MMM Group

### **User Etiquette**

**Description:** 

- Should be posted at public access points to clearly articulate which trail uses are permitted, regulations and laws that apply, as well as trail etiquette, safety and emergency contact information.
- > At trailheads, this information can be incorporated into trailhead signs.
- In other areas, this information can be integrated with access barriers.

**Guideline:** Etiquette signs should be considered for implementation at public access points or where trailheads are located.

### Regulatory, Warning and Information

### **Description:**

- Required throughout the system. Where traffic control signs are needed (stop, yield, curve ahead etc.), it is recommended that recognizable traffic control signs be used (refer to the TAC Bikeway Control Guidelines or OTM Book 18).
- Intended to control particular aspects of travel and be used along the road or off-road network.
- Warning signs are used to highlight bicycle route conditions that may pose a potential safety or convenience concern to network users.



• These signs are more applicable to cycling routes and multi-use trails than pedestrian systems.

**Guideline:** Signs should be considered for implementation along proposed multi-use trails or in locations where conditions may change drastically enough that users should be made aware. Application:



Examples of Warning and Information Sign – Regulatory, Warning and Information

Source: OTM Book 18. TAC

### Interpretive

### **Description:**

- Should be located at key trail features having a story to be told. These features may be cultural, historical, or natural. Interpretive signs should be highly graphic and easy to read.
- Should be located carefully in highly visible locations to minimize the potential for vandalism.

**Guideline:** Signs should be implemented throughout the network in locations where cultural or historic information should be highlighted. Additional design concepts and considerations for interpretive signs are presented in **Figure G.11**.



### **Application:**



Interpretive Sign Examples; Top Left: Erin; MMM, Bottom Left: Fundy National Park; MMM; Top Right: Tobermory; MMM; Bottom Right: Sauble Beach; MMM Group.

### Route Marker & Trail Directional

### **Description:**

- Should be located at key network intersections and at regular intervals along long, uninterrupted sections of network.
- Purpose is to provide a simple visual message to users that they are travelling on the pathway network.
- May include the network logo or "brand" and communicate other information to users such as directional arrows and distances in kilometres to major attractions and settlement areas.
- Should be mounted on standard sign poles and be located on all legs of an intersection or off-road trail junction, as well as at gateways.
- Should be consistent with the Regional Tourism Organization 7 specifications and standards for wayfinding and signage.
- Should be in compliance with the Accessibility for Ontarians with Disabilities Act (AODA).



**Guideline:** Signs should be considered as part of the overall network to identify a route brand and provide users with directional / wayfinding information. Additional design concepts and considerations for route markers and trail directional signs are presented in **Figure G.10**.

### **Application:**



Route Marker & Trail Directional Sign Examples - Essex (Left)-Photo Essex Region Conservation Authority; Kissing Bridge Trail, Guelph / Eramosa (Second from left) Photo MMM Group; Halton Hills (Third from Left)-Photo MMM Group; Confederation Trail (Right) Photo MMM Group



# **Appendix H: Recommended Locations for Carpool Lots**

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



# **Recommended Location (P1):** Orillia; Old Barrie Road & University Avenue

**Proposed Phase:** Priority [5 Year]

## **Partners:**

- City of Orillia
- Georgian College
- Lakehead Orillia

## **Characteristics:**

- Location near Highway 11 & 12 interchange
- Near Lakehead Orillia Campus and Rotary Place
- On transit network
- Lack of Carpool lots available near City

## Approach for Success:

- Short-term Priority Carpool Lots can be developed with existing partnerships in critical areas.
- Utilize County Roads and Right-of-ways to identify potential locations.











**Proposed Phase:** Priority [5 Year]

## **Partners:**

• Tiny Township

## **Characteristics:**

- Location on County Road 6
- High Traffic Corridor
- Informal Use
- Lack of Carpool lots available in Township

## **Approach for Success:**

- Offering infrastructure upgrades, paving and storm water management.
- Utilize County Roads and Right-of-ways to identify potential locations.





# **Recommended Location (P4):** Craighurst; Highway 400 & County Road 22

Proposed Phase: Priority [5 Year]

## **Partners:**

- Township of Oro-Medonte
- MTO
- Infrastructure Ontario (land owner)

## **Characteristics:**

- Location near Highway 400 & CR 22 & Highway 93 interchange
- Near Craighurst and Horseshoe Valley
- Near major transportation routes
- Lack of Carpool lots available

## **Approach for Success:**

- Short-term Priority Carpool Lots can be developed with existing partnerships in critical areas.
- Utilize County Roads and Right-of-ways to identify potential locations. Near County owned Paramedic Station.



FINAL REPORT - SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



# Recommended Location (P5): Alliston; Highway 89 & County Road 10

# Proposed Phase: Priority [5 Year]

Town of New

**Commercial Partners** 

Industrial Partners

Tecumseth

MTO

**Partners:** 

## **Characteristics:**

- Location on Highway 89 & CR10
- Near large commercial plaza
- Lack of Carpool lots available in Town
- Close proximity to Downtown Alliston

## **Approach for Success:**

- Short-term Priority Carpool Lots can be developed with existing partnerships in critical areas.
- Develop Partnerships with Commercial Partners.





Long-term Carpool Lot Locations:





# **Recommended Location (P7):** Angus; County Road 90 & 10, Mill Street

Proposed Phase: Long-term

Township of Essa

**CFB** Base Borden

**Partners:** 

## **Characteristics:**

- Location on CR10 & 90 intersection
- High Traffic Volume
- Availability of County owned Property
- On existing Transit Route
- Close Proximity to Population Centre (Angus and Borden)

## **Approach for Success:**





# **Recommended Location (P8):** Sunnidale Corners; Highway 26 & County Road 7

## Proposed Phase: Long-term

## **Characteristics:**

- Location on Highway 26 & CR7
- High Traffic Volume

## Partners:

- Township of Clearview
- MTO

- Informal use
- Catch-all location for Collingwood, Stayner, and Wasaga Beach

## Approach for Success:





# **Recommended Location (P9):** Elmvale; County Road 6, Yonge Street

## Proposed Phase: Long-term

# Partners:

• Township of Springwater

## **Characteristics:**

- Location near CR 6 & 92
- On existing Coach Route
- Near Population Centre (Elmvale)

## **Approach for Success:**





# Recommended Location (P10): Waubaushene Highway 400 & Highway 12

Proposed Phase: Long-term

## **Characteristics:**

- Intersection of major transportation routes; Highway 400 and Highway 12
- High Traffic Volume
- On existing Coach Route

## Partners:

- Township of Severn
- Township of Tay
- MTO

## **Approach for Success:**





# **Recommended Location (P11):** Atherly; Highway 12 & County Road 44

# Proposed Phase:

# Long-term

## **Characteristics:**

- High Traffic Volume
- Near Population Centre (Orillia)
- Availability of County owned property

## **Partners:**

- Township of Ramara
- City of Orillia
- Mnkikaning First
   Nation
- MTO

## **Approach for Success:**





## **Appendix I: Notice of Public Information Centre Round 2**

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



## Transportation Master Plan Update Notice of Public Information Centre Round 2

## HOW DO **YOU** THINK TRANSPORTATION CAN BE IMPROVED IN SIMCOE COUNTY?

**Study Purpose:** To update the County of Simcoe's Transportation Master Plan to ensure that growth, land use, and infrastructure planning is integrated and is based on valued input from the public, private sector, government agencies, and municipalities. The updated Master Plan will establish a multi-modal transportation strategy that includes transit, cyclists, pedestrians, cars, and trucks.

This study is being conducted in accordance with the requirements of Phases 1 and 2 of the Municipal Class Environmental Assessment, which is an approved process under the Environmental Assessment Act.

## Your Involvement is Important! Provide your input by...

### Attending Public Information Centres Round 2

#### Location #1

Barrie Home Show County of Simcoe Booth 11 a.m. – 2 p.m. March 8, 2014

#### Location #2

Town of Penetanguishene Georgian Village Auditorium 4 p.m. – 7 p.m. March 18, 2014

#### Location #3

Town of Innisfil Recreational Complex, North Lobby 4 p.m. – 7 p.m. March 20, 2014

#### Location #4

Town of Wasaga Beach Rec Plex, Oakview Meeting Room 4:30 p.m. – 7:30 p.m. March 25, 2014

#### Purpose of the Public Information Centres:

- To present recommendations for roads, transit and active transportation networks.
- To provide residents and stakeholders with the opportunity to provide their comments and speak with members of the study team about multi-modal transportation options and opportunities in the County of Simcoe.

- Filling out the online questionnaire <u>https://www.research.net/s/SimcoeTMP</u>
- Visiting the study webpage at <u>simcoe.ca</u>
- Contacting the study representatives listed below.

#### **Rachelle Hamelin**

Planner III TMP Project Co-ordinator Planning Department County of Simcoe 1110 Highway 26 Midhurst, ON LOL 1X0 705-726-9300 ext. 1315 rachelle.hamelin@simcoe.ca

#### **David Richardson**

Partner, Senior Project Manager MMM Group Limited 100 Commerce Valley Drive West Thornhill, ON L3T 0A1 905-882-7302 richardsond@mmm.ca









Appendix J: Media Coverage of Public Information Centre Round 2

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



## **County Transportation Master Plan**

Sunday, March 9, 2014 3:10 PM by Catherine Thompson Residents can give feedback on Simcoe's updated Transportation Master Plan.



(Simcoe County) -

You have the opportunity to give feedback on the County of Simcoe's updated Transportation Master Plan.

A number of public information sessions are being held through out the county.

One will be at the Georgian Village Auditorium in Penetanguishene on Tuesday, March 18th from 4 to 7 pm.

Another will be held in Innisfil on the 20th and then in Wasaga Beach, at the Rec Plex, on Tuesday, March 25th from 4:30 to 7:30 pm.

The Transportation Master Plan is a document to guide future planning of roads, transit and active transportation.

Previous Page | Print This Story



### Simcoe County works to end rule of car in new plan

### Barrie Advance

### PUBLIC INFO SESSIONS

- March 8: Barrie Home Show, 11 a.m. to 2 p.m.
- March 18: Georgian Village auditorium, 4 to 7 p.m.
- March 20: Innisfil Recreation Complex, 4 to 7 p.m.
- March 25: Wasaga Beach Rec Plex, 4:30 to 7:30 p.m.

The era of catering to the car is coming to an end as Simcoe County seeks to expand trails and transit.

In updating its transportation master plan, planner Rachelle Hamelin has heard two clear messages from residents: find ways to help hikers and cyclists get around and foster public transit links between communities.

"Therefore the need for another lane may not be warranted (on some roads)," said Hamelin. "It's forward thinking. We don't want to keep making our roads bigger because you just keep encouraging people to use (cars)."

The draft plan is being unveiled at a series of public information centres before it is presented to council March 25. Once the draft plan goes to council, it will be posted on simcoe.ca.

Hamelin said trails and bike lanes will be both on and off-road, to give cyclists choice.

"A lot of local municipalities have work over the past five to 10 years to build active transportation facilities and now at the regional level, we have an opportunity to look at connecting them," she said.

Hamelin added the public has also been asking the county to take a leadership role in planning and encouraging public transit between municipalities.

"There are some initiatives, like Barrie and Angus and Collingwood and Wasaga Beach. What's the county's role in facilitating that further? We're looking at the longer term."



### Time traffic lights on alternative routes during Hwy. 400 closures: councillor

#### Innisfil Journal

Vehicles were still lined up at intersections on alternative routes more than seven-hours after last Wednesday's fatal crash on Hwy. 400.

County Rd. 27, Yonge Street, and Sideroad 10 and 5 were still packed with northbound commuters at about 7 p.m. because Hwy. 400 remained closed so crews could replace barriers that were smashed during the tractor-trailer crash near the Conc. 4 overpass.

The alternative route overload was just as long Feb. 27 during a 96-car pile up on Hwy. 400 near Innisfil Beach Road.

While frustrated northbound motorists were stopped at intersections Wednesday, long-time councillor Lynn Dollin was voicing some frustrations of her own during that night's council meeting.

Dollin wondered if traffic signals could be timed during Hwy. 400 emergencies to increase north-south traffic flow through intersections. Green lights are longer for east-west traffic lights in the Cookstown area making the alternative routes slower, she said.

"The green lights are so short for north-south traffic," she said. "We should be able to override the signals to make traffic flow better."

Town deputy CAO Andy Campbell said although the issue hasn't been studied, timing the lights during emergencies should be possible.

"We haven't put a plan together yet, but it's a good idea," Campbell said.

It wasn't the first time Dollin has pushed for alternative route planning for Hwy. 400 closures.

She raised the issue in 2008 after alternative routes were heavily congested due to overwhelming Hwy. 400 cottage country traffic on the Canada Day long weekend.

Dollin called on the police services board to create an emergency route protocol that would include cops at crossroads or traffic light adjustments.

"There really needs to be plan in place — a policy when the 400 shuts down," she said nearly six years ago. "If there was a good plan in place, it would stop other accidents from happening on the sideroads."

However, overlapping jurisdictional issues stopped the plan in its tracks.

Creating a Hwy. 400 emergency route plan would involve the Ontario Ministry of Transportation, Simcoe County, the towns of Innisfil and Bradford West Gwillimbury, South Simcoe Police and the OPP, former police board chairperson Patti Vanderdonk said.

Who would pay for the essentials of a plan — policing and intersection improvements — was a challenging problem, Vanderdonk said at the time.





population and employment, densities and other criteria, to indicate when Simcoe County communities should consider or expand transit as a community service. Answer the question, "When is it time to study transit feasibility at the community level?" and in 2015/2016 co-fund Transit Feasibility Studies and Implementation Plan for the Alliston area and for the Alcona / Innisfil area.	
"Looking ahead to the long-term horizon, Simcoe County must be a well-connected region. Its Primary Settlement Areas and municipal growth nodes will be the focus of higher-density growth with diverse economies and a variety of services and amenities. Areas of urban growth should move towards community transit services funded by local municipalities or Transit Service Boards. Residents should be able to travel from community to community for work, school, health or recreational purposes without being wholly dependent on the automobile. The vastness of the County of SimcoeÕs geographic area is such that its rural areas will require innovative ways of providing transportation choices, opportunities and linkages. While establishing long-term recommendations is not practical, it is imperative to ensure the decisions made during the actionable life of this plan (approximately five years) do not compromise the County of Simcoe's ability to reach the future vision for transit that remains on the horizon."	





## **OPINION** COLUMN

# Simcoe County's new transportation plan rolling along



By Cal Patterson Thursday, March 20, 2014 10:37:14 EDT AM



Simcoe County's Administration Building (Examiner Files)

Simcoe County spans across 4,800 kilometre of land and is home to 16 municipalities, as well as two separated cities. With such diversity, it is important that the county's transportation strategy considers our vast geography, growing permanent and seasonal residents, and expanding economy.

In 2013, we informed the public about a county initiative to update the 2008 Transportation Master Plan, which provided the "big picture" framework for planned transportation in Simcoe County for the next 25 years. The first phase of the update commenced in spring 2013, and included Public Information Centres and an online survey to obtain feedback from of our residents, stakeholders and government partners.

Your feedback was tremendous. Many of the suggestions obtained have been incorporated into an updated Transportation Master Plan Report. The updated report is aimed at presenting a multi-modal, long-term vision for sustainable transportation within the county.

These updates incorporate the public's feedback about key topics, such as connecting cycling and walking networks, investing in infrastructure, expanding transit service and investigating strategies to reduce volume on county roads.

The updated report includes recommendations for the following eight focus areas:

· An enhanced Roads Network that accommodates active transportation, supports transit and considers environmental impacts;

🗩 Login 🚽

Share 🖸 Favorite 🛨

· Development of Context-Sensitive Road Designs to accommodate supportive modes of travel for all users including pedestrians, cyclists, transit, motor vehicles and freight;

- · The feasibility of Roundabouts as a future intersection control measure;
- · Research into a future multi-municipal transit network and creation of a Transit Working Group;

· A focus on developing an active transportation route network and planning that recognizes active transportation as an alternative transportation mode, a way to promote healthy lifestyle and opportunities for the tourism industry;

- · Consideration of other multi-modal transportation options including strategies for air, marine and rail travel;
- · Strategies to reduce volume and manage demand on county roads;
- · An overview of feedback gathered through public consultations and stakeholder meetings.

Public feedback is key to the ongoing development of the updated Transportation Master Plan. As such, the County of Simcoe has undertaken a second round of Public Information Centres throughout March.

There are two public information centres remaining on Thursday March 20 at the Town of Innisfil Recreation Complex and Tuesday March 25 at the Town of Wasaga Beach RecPlex. If you can't attend one of them, an online questionnaire is available at research.net/s/SimcoeTMP.

The next phase of the Transportation Master Plan update will include an implementation strategy. The final Plan is scheduled to be presented to County Council for final approval in fall 2014. For more information, visit simcoe.ca/dpt/pln/trsplanupdate/index.htm.

Warden Cal Patterson, County of Simcoe

## Reader's comments »

If you already have an account on this newspaper, you can login to the newspaper to add your comments.

By adding a comment on the site, you accept our terms and conditionsand our netiquette rules.

### 0 Comments Barrie Examiner

Sort by Newest -



Be the first to comment.

Subscribe DAdd Disgus to your site

ecumseth

TheTim

## **<u>Contents</u>** » <u>Headline News</u> » <u>News</u>

## **County seeks public input on Transportation master Plan**

### March 26, 2014 · 0 Comments

Members Login: Register Log in

An information session was held last week to gather public input and gauge opinions of what has been proposed as updates to the Transportation Master Plan (TMP) for Simcoe County.

Updates include infrastructure for public transit and active transportation methods like cycling, roller blades and pedestrian traffic. The County is also looking at new or expanded transit service, carpooling locations, paved shoulders and railways.

Existing railways are also being considered for the transportation of people and goods.

The construction of active transportation facilities both on and off-road have been a key recommendation from the public during this study, as well as the desire for carpool lots and rideshare programs.

Research shows that 81 per cent of Simcoe County residents commute by car and without additional passengers. In 30 years the population in the area is forecasted to jump 78 per cent, to 769 thousand residents. With such a large increase in the population, managing traffic is a major focus.

In Innisfil, one of the most frequent comments residents have shared is that they would like communities to be better connected through rural areas.

Although updates to the TMP are scheduled for every five years, the changes initiated now are intended to help with transportation needs over the next 30 years. TMP project co-ordinator, Rachelle Hamelin says that's why it's important to hear from different generations. Hearing from residents of all ages will help develop a plan that addresses the wide variety of needs in the county, even kids were asked how they wanted to get around town.

Because of the size of the county, Hamelin says it would have been an enormous cost to have a consultant evaluate every road and recommend updates. Instead, they reached out to the community with these information sessions to get recommendations from the people who know the communities best, the residents themselves.

People who stopped by the drop-in information session were asked to identify on a map what type of infrastructure they would like to see and where. From bike lanes to carpool lots to railways, residents were full of suggestions.

The next step will be phase three of the project, updating the TMP based on approval from County Council and developing an implementation strategy. The updating process should be complete in August, when the capital cost for the plan will be evaluated.

Residents of all ages are encouraged to speak up with their thoughts and comments about the strategies and recommendations outlined in the TMP draft by filling out a questionnaire at https://www.research.net/s/SimcoeTMP. The survey will be available until August, 2014.

#### By Emily Wood

The County of Simcoe has been collecting information since last year, using public input to shape their plan. A few key focuses were identified that reflect the wide variety of needs in Simcoe County.

TAKE A LOOK – Poster boards were set up inside the YMCA highlighting the key changes and next steps for the project of updating the Transportation Master Plan for Simcoe County, a process that is undertaken every five years. People were able to take a look as they passed by, getting some key points from the posters. Representatives from the county and the consulting group involved were also there to answer further questions.



## **Readers Comments (0)**

You must be <u>logged in</u> to post a comment.

## **Letters to the Editor**

- <u>Why did Stephen Harper say 'no'?</u>
- We need the trail in New Tecumseth
- <u>Flood preparedness</u>
- <u>Take the HST off necessities</u>
- Follow up: stop sign removed
- Changes to licencing seniors coming April 21
- <u>Trail talk continues</u>
- Glad the stop sign is gone
- Trail users will treat farmers' fields with respect in New Tec

## **Headline News**

#### ۰

### **County seeks public input on Transportation master Plan**

An information session was held last week to gather public input and gauge opinions of what has been proposed as updates to the Transportation Master ...

#### Town to take part in Earth Hour

The lights will go off on Saturday, March 29, at 8:30 p.m. in administration buildings throughout the municipality. This will be done where safe and ...

©2009 newtectimes.com. All rights reserved

### **Brett Sears**

From: Sent: To: Cc: Subject: Dave McLaughlin March-28-14 9:11 AM Brett Sears; David Richardson Communications at MMM MMM's Simcoe County TMP in the news



The Barrie Examiner Fri Mar 28 2014 Page: A2 Section: News Byline: MIRIAM KING, QMI AGENCY

INNISFIL -Future improvements to a busy south Innisfil road are in the works.

Innisfil Beach Road (IBR), from west of Alcona to County Road 27 in Thornton, will be transformed in stages over the next six years.

A preliminary construction and widening schedule of IBR was on display at a public information centre held at the Innisfil Recreational Complex on March 20, which provided an update on Simcoe County's transportation master plan. That document sets priorities to the 2031 planning horizon for roads, transit and **active transportation**.

A few major projects in south Simcoe are still a go.

According to Christian Meile, the county's director of transportation and engineering, the **environmental assessment** (EA) for IBR is still ongoing, although the main intersections are already in the preliminary **design** phase, and some construction has been carried out, including the IBR and 10 Sideroad intersection and reconstruction of Innisfil Beach Road west of there.

Work on the Innisfil Beach Road and 5 Sideroad intersection is slated for 2015, followed by Innisfil Beach Road and Yonge Street in 2016.

The widening of Innisfil Beach Road (County Road 21) to four lanes west of 20th Sideroad is slated for 2017, although there are issues with the intersection where the two busy roads, and a GO train track, share close quarters. That intersection is slated for reconstruction in 2015, but according to the county, planning for the intersection centres around talks with Metrolinx, which operates the Go trains.

"The county has been in discussions with Metrolinx officials over the last two years to purchase land that would allow the county to make improvements to the road," Meile said. "We are hopeful that the land purchase process with Metrolinx will be approved shortly and that road improvements will proceed as planned."

Metrolinx would not comment on the discussions.

The EA for the stretch of IBR to Yonge Street is ongoing and alternative transportation elements (e. g. bicycle trails) are still under consideration.

"Nothing has been decided," Meile said.

The widening of Yonge Street (County Road 4) to four lanes from Innisfil Beach Road to Bradford's northern limits is ongoing.

The **environmental assessment** for the stretch of Yonge from Bradford north to County Road 89 has been completed and is now in preliminary **design**. The budget estimate for that project is \$35 million and construction isn't expected to begin before 2016.

At this stage, the county is looking at possibly including some type of trail within the right-of-way along Yonge Street, despite a number of bottlenecks that could restrict the amount of property available.

Rachelle Hamelin, the county's planner and transportation master plan project co-ordinator, was optimistic that a trail could be included in the **design**, but senior project manager David Richardson, of the MMM Group, said there was a need to "look at the road platform, look at the right-of-ways.

"There are a lot of choices that have to be made," based on traffic "volumes, speeds, the number of trucks, the topography," before the proposals can go "from lines on a plan to facilities on the ground," Richardson said.

Many of the comments at last week's public information centre dealt not with roads and infrastructure but with public transit, especially the need for a county-wide transit system.

The transportation master plan proposes a less direct role for the county as a facilitator for municipal transit, co-ordinator of transit systems and 'change agent': negotiating with GO Transit and Metrolinx to extend GO train and bus service beyond the existing corridors.

Hamelin also recommends the county continue to explore funding and partnership opportunities as well as pursue a long-term transit plan.

"Merit for a regional transit system has been expressed by the public and this information will be presented to county council for their consideration," she said.

"There's really nothing that's off the table, when it comes to transit," Richardson said.

To see the second interim transportation master plan report, visit <u>www.simcoe.caand</u> check under business, planning, then click on transportation master plan.

© 2014 Osprey Media Group Inc. All rights reserved.

#### J. David McLaughlin, MES, MCIP, RPP

Senior Project Manager Partner Transportation Planning MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario, Canada L3T 0A1 t: 905-882-7306 | f: 905-882-0055 McLaughlind@mmm.ca | www.mmm.ca

MMM Group – Enriching the Quality of People's Lives

#### How can Canada's Economic Action Plan help you...

NEWS LOCAL

#### **County updates its Transportation Master Plan**

By Miriam King, QMI Agency Friday, March 28, 2014 9:53:00 EDT AM



David Richardson, Senior Project Manager and Partner with MMM Group Ltd. Transportation Planning, and Rachelle Hamelin, Transportation Master Plan Project Co-ordinator at the County of Simcoe Planning Department, at the TMP Public Information Centre held at the Innisfil Recreation Complex, Thursday, March 20, 2014. MIRIAM KING/BRADFORD TIMES/SUNMEDIA

The County of Simcoe is working on updating its 2008 Transportation Master Plan - a document that will set priorities for Roads, Transit, and Active transportation, to the 2031 planning horizon.

A public information centre was held at the Innisfil Recreation Complex on March 20, to provide residents with an update. It was an opportunity to check the maps, identify the projects that are in the works, and to comment. Visitors were invited to scrawl their remarks on sticky notes, and stick them to the maps on display - and to go online to fill out a short survey on transportation, at www.research.net/s/SimcoeTMP

Most of the comments dealt not with roads and infrastructure, but with public transit - especially the need for a County-wide transit system. The Transportation Master Plan proposes a less direct role for the County: as a Facilitator for municipal transit, Co-ordinator of transit systems, and "Change Agent" - negotiating with GO Transit and Metrolinx to extend GO Train and Bus service beyond the existing corridors.

Rachelle Hamelin, Planner and Transportation Master Plan Project Co-ordinator with the County of Simcoe noted that the report does recommend that the County "continue to explore funding and partnership opportunities as well as pursue a long-term transit plan. Merit for a "regional" transit system has been expressed by the public, and this information will be presented to County Council for their consideration."

Senior Project Manager with MMM Group, David Richardson also noted, "There's really nothing that's off the table, when it comes to transit."

There might be roads projects that are "off the table", based on the update of growth patterns and job creation - but at least two major projects in South Simcoe still appear to be near the top of the list. The widening of Innisfil Beach Road (County Rd. 21) to 4 lanes, west of 20th Sideroad in Innisfil; and the widening to 4 lanes of Yonge St. (County Rd. 4) from Innisfil Beach Rd. to Bradford's northern limits, are in the works.

According to Christian Meile, County Director of Transportation and Engineering, the Environmental Assessment for Innisfil Beach Rd. is still ongoing - although the main intersections are already in the preliminary or detailed design phase, and some construction has been carried out.

Work on the intersection of Innisfil Beach Rd. and 5 Sideroad is slated for 2015; Innisfil Beach Rd. and Yonge St. in 2016. Innisfil Beach Rd. and 20th Sideroad is also ready to proceed in 2015, but is being held up by Metrolinx at this point, Meile suggested.

Actual widening of Innisfil Beach Road, from 20th Sideroad west to Yonge, could take place as early as 2017 - but the EA is still ongoing, and Active Transportation facilities (e.g., bicycle trails) from Yonge St. east to Alcona, "are still under consideration... Nothing has been decided."

As for the Yonge St. widening, the Environmental Assessment for the stretch of road from Bradford north to Hwy. 89 has been completed, and is now in "preliminary design." The budget estimate is \$35 million; construction is not expected to begin before 2016.

At this stage, the County is still looking at the possibility of including a "trail" within the right-of-way along Yonge, despite a number of bottlenecks that could restrict the amount of property available.

Hamelin was optimistic that a trail could be included in the design, but Richardson acknowledged there was a need to "look at the road platform, look at the right-of-ways... There are a lot of choices that have to be made," based on traffic "volumes, speeds, the number of trucks, the topography" before the proposals can go "from lines on a plan, to facilities on the ground."

To see the 2nd Interim Report, visit www.simcoe.ca and check under Planning; click on Transportation Master Plan.

#### Reader's comments »

If you already have an account on this newspaper, you can login to the newspaper to add your comments.

By adding a comment on the site, you accept our terms and conditions and our netiquette rules.

#### 0 Comments Bradford Times



Share 🖄 Favorite ★

D Login 🗸



Start the discussion...

Be the first to comment.

Subscribe 💿 🖸 Add Disgus to your site



Appendix K: Presentation Boards used for Public Information Centre Round 2

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE



# SIMCOE COUNTY

TRANSPORTATION MASTER PLAN UPDATE Public Information Centre #2



In partnership with







# WHY ARE WE PREPARING THIS UPDATE?

# Update the Transportation Master Plan to...

- Integrate land use planning with transportation initiatives
- Build upon local knowledge
- Plan for transit, cyclists, pedestrians and motor vehicle needs

This study complies with the requirements of Phases 1 and 2 of the Municipal Class Environmental Assessment process

Simcoe County Transportation Master Plan (TMP) Update









# WHAT WE HAVE HEARD YOU SAY!

### Connected Cycling and Walking Network







#### Simcoe County Transportation Master Plan (TMP) Update



### Investment in Infrastructure

### New or Expanded **Transit Service**



### Car Pooling, Work from Home, Flexible **Work Schedules**









# WHAT WE PROPOSE FOR TRANSIT

# **Three-level Approach**

### Facilitator (Community level)

#### Evaluate the business case for transit

### **Co-ordinator** (Inter-Community level)

Establish Simcoe Transit Working Group (municipal operators, private operators, Simcoe County Student Transportation Consortium, not-for-profit groups)

### Change Agent (Inter-Regional level)

Advocate for increased Metrolinx extension of GO Rail and Bus service to Highway 400 and beyond

#### Simcoe County Transportation Master Plan (TMP) Update











# WHAT WE PROPOSE FOR OTHER TRAVEL MODES

### Airports

### Marine

the Trent Severn Waterway



- Transportation facilities along these corridors
- passenger and goods movement

#### Simcoe County Transportation Master Plan (TMP) Update

 Capitalize on the Customs Port of Entry Status at the Lake Simcoe Regional Airport and the Collingwood Regional Airport by establishing a working group to promote economic development.

• As a long term measure, consider marine facilities as a means to ferry passengers between destinations along Lake Simcoe, Georgian Bay and

• Consider existing rail facilities as multi-modal opportunities for people and goods movement, as well as possibilities to combine Active

• Purchase the Barrie-Collingwood Railway (BCRY). Preserve and consider opportunities to use the corridor for active transportation plus

 Prepare a BCRY Viability and Management Study to outline the corridor's uses and how adjacent development can be treated.











# WHAT WE ADDITIONALLY PROPOSE TO MANAGE TRAFFIC

### Ridesharing





### Flextime

#### Simcoe County Transportation Master Plan (TMP) Update



### **Establishment of Simcoe County** Chapter of SmartCommute



### Teleworking



### Carsharing





**MMM GROUP** 



# DO YOU AGREE?

Do you agree with what was proposed for the following areas? Please indicate using the scale beside each option from 1 (strongly disagree) to 5 (strongly agree).

- Roads
- Active Transportation
- Transit
- Other Travel Modes
- Additional Measures to Manage Traffic

Did we miss something? If so, write your comments directly in this box or provide suggested changes to the recommendations:

#### Simcoe County Transportation Master Plan (TMP) Update





# STUDY NEXT STEPS

### Phase 1

**Assessment of the Existing TMP and Travel** Conditions

Stakeholder Meetings #1

Public Information Centre #1

**Prepare and Submit** Interim Report #1

### Phase 2

**Needs / Opportunities Assessment of Multi-modal Transportation Strategies** 

Stakeholder Meetings #2

Public Information Centre #2

**Prepare and Submit** Interim Report #2





Simcoe County Transportation Master Plan (TMP) Update





#### Phase 3

Update the TMP and **Develop the** Implementation Strategy

Stakeholder Meetings #3

Prepare and Submit Interim Report #3



#### **Complete the TMP Report**





10



# THANK YOU FOR PARTICIPATING

# What do you think of the solutions we are proposing? Let us know if you think they will work!

### Please continue to stay involved as we finalize the study by....

- Completing our short online questionnaire: https://www.research.net/s/SimcoeTMP
- Visiting the County of Simcoe's webpage: simcoe.ca
- Contacting us (write, phone, email or fax) using the study business cards or the information provided.
- Follow us on Twitter and Facebook for updates about the study, upcoming events and how to get involved.

#### Simcoe County Transportation Master Plan (TMP) Update

#### **Debbie Korolnek**

**General Manager** Engineering, Planning and Environment County of Simcoe 1110 Highway 26 Midhurst, ON LOL 1X0 1-866-893-9300 ext. 1462 debbie.korolnek@simcoe.ca

Senior Project Manager Partner MMM Group Limited 100 Commerce Valley Drive West Thornhill, ON L3T 0A1 905-882-7302 richardsond@mmm.ca

#### **Rachelle Hamelin**

Planner & Project Coordinator Planning Department County of Simcoe 1110 Highway 26 Midhurst, ON LOL 1X0 1-705-726-9300 ext. 1315 rachelle.hamelin@simcoe.ca

#### **David Richardson**



#### **Appendix L: Summary of Written Comments Received**

FINAL REPORT – SIMCOE COUNTY TRANSPORTATION MASTER PLAN UPDATE

#### County of Simcoe Transportation Master Plan Update Summary of Agency / Stakeholder / Public Comments Project Record



In Partnership with

MMM GROUP

CAMBIUM

Updated: November 27, 2014

No.	Date	Source	Contact	Comment	Action
1	19-May-13	Email	Konrad Brenner, Orillia, ON	The County should consider more carpool parking lots near provincial highways and other main routes. It should also pave shoulder areas in order to accommodate all modes of travel (i.e. not just cars and trucks).	Comment has been included in the consultation record. Carpool lots and other car-share improvements will be explored as part of the TDM component of the TMP Update.
2	3-Jun-13	Email	The Friends of Fuller Avenue	The Harbourview - Fuller Avenue roads connecting the Town of Midland and the Town of Penetanguishene needs to be accessible for all travel modes due to the lack of a transit system. This is a major industrial area and it needs to accommodate employees/residents who do not own cars or who wish to utilize alternative travel modes. The increase in traffic on this corridor has made traveling unsafe for these users. Moreover, there are residents (i.e. para/quadriplegics) who live along Fuller Avenue, who feel trapped because they do not have a safe way to integrate into the community.	Comment has been included in the consultation record. A multi-modal future with increased emphasis on transit and active transportation is a main theme of the TMP Update.
3	10-Jun-13	Email		Collingwood has a great walking trail system for pedestrians. However, transportation facilities for pedestrians and cyclists can be greatly improved (e.g. better defined paths for pedestrians and bikes/bike ports/bike routes/sidewalks in housing developments). These facilities should connect communities, such as between Wasaga Beach and Collingwood. Furthermore, laws on newer alternatives, such as e-bikes, should be addressed more clearly and speed limits should be established for these trails.	Comment has been included in the consultation record.
4	16-Aug-13	Email	Sharon Godlewski	The County should plan for bike lanes, especially, in Alliston, Beeton and Tottenham, for those who want to ride to work or school.	Comment has been included in the consultation record. An active transportation candidate route network has been developed as part of the TMP Update.
5	10-Nov-13	Email	Peter Armstrong, Barrie, ON	The County of Simcoe includes several communities that cover a large area. In order to connect the communities and shorten the gap, the County needs to consider all means of transportation, specifically, bicycling. These activities can foster activities such as mountain biking and bring needed tourism and economic growth to the area.	Comment has been included in the consultation record. An active transportation candidate route network has been developed as part of the TMP Update.
6	20-Nov-13	Email/Staff Report	Township of Tay	The Township would like to transfer Duck Bay Road over to the County's jurisdiction and in exchange would like the control of County Road 58.	Comment has been included in the consultation record.
7	10-Dec-13	Letter	Utopia (Township of Essa), ON		Comment has been included in the consultation record. The TMP Update addresses the BCRY, transit and active transportation.
8	9-Jan-14	Email	Debra Harsany, Barrie, ON	There should be public transit servicing the route between Orillia and Barrie. There is a bus going through these locations but it does not directly service them.	Comment has been included in the consultation record. Recommendations for next steps for transit are included in the TMP Update.

No.	Date	Source	Contact	Comment	Action
9	29-Jan-14	Email	Town of Collingwood	Comments provided on draft active transportation map for routes in Collingwood.	Comment has been included in the consultation record. Active transportation comments have been considered in the development of the active transportation candidate route network that is part of the TMP Update.
10	30-Jan-14	Email	Town of Collingwood	Consider incorporating the Town's provisions for "Share the Road" routes into the County's TMP Update.	Comment has been included in the consultation record. The comment has been incorporated into the TMP update where suitable.
11	13-Feb-14	Email	Township of Tiny	Concession 5 from Tiny Beaches Road South to Wyevale should be identified on the AT map as opposed to Concession 4 West.	Comment has been included in the consultation record and considered in the development of the candidate active transportation route.
12	20-Feb-14	Email	District Municipality of Muskoka	There is a lack of connectivity to Muskoka Road 5 in Port Severn and Muskoka Road 49 at Hamlet. Furthermore, there should be connectivity to the proposed service road at Severn Bridge. It will likely become an extension of Road 169 in Muskoka and it will be beneficial for both Simcoe and Muskoka if it was connected to Simcoe Road 169. Finally, the Manitoulin Cycling Advocates group would like to endorse Muskoka Road 13 for a complete streets approach as it suffers the same problems as Fuller Avenue between Penetanguishene and Midland.	Comment has been included in the consultation record. Context-sensitive design of streets has been addressed in the TMP Update.
13	26-Feb-14	Email	Konrad Brenner, Orillia, ON	The County should improve access to County forests during the winter either by building parking lots of enforcing parking restrictions.	Comment has been included in the consultation record.
14	26-Feb-14	Letter	York Region	Draft future road network maps should identify planned provincial highway improvements (e.g. Bradford Bypass, widening of Highway 400) and "out of scope" should be replaced with "MTO jurisdiction". A summary table describing the planned provincial highway improvement and their status and timing should be included since this will have a critical impact on the future base network that Simcoe County builds their TMP on. Additionally, Metrolinx transit improvements should be shown in a future transit network map. Inter-regional transit should be summarized in a table, including, existing service levels, planned future service, project status and timing. Simcoe County should increase their role presence in transit planning and coordination between specific inter-municipal links and major origin-destination pairs. Finally, in the detailed analysis of existing travel demand and patterns, carpooling opportunities should be identified as a basis for TDM/Smart Commute.	Comment has been included in the consultation record and considered in the development of the TMP Update.
15	2-Mar-14	Staff Report	Town of Collingwood	The Town is interested in shifting transit from its administration to a regional transit system for the County. Furthermore, the Town would like to see the TMP address the County's role in the regional airports. For instance, the Lake Simcoe Regional Airport is owned jointly by the City of Barrie, the County of Simcoe and the Township of Oro-Medonte. The Town feels it would benefit from a similar partnership with its surrounding municipalities. Furthermore, the BCRY is discussed in the TMP but the Town of Collingwood is no longer funding the operation of the rail line. Staff are currently working on reviewing the viability of the rail line. Moreover, Poplar Sideroad may benefit from traffic calming options at locations such as: Poplar and Sixth Line, Poplar and Tenth Line, and the Tenth Line and Sixth Street. Finally, the Town is implementing "Share the Road" routes as part of its Active Transportation Plan - some of the routes include County roads.	Comment has been included in the consultation record. The TMP Update addresses the BCRY, transit and active transportation.
16	7-Mar-14	Email	Lake Simcoe Region Conservation Authority	The Lake Simcoe Region conservation authority incorporate the following principles, the avoidance as the first approach when considering impacts to natural heritage and natural hazards in the Lake Simcoe Watershed. Where there is no reasonable alternative, appropriate planning, design and construction practices should be adopted to minimize any negative impact. The avoidance of areas with high aquifer vulnerability and significant groundwater recharge and or the use of alternative winter maintenance strategies to maintain and improve water quality. The consideration of innovative stormwater management practices and road design to help reduce impervious areas and provide the ability to accommodate low impact development practices to maintain water balance and improve water quality in the watershed. They are supportive of creating appropriate active transportation connections as part of the Master Transportation Plan Update.	Comment has been included in the consultation record. Environmental impact is an important criterion used in the multiple account evaluation of road projects.

No.	Date	Source	Contact	Comment	Action
17	26-Mar-14	Letter	Simcoe Muskoka District Health Unit	SMDHU commends the County on the idea of complete streets. They recommend the following: the County create a <i>Simcoe County Active Transportation Master Plan</i> , provide leadership for the establishment/growth of inter-county transit, collaborate with MTO to ensure alignment between the TMP and the Simcoe Area Multi-Modal Transportation Strategy (the TMP does not clearly identify how these plans with fit together), consideration of additional features that will enhance the health and safety of AT users (e.g. lighting and signage, smoke-free space, sun safety, rest areas, ease of use etc.).	Comment has been included in the consultation record. Recommendations for next steps for context-sensitive design of streets, active transportation and interaction with MTO are included in the TMP Update.
18	30-Mar-14	Email	Alan Masters, Beeton, ON	The contact is advocating on behalf of the residents of New Tecumseth for the implementation of a basic public transportation service in the TNT	Comment has been included in the consultation record. Recommendations for transit are included in the TMP Update.
19	3-Apr-14	Email	City of Barrie	Maintenance Agreement for County Road #54: Clause 5 - The County should include the "boundary road" section in their studies and DC by-law	Comment has been included in the consultation record.
20	24-Apr-14	Email	City of Barrie	The City of Barrie is proposing uni-direction on-road bike facilities on Yonge Street in Barrie which would then connect to County Road 4 (extension of Yonge Street) at the City's boundary. However, the County's draft AT network plan identifies an off-road facility on County Road 4. This facility type was originally proposed in the County's draft Trails Master Plan. The City also wanted the Simcoe County TMP to identify a proposed link to York Region and the proposed Lake Simcoe to Lake Ontario Trail.	Comment has been included in the consultation record. Upon further review, the TMP Update is proposing on-road (e.g. buffered paved shoulders) on County Road 4 from Barrie south to Bradford. This is more realistic given the existing road platform width, shoulder width and adjacent drainage ditches and eliminates the need for a transition from on-road (in Barrie) to off-road. It will also likely be less expensive to implement. The Simcoe County draft Trails Master Plan was reviewed again as well as the Bradford West Gwillimbury Trails System Master Plan and have proposed an on-road link that best accommodates this connection between Simcoe County and York Region.
21	29-Apr-14	Letter	The Town of Midland, Planning and Building Services	The staff of Midland has made suggests to the following sections of the updated TMP. The future road requirements, the context sensitive design, transit in the context of evaluating the road for the county as a direct provider of community transit, and the exploration of the Town of Penetanguishene past transit options. The staff generally supports the recommendations made on active transportation and finally the sustainability of the region in terms of public design efficient facilities, the promotion of wellness, and protection of active living activities.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
22	12-May-14	Bike Summit	City of Barrie	1)The City of Barrie proposed a uni-direction on-road bike facility from Yonge Street to County Road 4; however, the County's draft AT network plan identifies an off-road facility on County Road 4. 2) TMP should propose a link to York Region and a proposed trail from Lake Simcoe to Lake Ontario	<ol> <li>The County is still reviewing an off-road cycling option.</li> <li>The County agrees with the proposed Lake to Lake route.</li> </ol>
23	14-May-14	Letter	Simcoe Muskoka District Health Unit	Again, SMDHU is pleased with the idea of complete streets (AT, public transit, context-sensitive road design, roundabouts etc.). SMDHU provides the following feedback: they are unsure about the weighting of the selection criteria of the MAE (should Goods Movement be ranked as the same priority as Environmental Impact especially since AT places such an emphases on healthy design principles?); again, how will the Simcoe Area Multi-Modal Transportation Strategy (MTO) and the TMP (County) align?; SMDHU support the roles identified for the County in the Future of Transit section of IR#2 but they feel the TMP could benefit from a similar role identification for AT plans, SMDHU has offered to be a steward in the promotion and outreach of AT	Comment has been included in the consultation record.

No.	Date	Source	Contact	Comment	Action
24	4-Jun-14	Staff Report	Town of Penetanguishene	The staff is not confident in the results obtained through the MAE analysis for the portion of road on CR#93 between Highway 12 and Balm Beach Road. For example, the MAE does not assign vales for Goods Movement, Connectivity and Active Transportation, which staff believe is not justified. Midland believes the suggestion that the road be considered for improvement post-2031 is overlooking the importance of the intra and inter municipal roadway; the opinion is that the roadway should be qualified for improvements by 2031. In addition, staff say the report undercounts the AADT for the CR#93 corridor in both directions. The Town fully supports the Complete Streets approach; however, they would request that the County look into the storm water management issue identified at the intersection of CR#93 and Hugel Avenue. Suggestions include: formalizing a time frame for the active transportation recommendations, including the Fuller Avenue Bike Lane and the proposed CR#93 Bike Lane between Midland and Penetanguishene in the figures in IR#2, and addressing the status and potentially expanding the County Trails funding program. Again, the Town also requests that the County plays a more direct role in community and inter-community transit. Specifically, the County should include take an active role in the implementation of transit options in the Midland-Penetanguishene area. This could also include formalizing and expanding the transit funding programs governed by the County.	Comment has been included in the consultation record and have been incorporated into the TMP Update where suitable.
25	15-Jul-14	Email	City of Barrie	The following comments should be considered, the Request the population and employment assumed for Midhurst for the existing and future condition. The TMP should assess transportation improvements required if MTO doesn't build the Barrie Bypass in consideration that this improvement is linked to the 427 extension which also hasn't been considered by the Simcoe TMP. Provide existing and future traffic volumes on all transportation linkages with the City of Barrie. Clarify what form of active transportation assumptions for Hwy 26 north of Barrie. CR 27 is proposed to widen from 2 to 4 lanes. At a stakeholder meeting it was stated that Hwy 26 will be widened to 7 lanes north of Barrie.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
26	16-Jul-14	Letter	The Town of Midland	The Town is supportive of the inclusion of County Road 93, between Country Road 25 and Highway 12 and the inclusion of the additional accounts in the MAE to ensure value is assigned to goods movement, connectivity and active transportation.	Comment has been included in the consultation record.
27	29-Jul-14	Email	Town of Collingwood	TMP agrees with the actions currently being undertaken that should unfold in the new couple of years. Review potential alignment of the Collingwood By-pass to shift it slightly to the west.	Comment has been included in the consultation record.
28	8-Aug-14	Email	Town of	The County should improve Highway 93 in 2031 given that the report has indicated that the highway will be overcapacity in 2013. Furthermore, there is no specific mention of active transportation updates for Highway 93 between the Towns of Penetanguishene and Midland - this project, as identified in the Simcoe County Active Transportation Plan, should be considered a priority. The connectivity and expansion of municipal and County trails should be encouraged through the County Trails Funding program. Finally, the Town has also expressed the desire to see the County play a more direct role in providing public transit.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
29	18-Aug-14	Letter	Simcoe Muskoka District Health Unit	SMDHU would like to express its concern with the number of road widening projects in the short, medium, and long horizons. While road upgrades to improve surface conditions, grading and other factors are understood, it is clear that adding lanes increases mean speed, which is a key factor in both collisions and the severity of collisions, especially considering pedestrians and cyclists. While the movement of goods and people is an important consideration for County roads, SMDHU is interested in the safety of all users of the road network. Integration for County roads, SMDHU is unfold. SMDHU would like to express their interest in participating on the committee for the furthering of Active Transportation in Simcoe Country. SMDHU would be keen to engage in further work as a stakeholder, consultant, or partner to the County in the installation of roundabouts, trails, AT, transit and preservation of rail corridors.	Comment has been included in the consultation record. All road projects were analyzed using a multiple account evaluation before including them in the TMP report. Sustainability for active transportation was one of the evaluation criterion. Additionally, the impact of road widenings were considered in the development of the active transportation candidate route network.
30	18-Aug-14	Email	Region of Peel	The following comments have been recommended, the movement of car pool lot P6 to County Road 50 at Highway 9. TDM measures where regarding the reduction of automobile use and its associated name, and the associated measure. Finally the active transportation network could consider potential partnerships with Peel for AT outreach and promotion.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.

No.	Date	Source	Contact	Comment	Action
31	21-Aug-14	Email		CR4 to Alcona on CR21. The cost estimate along with the local transportation funding issues.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
32	20-Aug-14	Email	Gwillimbury	2011 to 2031, March 2012. On page xi, five County Roads are identified for detailed traffic	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.

No.	Date	Source	Contact	Comment	Action
32	20-Aug-14	Email	Town of Bradford West Gwillimbury	encourage area residents for walking and promote healthy environment. Pedestrian facilities has	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.

No.	Date	Source	Contact	Comment	Action
33	25-Aug-14	Letter - Road Comments	Ministry of Transportation	Consult with the Ministry on future provincial highway improvement program to identify its impacts on County network. Table ES-1: Any proposed county road improvements that intersect provincial highways should be circulated to MTO for review and approvals (Encroachment permits required). CR4 and CR21 are not listed as they are subject to EA approval (see Table 5-2-1). Sincoe County is reminded that MTO approvals are required where CR21 crosses Highway 400 and CR4 crosses the Bradford By-Pass. Page xxi: For update to Development Charges By-Law, Simcoe County needs to ensure that they are collecting for any county road crossings of Highway 400 where additional capacity on the county road is anticipated in order to help fund any future bridge replacements (e.g., CR21 / Innisfil Beach Rd.) Fig. 5.3.2-1:Future Provincial Highway; only the Bradford By-Pass has Provincial EA approval. Why is alignment shown to turn south when in York Region? Table 5.3.5-1: CR21 said to be 'congested despite improvement'. Does this include the section through the Highway 400 interchange? CR88 is also said to be congested but it's not clear if this also includes the section through the Highway 400 interchange. Page 146: CR21 again said to be expected to remain congested; this remains a concern, as MTO is not aware that Simcoe County has submitted any detailed analysis on the CR21 EA through the Highway 400 interchange. Page 146: metion of need for improved access to and across Highway 400 be considered with MTO, in particular planned Line 5 interchange. Is the new Line 5 interchange considered the solution to this issue, or is the County suggesting an additional interchange is needed north of CR88? Sec. 5.3.6 / Provincial Highway Assumptions: MTO believes that this may be a new section, not previously shared with MTO, as it reflects the 2008 TMP that was never circulated to or endorsed by MTO. Most of these assumed new highways do not have EA approval. Page 148: CR21 widening from CR27 to CR39 said to be EA approved, however as not	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
33	25-Aug-14	Letter - Active Transportation Comments	Ministry of Transportation	The TMP could include a reference to the province's Transit Supportive Guidelines. The Trails Connecting Communities program is referenced. More detail could be given on the program and how interested parties can use it to access project funding. Explain which County departments will be responsible for cycling planning, as well as how the County will fit into the AT steering committee, which the TMP recommends establishing. Elaborate on how the barriers and challenges informed the network concept, and if there were any particularly challenging areas of the county to incorporate AT infrastructure in. Many municipalities identify AT related goals as part of their AT planning process, often aiming for higher cycling mode shares, infrastructure related goals, and safety related goals. It is worth considering doing the same for future cycling planning in Simcoe County. As part of the evaluation of progress of AT plan implementation, many municipalities establish performance indicators, often related to their AT goals. These often include plans for new methods of data collection on cycling. This could be considered in future cycling planning in Simcoe County. As part of their cycling planning process, many jurisdictions consider the "5 E's" of cycling planning: Engineering, Education, Encouragement, Enforcement, and Evaluation. Recommendations are made for AT outreach in the TMP. The plan mentions existing outreach efforts from the county and district health unit. More detail on existing AT outreach efforts, as well as any education or enforcement efforts, could be given.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.
33	25-Aug-14	Letter - Goods Movement Comments		Commercial and retail development in urban areas should consider the unique parking demands related to delivery for goods and courier services Road designs that accommodate commercial vehicles (e.g., roundabouts: Widened entry and exit lanes, Truck aprons, Bypass lanes, Gates for pass through traffic). Any changes to grade crossings on the BCRY line should be in compliance with the federal grade crossing regulation. Designate and preserve land uses adjacent to or in the vicinity of major highway interchanges, air, marine and rail yards to be compatible with and supportive of the primary goods movement function.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.

No.	Date	Source	Contact	Comment	Action
33	25-Aug-14	Letter - Transit Comments	Ministry of Transportation	Developing a process for integrating transit planning and growth planning at the local level in Simcoe County to ensure that new developments will have enough persons and jobs density to support a sufficient level of transit service that encourages ridership and can lead to a more cost- effective service provision. The Transit-supportive Guidelines recommends density thresholds required for different levels of transit service on page 24. The Master Plan identifies the high costs of transit service as a barrier to providing transit in Simcoe County. Often, the financial performance of transit routes is related to distances along a transit route where there is undeveloped land. In managing growth in the identified community transit nodes, transit-supportive policies that ensure new housing or commercial developments are built adjacent to existing communities could help municipalities to extend transit stops and stations are critical to the success of transit service. The Plan's Section 6.5 provides for the development and design of complete streets which is consistent with transit-supportive land-use. The polices related to complete streets development could be incorporated or referenced in Section 8 on transit development, ensuring that complete streets are aligned with transit routes, providing safe and comfortable cycling and walking access to transit. Or Section 6.5 could incorporate transit service need to focus on the street network. A walkable street network that links destinations and transit relies on a fine-grained pattern of streets and blocks. The Plan's recommendations for transit-supportive policies in rural areas is raised as an issue in the Master Plan and cites examples of existing coordinated door-to-door, demand responsive service provided by community agencies in the County. To better respond to rural needs, the Plan's approach to a transit strategy for the County could be strengthened by including additional recommendations and actions for more coordinated services and agency collaboration.	Comment has been included in the consultation record. Comments have been incorporated into the TMP update where suitable.