TRAFFIC IMPACT STUDY
 SHADOW CREEK SUBDIVISION LIV COMMUNITIES

TOWNSHIP OF SEVERN

PREPARED BY:
 C.F. CROZIER \& ASSOCIATES INC.
 1 FIRST STREET, SUITE 200
 COLLINGWOOD, ON L9Y 1A1

1T SUBMISSION: JANUARY 2022

CFCA FILE NO. 1935-6103

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier \& Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

REVISION NUMBER	DATE	COMMENTS
Rev. 0	January 2022	First Submission to the Township, County and MTO

1.0 EXECUTIVE SUMMARY

C.F. Crozier \& Associates Inc. (Crozier) was retained by LIV Communities to complete a Traffic Impact Study (TIS) to support a Draft Plan of Subdivision Application for a proposed residential development in the Township of Severn (Township).

The proposed Draft Plan of Subdivision for the Shadow Creek Subdivision consists of 319 single detached dwelling units and 215 townhouse dwelling units. Access to the Subject Lands is proposed through two full-moves accesses on Menoke Beach Road. Both entrances are located at the southern limits of the property. The west access is referred to as Access A and the east access is referred to as Access B.

The MTO Highway Corridor Management Manual specifies that new public roadways should be offset a minimum of 400 metres from the nearest Highway intersection. Given the available property frontage on Menoke Beach Road, only one access can meet the minimum offset requirement. The west access is located 250 metres east of Highway 11. To assess the impacts of the reduced offset, and provide recommendations for access configurations and movement permissions, this TIS assesses and provides input on the accesses under the following access configurations: Two full-moves accesses; One full-moves access and one right-in/right-out access; One full-moves access and one emergency access.

The analysis was completed using the proposed Draft Plan of Subdivision prepared by MHBC (January 2022). For the purpose of the analysis, it was assumed that the development would be built-out by 2026. Accordingly, the horizon years of 2026, 2031 and 2036 have been assessed representing full build-out, as well as five and ten years beyond full build-out.

The existing Highway 11 accesses at Menoke Beach Road, Telford Line and Soules Road are restricted to right-in/right-out movements only. Yield signs are present at the entrance and dedicated lanes are provided on Highway 11 to facilitate merging. As vehicles do not need to come to a stop while completing the manoeuvre, queueing is not anticipated, and minimal delay is expected. Synchro does not calculate delays associated with these free flow conditions, as such, Synchro results have not been included in the report tables.

Intersection analysis of the 2021 existing traffic volumes indicates the following:

- All study intersections are operating at a Level of Service (LOS) "A" or better during the weekday a.m. and p.m. peak hours.
- The maximum volume-to-capacity ratio of 0.75 and maximum control delay of 10.0 s are associated with traffic at Centre Avenue and Telford Line.
- These metrics indicate that the boundary road network has reserve capacity for increases in traffic volumes.

Intersection analysis of the 2026 to 2036 future background traffic volumes indicates the following:

- The study intersections are expected to operate with a LOS "B" or better in the weekday a.m. and p.m. peak hours under 2036 future background traffic volume conditions.
- The maximum control delay of $11.3 \mathrm{~s}(\mathrm{SB})$ and volume-to-capacity ratio of 0.24 (NB), both forecasted for Centre Avenue and Telford Line, indicate that the boundary road network is expected to continue operating acceptably with excess capacity for increases in traffic volumes.

The proposed development is forecasted to generate 304 and 408 external two-way trips in the
weekday a.m. and p.m. peak hours, respectively.

The requirement for auxiliary left-turn lanes were reviewed for the eastbound and westbound left-turn movements at Site Access A and Site Access B/Ardtrea Road. The analysis was completed based on the 2036 traffic volumes and no improvements were warranted.

Intersection analysis of the 2026 to 2036 future total traffic volumes indicates the following:

- The study intersections are anticipated to continue operating with an LOS "B" in the a.m. and p.m. peak hours, with the exception of Menoke Beach Road and Ardtrea Drive/Site Access B which is anticipated to operate with a LOS "C".
- The site generated traffic is anticipated to result in a maximum increase in control delay of 7.4 s and a maximum increase in volume to capacity ratio of 0.30 at the intersection of Menoke Beach Road and Ardtrea Drive/Site Access B.

Under both full moves and right-in/right-out conditions, the intersection of Menoke Beach Road and Site Access A is expected to continue operating well with a LOS "B" or better. Given the low volume of westbound through vehicles on Menoke Beach Road, minimal delay and queuing is anticipated for eastbound left-turning vehicles.

The removal of left turns at Site Access A results in increased delay at the intersection of Menoke Beach Road and Ardtrea Drive/Site Access B. This is due to the addition of the eastbound left-turning volumes which results in increased conflicting movements for the northbound and southbound through and left-turning vehicles.

Based on the expected operations under each access scenario, the scenario of two full-moves accesses, as presented in the Draft Plan, results in the best operations at Menoke Beach Road and Ardtrea Drive/Site Access B compared to the two other scenarios. Additionally, providing two entrances improves the connectivity of the site and provides multiple means of ingress and egress.

Accordingly, from a connectivity and operations perspective, the configuration of two full-moves accesses would be the preferred scenario.

The available sight distances exceed the minimum sight distance requirements at both Site Accesses. Accordingly, the proposed development can be supported from a sight distance perspective.

It is concluded that the traffic generated by the Shadow Creek Subdivision can be accommodated by the boundary road network without any mitigation measures.

The analysis was prepared using the most recent Draft Plan of Subdivision prepared by MHBC (January 2022). Any minor changes to the Plan will not affect the conclusions of this report. The Shadow Creek Subdivision can be supported from a traffic operations and safety perspective.

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY ii
2.0 INTRODUCTION
2.1 BACKGROUND 1
2.2 PURPOSE AND SCOPE 1
2.3 DEVELOPMENT PROPOSAL 1
2.4 SITE ACCESS CONFIGURATION AND ENTRANCE SPACING REQUIREMENTS 2
3.0 EXISTING CONDITIONS 2
3.1 DEVELOPMENT LANDS 2
3.2 KEY INTERSECTIONS 2
3.3 BOUNDARY ROAD NETWORK 3
3.4 TRAFFIC DATA 3
3.5 INTERSECTION MODELLING 3
3.6 INTERSECTION OPERATIONS 4
4.0 FUTURE BACKGROUND CONDITIONS 5
4.1 HORIZON YEARS \& GROWTH RATE 5
4.2 FUTURE ROADWAY IMPROVEMENTS 5
4.3 BACKGROUND DEVELOPMENTS 5
4.4 INTERSECTION OPERATIONS 5
5.0 SITE GENERATED TRAFFIC 7
5.1 TRIP GENERATION 7
5.2 TRIP DISTRIBUTION AND ASSIGNMENT 7
6.0 TOTAL FUTURE CONDITIONS 8
6.1 BASIS OF ASSESSMENT 8
6.2 AUXILIARY LANE ANALYSIS 8
6.3 INTERSECTION OPERATIONS 9
6.4 ENTRANCE OPERATIONS 10
7.0 SIGHT DISTANCE ASSESSMENT 11
8.0 CONCLUSIONS 12

LIST OF APPENDICES

Appendix A:	Terms of Reference Correspondence
Appendix B:	MTO Highway Corridor Management Manual (September 2018)
Appendix C:	National Fire Prevention Association Excerpts
Appendix D:	Township of Severn's Official Plan Excerpts
Appendix E:	Speed Limit Bylaw Excerpts
Appendix F:	Traffic Data
Appendix G:	Level of Service Definitions
Appendix H:	Detailed Capacity Analysis
Appendix I:	Menoke Beach TIS Addendum (Tatham Engineering, 2020)
Appendix J:	ITE 11 th Edition Trip Generation Excerpts
Appendix K:	Transportation Tomorrow Survey Results
Appendix L:	Auxiliary Left-Turn Lane Warrants
Appendix M:	TAC GDGCR Stopping Sight Distance

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Draft Plan of Subdivision (MHBC, January 2022)
Site Location Plan
Existing Traffic Controls and Lane Configuration
2021 Traffic Volumes
Background Development Traffic Volumes

Figure 11: \quad Future Total 2026 Traffic Volumes
Figure 12: Future Total 2031 Traffic Volumes
Figure 13: Future Total 2036 Traffic Volumes
Figure 14
One RIRO Access and One Full Moves Access Trip Assignment
Figure 15:

LIST OF TABLES

Table 1: Minimum Spacing Requirements 2
Table 2: Boundary Road Network 3
Table 3: Peak Hour Factor 4
Table 4: 2021 Existing Levels of Service 4
Table 5: Menoke Beach Phase 1 and 2 Trip Generation 5
Table 6: 2026 Future Background Levels of Service 6
Table 7: 2031 Future Background Levels of Service 6
Table 8: 2036 Future Background Levels of Service 6
Table 9: Trip Generation 7
Table 10: Auxiliary Turn-Lane Warrants 8
Table 11:2026 Future Total Levels of Service 9
Table 12: 2031 Future Total Levels of Service 9
Table 13: 2036 Future Total Levels of Service 10
Table 14: 2036 Site Access Future Total Levels of Service Comparison 11
Table 15: Sight Distance 12

2.0 INTRODUCTION

2.1 BACKGROUND

C.F. Crozier \& Associates Inc. (Crozier) was retained by LIV Communities to complete a Traffic Impact Study (TIS) to support a Draft Plan of Subdivision Application for a proposed residential development in the Township of Severn (Township). The proposed development is referred to as Shadow Creek and will herein be referred to as the Subject Development/Subject Lands. The Subject Lands are located in the West Shore region of the Township.

An original TIS was prepared by Cansult Tatham Transportation Consultants in December 2005 for the full development, previously referred to as the "ORSI Development". An addendum was completed in 2020 by Tatham Engineering for Phases 1 and 2 of the Menoke Beach Subdivision. This TIS has been prepared for the Shadow Creek Subdivision, which was previously Phase 3 of the Menoke Beach Subdivision.

2.2 PURPOSE AND SCOPE

The purpose of the study was to assess the impacts of the proposed development on the boundary road network and to recommend warranted mitigation measures.

The study reviewed the following aspects of the proposed development from a transportation engineering perspective:

- Existing, future background, and future total traffic operations at the study intersections
- Forecasted trip generation of the proposed development
- Auxiliary turn-lane and signal warrants
- Sight distance at the proposed site accesses
- Entrance spacing and control type of the proposed site accesses

The Traffic Impact Study was conducted in accordance with the terms of reference circulated with the Township, County, and MTO. Appendix A contains the terms of reference correspondence.

2.3 DEVELOPMENT PROPOSAL

The proposed Draft Plan of Subdivision for the Subject Development consists of the following:

- 319 single detached dwelling units
- 215 townhouse dwelling units

Access to the Subject Lands is proposed through two full-moves accesses on Menoke Beach Road. Both entrances are located on the southern limits of the property. The western access shall be referred to as 'Access A' and the eastern access shall be referred to as 'Access B' herein.

While Blocks 1, 3, 4 and 5 have frontage on Menoke Beach Road, all site generated traffic was assumed to utilize Street A or Street B to provide a conservative analysis.

Figure 1 contains the Draft Plan of Subdivision (MHBC, January 2022).

2.4 SITE ACCESS CONFIGURATION AND ENTRANCE SPACING REQUIREMENTS

As noted previously, access to the Subject Development is proposed through two full-moves entrances on Menoke Beach Road. The proposed entrance locations were reviewed from an offset spacing perspective in comparison to Highway 11. The minimum offset spacing requirements for public road connections are illustrated in Figure 4.6.10 of the MTO Highway Corridor Management Manual (September, 2018). Appendix B includes relevant excerpts from the manual. The minimum, and available spacing between the proposed entrances and Highway 11 is summarized in Table 1.

Table 1: Minimum Spacing Requirements

Access	Minimum	Available
A	400	250 m
B		400 m

Given the available property frontage on Menoke Beach Road, only one access can meet the minimum offset spacing criteria of 400 metres. Based on the National Fire Prevention Association (NFPA) Standard for Fire Protection Infrastructure for Land Development in Wildland, Rural and Suburban Areas (2017), developments with 100-600 units require two entrances. Accordingly, this TIS has reviewed the proposed access configuration and assessed the appropriate movement permissions for Access A. Appendix C contains relevant excerpts from the National Fire Prevention Association.

The study assesses and provides input on the accesses under the following access configurations:

- Two full-moves accesses
- One full-moves access and one right-in/right-out access
- One full-moves access and one emergency access

3.0 EXISTING CONDITIONS

3.1 DEVELOPMENT LANDS

The Subject Lands are $45.5 \mathrm{ha}\left(455,000 \mathrm{~m}^{2}\right.$), and are currently vacant. The Subject Development is bounded by Menoke Beach Road to the south, Highway 11 to the west, and residential lands to the north and east. The location of the Subject Lands is reflected on the development Site Location Plan included as Figure 2.

3.2 KEY INTERSECTIONS

The following key intersections within the study area have been analysed under existing, future background and future total traffic volume conditions. The site accesses on Menoke Beach Road will be analyzed in the future total conditions. Figure 3 illustrates the existing traffic controls and lane configurations at each intersection.

- Menoke Beach Road and Highway 11
- Menoke Beach Road and Ardtrea Drive
- Soules Road/ Telford Line and Highway 11
- Campbell Road and Soules Road
- Soules Road and Centre Avenue
- Centre Avenue and Telford Line
- Menoke Beach Road and Site Accesses

3.3 BOUNDARY ROAD NETWORK

The boundary road network is described in Table 2. The information included below was obtained from the Township of Severn's Official Plan Schedules A3, A5, and B, included in Appendix D. Speed limits were taken from the Township's Speed Limits By-Law where possible, or assumed to be $50 \mathrm{~km} / \mathrm{h}$ as the Subject Lands are located in a local rural area. Appendix E contains Speed Limit Bylaw excerpts.

Table 2: Boundary Road Network

Roadway	Highway 11	Menoke Beach Road	Ardtrea Drive	Campbell Road	Soules Road	Centre Avenue	Telford Line
Direction	North-South	East-West	North South	North-South	East-West	North-South	East-West
Classification	Highway	Local	Local	Local	Local	Local/Overpass	Local
Jurisdiction	MTO	Township of Severn	Township of Severn	Township of Severn	Township of Severn	Township of Severn South of Telford Line MTO	Township of Severn
Posted Speed Limit	$90 \mathrm{~km} / \mathrm{h}$	$60 \mathrm{~km} / \mathrm{h}$	$50 \mathrm{~km} / \mathrm{h}$ (Assumed)	$50 \mathrm{~km} / \mathrm{h}$ (Assumed)	$50 \mathrm{~km} / \mathrm{h}$ (Assumed)	$50 \mathrm{~km} / \mathrm{h}$	$50 \mathrm{~km} / \mathrm{h}$
Number of Lanes Per Direction	2	1	1	1	1	1	1

No sidewalks, bike lanes, or transit stops are located on the boundary road network. The transportation master plan recommends a signed bike route on Campbell Road and Ardtrea Drive, a bike shoulder on Telford Line, (Ainley 2014). This will not impact automobile operations but will improve the active transportation network.

3.4 TRAFFIC DATA

Turning movement counts at the study intersections were undertaken by Spectrum Traffic Data Inc. from 6:00 a.m. to 10:00 a.m. and from 3:00 p.m. to 7:00 p.m. on Wednesday, December 1, 2021. The turning movement count data is included in Appendix F. Figure 4 illustrates the 2021 existing traffic volumes.

3.5 INTERSECTION MODELLING

The existing Highway 11 accesses at Menoke Beach Road, Telford Line and Soules Road are restricted to right-in/right-out movements only. Yield signs are present at the entrance and dedicated lanes are provided on Highway 11 to facilitate merging. As vehicles do not need to come to a stop while completing the manoeuvre, queueing is not anticipated, and minimal delay is expected. Synchro does not calculate delays associated with these free flow conditions, as such, Synchro results have not been included in the report tables.

Peak hour factors (PHF) associated with the weekday a.m. and p.m. peak hours were calculated for each intersection within the study area based on the 2021 existing traffic volumes. Table 3 outlines the PHFs as calculated and applied to the model for their respective intersections. For the intersections of the future site accesses, the Synchro Modelling Software default PHF of 0.92 was used.

Table 3: Peak Hour Factor

Intersection	Peak Hour	Peak Hour Factor
Menoke Beach Road and Highway 11	$7: 30-8: 30$ a.m.	0.95
	$4: 15-5: 15$ p.m.	0.98
Menoke Beach Road and Ardtrea Drive	$8: 45-9: 45$ a.m.	0.69
	$5: 00-6: 00$ p.m.	0.72
Soules Road/ Telford Line and Highway 11	$7: 30-8: 30$ a.m.	0.95
	$4: 15-5: 15$ p.m.	0.96
Campbell Road and Soules Road	$7: 45-8: 45$ a.m.	0.82
	$4: 00-5: 00$ p.m.	0.89
Soules Road and Centre Avenue	$7: 45-8: 45$ a.m.	0.92
	$3: 45-4: 45$ p.m.	0.92
	$7: 45-8: 45$ a.m.	0.97
	$3: 45-4: 45$ p.m.	0.90

3.6 INTERSECTION OPERATIONS

The operations of the study intersections were analyzed based on the traffic volumes illustrated in Figure 4. Table 4 outlines the 2021 traffic levels of service for the counts taken at the study intersections under the existing conditions and geometric configurations. Appendix G contains Level of Service (LOS) definitions. Appendix H contains detailed Capacity Analyses Worksheets.

Table 4: 2021 Existing Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive	Stop	A.M.	A	8.9 s	0.02 (NB)
		P.M.	A	8.7 s	0.02 (NB)
Campbell Road and Soules Road	Stop	A.M.	A	9.4 s	0.05 (SB)
		P.M.	A	9.7 s	0.04 (SB)
Soules Road and Centre Avenue	Stop	A.M.	A	9.5 s	0.08 (NB)
		P.M.	A	9.6 s	0.12 (NB)
Centre Avenue and Telford Line	Stop	A.M.	A	10.0 s (SB)	0.10 (NB)
		P.M.	A	9.8 s (SB)	0.15 (NB)

Notel: The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.
As presented in Table 4, under the existing traffic volume conditions, the study intersections operate with a LOS "A" or in the weekday a.m. and p.m. peak hours. The maximum control delay of 10.0 s (Soules Road and Centre Avenue) and maximum volume-to-capacity ratio of 0.15 (NB, Centre Avenue and Telford Line) indicate that the boundary road network has capacity for increases in traffic volumes.

4.0 FUTURE BACKGROUND CONDITIONS

4.1 HORIZON YEARS \& GROWTH RATE

In accordance with the agreed upon Terms of Reference, the horizon years of full build out (assumed 2026) as well as 5 and 10 -years beyond build out (2031 and 2036) were assessed. Additionally, a growth rate of 1% was utilized to forecast background growth on the boundary road network. This growth rate was established based on Annual Average Daily Traffic and Summer Average Daily Traffic data from Highway 11 near Bayou Road between the years of 2010 and 2016.

4.2 FUTURE ROADWAY IMPROVEMENTS

No roadway improvements have been identified on the boundary road network which would result in capacity improvements to the study intersections.

4.3 BACKGROUND DEVELOPMENTS

Menoke Beach Phase 1 and 2 have been accounted for as background developments. The trip generation and distribution of Phases 1 and 2 have been adopted from the TIS Addendum prepared by Tatham Engineering in October 2020. Figure 5 illustrates the background development trip assignment and Appendix I contains report excerpts. Table 5 outlines the forecasted trip generation of Phases 1 and 2 of the Menoke Beach subdivision, as adopted from the TIS Addendum (Tatham Engineering, October 2020).

Table 5: Menoke Beach Phase 1 and 2 Trip Generation

Phase	Number of Trips			
		Inbound		
1		17	Outbound	Total
	Weekday P.M.	57	34	68
2	Weekday A.M.	16	51	91
	Weekday P.M.	57	33	67
	Weekday A.M.	$\mathbf{3 5}$	$\mathbf{1 0 2}$	90
	Weekday P.M.	$\mathbf{1 1 4}$	$\mathbf{6 7}$	$\mathbf{1 3 6}$

Note: The trip generation above was adopted from the Menoke Bach Road TIS Addendum (Tatham Engineering, October 2020).

4.4 INTERSECTION OPERATIONS

The operations of the study intersections were analyzed based on the 2026, 2031, and 2036 future background traffic volumes illustrated in Figures 6, 7, and 8. Table 6, Table 7, and Table 8 outline the 2026, 2031, and 2036 future background traffic Levels of Service, respectively. Appendix \mathbf{G} contains Level of Service definitions, and Appendix H contains detailed Capacity Analyses Worksheets.

Table 6: 2026 Future Background Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive	Stop	A.M.	A	9.7 s	0.04 (NB)
		P.M.	A	9.7 s	0.07 (NB)
Campbell Road and Soules Road	Stop	A.M.	B	10.2 s	0.17 (SB)
		P.M.	B	10.4 s	0.12 (SB)
Soules Road and Centre Avenue	Stop	A.M.	A	9.9 s	0.11 (NB)
		P.M.	B	10.2 s	0.17 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	11.0 s (SB)	0.19 (NB)
		P.M.	B	10.7 s (SB)	0.22 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

Table 7: 2031 Future Background Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive	Stop	A.M.	A	9.7 s	0.04 (NB)
		P.M.	A	9.7 s	0.07 (NB)
Campbell Road and Soules Road	Stop	A.M.	B	10.2 s	0.18 (SB)
		P.M.	B	10.6 s	0.12 (SB)
Soules Road and Centre Avenue	Stop	A.M.	A	10.0 s	0.11 (NB)
		P.M.	B	10.2 s	0.18 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	$11.1 \mathrm{~s}(\mathrm{SB})$	0.19 (NB)
		P.M.	B	10.8 s (SB)	0.23 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

Table 8: 2036 Future Background Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive	Stop	A.M.	A	9.7 s	0.04 (NB)
		P.M.	A	9.7 s	0.07 (NB)
Campbell Road and Soules Road	Stop	A.M.	B	10.3 s	0.18 (SB)
		P.M.	B	10.7 s	0.13 (SB)
Soules Road and Centre Avenue	Stop	A.M.	B	10.1 s	0.12 (NB)
		P.M.	B	10.3 s	0.18 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	11.3 s (SB)	0.20 (NB)
		P.M.	B	10.9 s (SB)	0.24 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

The study intersections are expected to continue operating with a LOS "B" or better in the weekday a.m. and p.m. peak hours under the 2036 future background traffic volume conditions. The maximum control delay of $11.3 \mathrm{~s}(\mathrm{SB})$ and volume to capacity ratio of $0.24(\mathrm{NB})$, both forecasted for Centre Avenue and Telford Line, indicate that the boundary road network is forecasted to continue operating acceptably with excess capacity for increases in traffic volumes.

5.0 SITE GENERATED TRAFFIC

5.1 TRIP GENERATION

The development will result in additional vehicles on the boundary road network that previously did not exist. The trip generation of the development was forecasted using the fitted curve equations provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition.

Per the proposed Draft Plan, the development is proposed to consist of 319 single detached units and 215 townhome units. Accordingly, the land use code (LUC) 210 "Single Family Detached Housing" and LUC 220 "Multifamily Housing (Low-Rise)" were used to forecast trips generated by the proposed development. Table 9 summarizes the trip generation of the proposed development and Appendix J contains ITE excerpts.

Table 9: Trip Generation

Land Use	Peak Hour	Number of Trips		
		Outbound	Total	
LUC 210 "Single Family Detached Housing" (319 units)	Weekday A.M.	56	158	214
LUC 220	Weekday P.M.	186	109	295
"Multifamily Housing (Low-Rise)" (215 units)	Weekday A.M.	21	69	90
	Weekday P.M.	71	42	113
TOTAL	Weekday A.M.	$\mathbf{7 7}$	$\mathbf{2 2 7}$	$\mathbf{3 0 4}$
	Weekday P.M.	$\mathbf{2 5 8}$	$\mathbf{1 5 1}$	$\mathbf{4 0 8}$

5.2 TRIP DISTRIBUTION AND ASSIGNMENT

The trips generated by the residential development were distributed to the boundary road network based on Transportation Tomorrow Survey Data, which is consistent with the distributions described in the original TIS for Phases 1-3 "Orsi Development" prepared by Cansult Tatham Transportation Consultants (December 2005). Appendix K includes the Transportation Tomorrow Survey data. The following distribution was applied for both the a.m. and p.m. peak hours:

- 25% north via Highway 11
- 75% south via Highway 11

As noted previously the Highway 11 accesses are restricted to right-in/right-out movements only. Accordingly, vehicles travelling to the south or arriving from the north must utilize the Centre Avenue overpass to access the Telford Line Highway entrance. Accordingly, vehicles arriving from the north or travelling to the south were assigned to Ardtrea Drive, Soules Road, Centre Avenue and Telford Line. Vehicles arriving from the south or departing to the north were assigned to the Menoke Beach Road highway entrance.

The residential trip distribution is illustrated in Figure 9, with the corresponding trip assignment illustrated in Figure 10.

6.0 TOTAL FUTURE CONDITIONS

6.1 BASIS OF ASSESSMENT

The traffic impacts arising from the proposed development were assessed based on the site generated traffic illustrated in Figure 10 being superimposed on the future background traffic volumes in Figures 6, 7, and 8. The resulting 2026, 2031, and 2036 future total traffic volumes for the weekday a.m. and p.m. peak hours are illustrated in Figures 11, 12, and 13, respectively.

6.2 AUXILIARY LANE ANALYSIS

Left-turn lane warrants were undertaken for the intersections of Menoke Beach Road with Ardtrea Drive using the Ministry of Transportation Ontario (MTO) Design Supplement to the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR). The warrants were undertaken during the weekday a.m. and p.m. peak periods for the westbound and eastbound left-turn movements at the site accesses.

The warrants were completed based on the 2036 future total traffic volumes for a design speed of 70 km / h roadway. Auxiliary left-turn lane warrant charts have been included as Appendix L. Table 10 summarizes the results of the left-turn lane warrants.

Table 10: Auxiliary Turn-Lane Warrants

Intersection	Year	Peak Hour	$\mathrm{V}_{\text {A }}$	Vo	\%LT in $\mathrm{V}_{\text {A }}$	Warranted?	Reference
Two Full-moves Accesses Scenario							
Access B Eastbound	2036	A.M.	92	138	13\%	No	Exhibit 9A-11
		P.M	191	94	20\%	No	Exhibit 9A-12
Access B Westbound	2036	A.M.	138	92	71\%	No	Exhibit 9A-14
		P.M	94	191	70\%	No	Exhibit 9A-14
Access A Eastbound	2036	A.M.	103	60	45\%	No	Exhibit 9A-14
		P.M	321	52	49\%	No	Exhibit 9A-14
Right-in/Right-out \& Emergency Access Scenarios							
Access B Eastbound	2036	A.M.	103	138	56\%	No	Exhibit 9A-14
		P.M	322	94	60\%	No	Exhibit 9A-14
Access B Westbound	2036	A.M.	138	103	71\%	No	Exhibit 9A-14
		P.M	94	322	70\%	No	Exhibit 9A-14

As summarized in Table 10, eastbound auxiliary left-turn lanes are not warranted for any of the proposed scenarios.

6.3 INTERSECTION OPERATIONS

The operations of the study intersections were analyzed based on the 2026, 2031, and 2036 total traffic volumes illustrated in Figures 11, 12, and 13. Table 11, Table 12, and Table 13 outline the future total traffic operations for the 2026, 2031 and 2036 horizon years, respectively. The operations of the proposed site accesses have also been included in these tables for the scenario of two full-moves site accesses. The subsequent section provides a comparison of the operations of the three different access scenarios under 2036 future total traffic volume conditions.

Appendix G contains Level of Service definitions, and Appendix H contains detailed Capacity Analyses Worksheets.

Table 11: 2026 Future Total Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive/Site Access B	Stop	A.M.	C	16.8 s	0.34 (SB)
		P.M.	C	15.5 s	0.24 (SB)
Menoke Beach Road and Access A	Stop	A.M.	A	9.5 s	0.10 (SB)
		P.M.	B	11.1 s	0.09 (SB)
Campbell Road and Soules Road	Stop	A.M.	B	12.5 s	0.43 (SB)
		P.M.	B	12.3	0.30 (SB)
Soules Road and Centre Avenue	Stop	A.M.	B	10.9 s	0.15 (NB)
		P.M.	B	11.4 s	0.27 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	14.3 s (SB)	0.36 (NB)
		P.M.	A	13.5 s (SB)	0.37 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

Table 12: 2031 Future Total Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive/Site Access B	Stop	A.M.	C	17.0 s	0.34 (SB)
		P.M.	C	15.6 s	0.26 (SB)
Menoke Beach Road and Access A	Stop	A.M.	A	9.6 s	0.10 (SB)
		P.M.	B	11.1 s	0.09 (SB)
Campbell Road and Soules Road	Stop	A.M.	B	12.7 s	0.43 (SB)
		P.M.	B	12.4 s	0.31 (SB)
Soules Road and Centre Avenue	Stop	A.M.	B	10.9 s	0.15 (NB)
		P.M.	B	11.6 s	0.28 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	14.5 s (SB)	0.37 (NB)
		P.M.	B	13.6 s (SB)	0.38 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

Table 13: 2036 Future Total Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive/Site Access B	Stop	A.M.	C	17.1 s	0.34 (SB)
		P.M.	C	15.8 s	0.24 (SB)
Menoke Beach Road and Access A	Stop	A.M.	A	9.6 s	0.10 (NB)
		P.M.	B	11.1 s	0.09 (NB)
Campbell Road and Soules Road	Stop	A.M.	B	12.8 s	0.44 (SB)
		P.M.	B	12.7 s	0.32 (SB)
Soules Road and Centre Avenue	Stop	A.M.	B	11.0 s	0.16 (NB)
		P.M.	B	11.7 s	0.29 (NB)
Centre Avenue and Telford Line	Stop	A.M.	B	14.7 s (SB)	0.38 (NB)
		P.M.	B	13.8 s (SB)	0.40 (NB)

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

The study intersections are anticipated to continue operating with an LOS "B" or better in the a.m. and p.m. peak hours, with the exception of Menoke Beach Road and Ardtrea Drive/Site Access B, which is anticipated to operate with a LOS "C". At the intersection of Menoke Beach Road and Ardtrea Drive/Site Access B the site generated traffic is anticipated to result in a maximum increase in control delay of 7.4 seconds and a maximum increase in the volume to capacity ratio of 0.30 .

The above metrics indicate that the study intersections are anticipated to continue operating acceptably under 2036 future total traffic volume conditions. Accordingly, the boundary road network can accommodate the site generated traffic.

6.4 ENTRANCE OPERATIONS

To assess the appropriate control type and movement permissions, the operations of the site accesses were analyzed under the following access configurations for the 2036 horizon: Two full-moves accesses; One full-moves access and one right-in/right-out access; One full-moves access and one emergency access. The trip assignment of the scenario with two full-moves accesses is illustrated in Figure 10. Figures 14 illustrates the trip assignment of the one full-moves access and one right-in/rightout access scenario, while Figure 15 illustrates the trip assignment of the one full-moves access and one emergency access scenario.

Table 14 outlines the anticipated levels of service. Appendix G contains Level of Service definitions, and Appendix H contains detailed Capacity Analyses Worksheets.

Table 14: 2036 Site Access Future Total Levels of Service Comparison

Intersection	Control	Peak Hour	Two Full Moves			One Full Moves and One RIRO			One Full Moves and One Emergency Access		
			LOS	Control Delay ${ }^{1}$	Maximum v/c Ratio	LOS	Control Delay ${ }^{1}$	Maximum v/c Ratio	LOS	Control Delay ${ }^{1}$	Maximum v/c Ratio
Menoke Beach Road and Ardtrea Drive/Site Access B	Stop	A.M.	C	17.1 s	0.34 (SB)	C	21.2 s	0.47 (SB)	C	20.6 s	0.51 (SB)
		P.M.	C	15.8 s	0.24 (SB)	D	31.6 s	0.50 (SB)	D	29.2 s	0.53 (SB)
Menoke Beach Road and Site Access A	Stop	A.M.	A	9.6 s	0.10 (NB)	A	8.8 s	0.05 (SB)	N/A		
		P.M.	B	11.1 s	0.09 (NB)	A	8.6 s	0.03 (SB)			

Note': The Level of Service of a two way or T stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of all way stop-controlled intersection is based on the average intersection delay.

Under both full moves and right-in/right-out conditions, the intersection of Menoke Beach Road and Site Access A is expected to continue operating well with a LOS " B " or better. The proposed access is supportable from an operations perspective. Given the low volume of westbound through vehicles on Menoke Beach Road, minimal delay and queuing is anticipated for eastbound left-turning vehicles.

The removal of left turns at Site Access A results in increased delay at the intersection of Menoke Beach Road and Ardtrea Drive/Site Access B. This is due to the addition of the eastbound left-turning volumes which results in increased conflicting movements for the northbound and southbound through and left-turning vehicles.

Based on the above metrics, the scenario of two full-moves accesses, as presented in the Draft Plan, results in the best operations at Menoke Beach Road and Ardtrea Drive/Site Access B compared to the two other scenarios. Additionally, providing two entrances improves the connectivity of the site and provides multiple means of ingress and egress.

Accordingly, from a connectivity and operations perspective, the configuration of two full-moves accesses would be the preferred scenario.

7.0 SIGHT DISTANCE ASSESSMENT

A sight distance assessment was completed to demonstrate that the proposed accesses provide sufficient stopping and intersection sight distances on both site accesses. The minimum stopping sight distance and the minimum intersection sight distance requirements were obtained from the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR).

Section 2.5 of the TAC GDGCR provides stopping sight distances for various design speeds on level roadways. For roadways with a design speed of $70 \mathrm{~km} / \mathrm{h}$, a minimum stopping sight distance of 105 m is required.

Section 9.9 of the TAC GDGCR provides intersection sight distance for different intersection control types. For these accesses, the applicable cases include "Case B1 - Left turns from the minor road", and "Case B2 - Right turns from the minor road". Comparing these cases, Case B1 has the greatest sight distance requirement of 150 m for $70 \mathrm{~km} / \mathrm{h}$ design speed roads. The required intersection sight distance and stopping sight distance were taken from "Table 9.9.4" as outlined in Appendix M.

Table 15: Sight Distance

Access	Oncoming Traffic	Stopping Sight Distance		Intersection Sight Distance	
		Minimum Standard	Available Distance	Minimum Standard	Available Distance
A	Eastbound	105 m	+300 m	150 m	+300 m
	Westbound	105 m	200 m	150 m	200 m
B	Eastbound	105 m	+200 m	150 m	+200 m
	Westbound	105 m	+300 m	150 m	+300 m

As summarized above, the available sight distances exceed the minimum sight distance requirements at both site accesses. Accordingly, the proposed development can be supported from a sight distance perspective.

8.0 CONCLUSIONS

The analysis contained within this report has resulted in the following key findings:

- Intersection analysis of the 2021 existing traffic volumes indicates the following:
- All study intersections are operating at a Level of Service (LOS) "A" or better during the weekday a.m. and p.m. peak hours.
- The maximum volume-to-capacity ratio of 0.75 and maximum control delay of 10.0 s are associated with traffic at Centre Avenue and Telford Line.
- These metrics indicate that the boundary road network has reserve capacity for increases in traffic volumes.
- Intersection analysis of the 2026 to 2036 future background traffic volumes indicates the following:
- The study intersections are expected to operate with a LOS "B" or better in the weekday a.m. and p.m. peak hours under 2036 future background traffic volume conditions.
- The maximum control delay of $11.3 \mathrm{~s}(\mathrm{SB})$ and volume-to-capacity ratio of 0.24 (NB), both forecasted for Centre Avenue and Telford Line, indicate that the boundary road network is expected to continue operating acceptably with excess capacity for increases in traffic volumes.
- The proposed development is forecasted to generate 304 and 408 external two-way trips in the weekday a.m. and p.m. peak hours, respectively.
- The requirement for auxiliary left-turn lanes were reviewed for the eastbound and westbound left-turn movements at Site Access A and Site Access B/Ardtrea Road. The analysis was completed based on the 2036 traffic volumes and no improvements were warranted.
- Intersection analysis of the 2026 to 2036 future total traffic volumes indicates the following:
- The study intersections are anticipated to continue operating with an LOS " B " in the a.m. and p.m. peak hours, with the exception of Menoke Beach Road and Ardtrea Drive/Site Access B which is anticipated to operate with a LOS "C".
- The site generated traffic is anticipated to result in a maximum increase in control delay of 7.4 s and a maximum increase in volume to capacity ratio of 0.30 at the intersection
of Menoke Beach Road and Ardtrea Drive/Site Access B.
- Under both full moves and right-in/right-out conditions, the intersection of Menoke Beach Road and Site Access A is expected to continue operating well with a LOS "B" or better. Given the low volume of westbound through vehicles on Menoke Beach Road, minimal delay and queuing is anticipated for eastbound left-turning vehicles.
- The removal of left turns at Site Access A results in increased delay at the intersection of Menoke Beach Road and Ardtrea Drive/Site Access B. This is due to the addition of the eastbound left-turning volumes which results in increased conflicting movements for the northbound and southbound through and left-turning vehicles.
- Based on the expected operations under each access scenario, the scenario of two fullmoves accesses, as presented in the Draft Plan, results in the best operations at Menoke Beach Road and Ardtrea Drive/Site Access B compared to the two other scenarios. Additionally, providing two entrances improves the connectivity of the site and provides multiple means of ingress and egress. Accordingly, from a connectivity and operations perspective, the configuration of two full-moves accesses would be the preferred scenario.
- The available sight distances exceed the minimum sight distance requirements at both site accesses. Accordingly, the proposed development can be supported from a sight distance perspective.

It is concluded that the traffic generated by the Shadow Creek Subdivision can be accommodated by the boundary road network without any mitigation measures.

The analysis was prepared using the most recent Draft Plan of Subdivision prepared by MHBC (January 2022). Any minor changes to the Plan will not affect the conclusions of this report. The Shadow Creek Subdivision can be supported from a traffic operations and safety perspective.

Prepared by,

C.F. CROZIER \& ASSOCIATES INC.

Emma Howlett, E.I.T
Engineering Intern, Transportation

APPENDIX A

Terms of Reference Correspondence

Emma Howlett

From:

Sent:
To:
Cc:
Subject:

Doherty, Chris Chris.Doherty@simcoe.ca
November 9, 2021 4:10 PM
Emma Howlett
Madeleine Ferguson
RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103) File: SV-PRE-2102

Good afternoon Emma,
Thank you for circulating us on your TOR, however there are no County Roads in the vicinity of the development. I will defer the confirmation of the TOR to the Township of Severn and the MTO. I'm pretty sure that, at least my department won't be circulated the final TIS for review and comment. Have a great rest of the day.

Regards,

Chris Doherty, C. Tech.
Engineering Tech
County of Simcoe

From: Emma Howlett ehowlett@cfcrozier.ca
Sent: Tuesday, November 09, 2021 3:01 PM
To: Doherty, Chris Chris.Doherty@simcoe.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca
Subject: [EXTERNAL] Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103) File: SV-PRE-2102
To Chris Doherty,
I hope you're doing well. We have been retained to prepare a Transportation Impact Study (TIS) for the Menoke Beach Residential Development Phase 3. The site is located at 8743 Highway 11 and 3651 Menoke Beach Road in the Township of Severn, County of Simcoe. The elements envisioned for this subdivision include 329 single family units and 254 townhouse units. A concept plan has been attached for your review.

Please advise if the Terms of Reference (TOR) outlined below will be acceptable. If you are not the correct person for correspondence, I'd appreciate it if you could direct me to the correct contact. We have also contacted the MTO and Township to get their comments on the TOR.

We are proposing a scope of work in-line with the pre-consultation comments provided by the Town, County, and MTO. The TIS would review the following intersections:

- Menoke Beach Rd and Highway 11
- Menoke Beach Rd \& Ardtrea Dr
- Soules Road/Telford Line and Highway 11
- Campbell Road and Soules Road
- Soules Road and Center Avenue
- Center Avenue and Telford Line
- Menoke Beach Road and Site Accesses

Traffic counts will be completed. A 0.7% growth rate was established based on historical MTO AADT and SADT data along the roadway. Accordingly, a 1% growth rate will be applied to existing volumes.

Emma Howlett

From:

Sent:
To:
Cc:

Subject:

Attachments:

Emma Howlett
November 22, 2021 1:39 PM
Katie Mandeville
Madeleine Ferguson; Andrea Woodrow
RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103) File: SV-PRE-2102
RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)

Hi Kattie,
The MTO has already provided comments (attached)

From: Katie Mandeville kmandeville@severn.ca
Sent: November 22, 2021 1:28 PM
To: Emma Howlett ehowlett@cfcrozier.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca; Andrea Woodrow AWoodrow@severn.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103) File: SV-PRE-2102

Hi Emma,
The Township has engaged a Peer Reviewer however we would like to withhold our comments on the Terms of Reference until MTO has provided their comments. I emailed Peter Dorton from MTO to request their comments and to convey this process.

Thanks,
Katie

Katie Mandeville, BA, BURPI, RPP, MCIP
Senior Planner
Email: kmandeville@severn.ca
Phone: 705-325-2315 x238

severn.ca

5 f in \rightarrow

From: Emma Howlett ehowlett@cfcrozier.ca

Sent: November 17, 2021 10:23 AM
To: Katie Mandeville kmandeville@severn.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca; Andrea Woodrow AWoodrow@severn.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103) File: SV-PRE-2102

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Emma Howlett

From:

Sent:

To:
Cc:

Subject:
Categories:

Dorton, Peter (MTO) Peter.Dorton@ontario.ca
November 17, 2021 11:02 AM
Emma Howlett
Janke, Aaron (MTO); Nicol, Elena (MTO); Blaney, Cameron (MTO); Andrea Woodrow; Nolan, Julie
RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)
Filed to Sharepoint

Hi Emma:

Please include traffic generated from Menoke Beach Phase 2 in this Phase 3 TIS.
We are not aware of any other potential area developments to consider; please check with Severn Township on this.
Please ensure that access comments provided below on Nov. 10 are also addressed in the TIS.
All other aspects of the ToR are acceptable.

Thanks,
Peter D.

From: Emma Howlett ehowlett@cfcrozier.ca
Sent: November 10, 2021 1:48 PM
To: Dorton, Peter (MTO) Peter.Dorton@ontario.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

 Hi Peter,Sorry, for 3735 Menoke Beach Road proposes the development I referenced Plan of Subdivision for 3735 Menoke Beach Road - Township of Severn - Planning (simcoe.ca)

I was planning on referencing the 2020 addendum regarding the proposed units to the east of Amigo Drive. If you do not think we need to reference this development please let us know

Emma Howlett \| Engineering Intern
1 First Street, Suite 200 | Collingwood, ON L9Y 1A1
T: 705.446.3510
CROZIER
COMSULTIMG ENGIMEERS

Read our latest news and announcements here.

From: Dorton, Peter (MTO) Peter.Dorton@ontario.ca
Sent: November 10, 2021 1:15 PM
To: Emma Howlett ehowlett@cfcrozier.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)

Thanks Emma.

Please confirm what is planned for 3735 Menoke Beach Road.
Thanks,
Peter D.

From: Emma Howlett ehowlett@cfcrozier.ca
Sent: November 10, 2021 12:38 PM
To: Dorton, Peter (MTO) Peter.Dorton@ontario.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)
CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.
Hi Peter,

Sorry here is the Concept plan, to confirm the site proposes approximately 329 single family units and 254 townhouse units.

Emma Howlett \| Engineering Intern
1 First Street, Suite 200 | Collingwood, ON L9Y 1A1
T: 705.446.3510
CROZIER
COMSULTIMG ENGIMEERS

Crozier Connections: fy in

Read our latest news and announcements here.

From: Dorton, Peter (MTO) Peter.Dorton@ontario.ca
Sent: November 10, 2021 12:04 PM
To: Emma Howlett ehowlett@cfcrozier.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca
Subject: RE: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)

Hi Emma.

Could you please send me the Concept Plan, and confirm what is proposed at 3735 Menoke Beach Road.
Also, you mention a $2^{\text {nd }}$ access. We had indicated previously that the first access is to be opposite Ardtrea Dr.. Anything closer you are seeking approval for would have to reference the spacing along Menoke (to other roads / entrances between Hwy 11 and Ardtrea Dr.). Another access option to consider would be to make it an emergency access only.

I will circulate these Terms to our Traffic Office once you have gotten back to me.

Thanks,
Peter Dorton
Senior Project Manager
Ministry of Transportation
Central Operations, Highway Corridor Management Section
159 Sir William Hearst Avenue, 7th Floor
Toronto, ON M3M OB7
Cell: (437) 833-9396
E-Mail: peter.dorton@ontario.ca
Web: www.mto.gov.on.ca/english/engineering/management/corridor

From: Emma Howlett ehowlett@cfcrozier.ca
Sent: November 9, 2021 3:03 PM
To: Dorton, Peter (MTO) Peter.Dorton@ontario.ca
Cc: Madeleine Ferguson mferguson@cfcrozier.ca
Subject: Terms of Reference to review - Menoke Beach Phase 3 (Project: 1935-6103)

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

To Peter Dorton,

I hope you're doing well. We have been retained to prepare a Transportation Impact Study (TIS) for the Menoke Beach Residential Development Phase 3. The site is located at 8743 Highway 11 and 3651 Menoke Beach Road in the Township of Severn, County of Simcoe. The elements envisioned for this subdivision include 329 single family units and 254 townhouse units. A concept plan has been attached for your review.

Please advise if the Terms of Reference (TOR) outlined below will be acceptable. If you are not the correct person for correspondence, I'd appreciate it if you could direct me to the correct contact. We have also contacted the County and Township to get their comments on the TOR.

We are proposing a scope of work in-line with the pre-consultation comments provided by the Town, County, and MTO. The TIS would review the following intersections:

- Menoke Beach Rd and Highway 11
- Menoke Beach Rd \& Ardtrea Dr
- Soules Road/Telford Line and Highway 11
- Campbell Road and Soules Road
- Soules Road and Center Avenue
- Center Avenue and Telford Line
- Menoke Beach Road and Site Accesses

Traffic counts will be completed. A 0.7% growth rate was established based on historical MTO AADT and SADT data along the roadway. Accordingly, a 1% growth rate will be applied to existing volumes.

Analysis Periods and Scenarios

Analysis of weekday A.M. and P.M. peak hours will be used to capture the peak hours associated with the proposed use.
The 5 -, and 10 -year horizons will be analyzed. For analysis purposes it will be assumed that the development will be built out by 2026. Accordingly, the 2026, 2031, and 2036horizons will be analyzed. Details regarding phasing are being confirmed and will be reflected in updated horizon years if applicable.

Background Developments

3735 Menoke Beach Road will be included in our background developments. Please advise if there are any other background developments which should be included in the analysis.

Trip Generation

ITE Trip Generation $11^{\text {th }}$ Edition will be used to calculate the expected trip generation for the development. Assignment of site generated traffic on the boundary road network will be based on existing travel patterns, expected catchment areas, and other study findings.

Road Characteristics

A number of elements will be reviewed including auxiliary turn-lane and signalization requirements at the proposed site access on Menoke Beach Road and Ardtrea Drive, as well as sight distance requirements at the proposed access. We will also review the second access (between Ardtrea Drive and Highway 11) and assess the appropriate access type (i.e. full moves, right-in/right-out, etc.).

I hope the above is acceptable. Should you have any questions or concerns, please feel free to contact me.
Regards,

Emma Howlett | Engineering Intern
1 First Street, Suite 200 | Collingwood, ON L9Y 1A1
T: 705.446.3510

Crozier Connections: fy in

Read our latest news and announcements here.

This email was sent on behalf of C.F. Crozier \& Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

PRE-CONSULTATION MEETING MINUTES

DATE:	July 8, 2021
FILE NUMBER:	SV-PRE-2102
PROPERTY ADDRESS:	8743 Highway 11 North, Township of Severn
OWNER:	LIV Communities
AGENT/ APPLICANT:	Eldon Theodore, MHBC

ATTENDEES	
Ministry of Transportation	Peter Dorton
County of Simcoe	Julie Nolan
Township of Severn	Andrea Woodrow, Planning Director Katie Mandeville, Senior Planner Tim Collingwood, Engineering Consultant
Development Team	Eldon Theodore, Lead Planning Consultant Amie Chung, Planning Consultant Katherine Rauscher, Planning Consultant Sam Badawi, Owner Scott Tarof, Environmental Consultant Ted Kruska, Engineering Consultant

Development Proposal

LIV Communities is proposing a Draft Plan of Subdivision that would consist of 811 dwelling units. The draft plan is proposing 439 single detached, 222 townhouse units and a condominium multi-story building with 150 units, all of which would be on Municipal services.

The proposed draft plan has been designed to include a distribution of housing types across plan, having the higher density/intensity along the corridors to Highway 11.

With respect to the open space areas identified on the proposed draft plan, the applicant is seeking an opportunity to execute privately owned/publicly accessible park space to connect to other surrounding lands i.e. walkways, commercial uses (Webers), etc. along highway 11.

The applicant wishes to promote pedestrian and active transportation movement.

The easterly portion of the property for drainage as it moves towards Shadow Creek. This area has been identified on the Draft Plan to be enhanced and provide an open space for community use. Additionally, the applicant would like to offer water access for the community.

The above noted subject lands were considered while completing Menoke Beach Draft Plan Phase 1 and proposed Draft Plan Phase 2. Using the subject lands, parkland dedication transfers and trails were made pre-emptively. The parkland dedication has already been completed in the form of a "pre" dedication to aid in the completion of Menoke Beach Draft Plans Phase 1 \& 2.

Note: The area outlined in red with hatching in the North West corner is not currently owned by the applicant and is not part of the development proposal.

Concept Plan

Staff/Agency Comments

Ministry of Transportation, Peter Dorton, Senior Project Manager

- A portion of the subject lands is within the MTO Permit Area
- It would be desirable to make connections to local roads and adjacent neighbourhoods in case the highway becomes fully controlled (currently no plans to do so, but a possibility in the future)
- If/when the highway becomes fully controlled, having more local road connections will be imperative.
- There are currently no plans for an intersection/overpass to be completed at Menoke Beach Road and Highway 11. The Ministry does not have a current Environmental Assessment for future expansion. The best guess as to where interchanges would go if/when the Highway is converted to a "freeway", and those locations would most likely be where there are existing flyovers and interchanges. Someday this intersection could disappear, but it is not contemplated at this point in time. The local connections would be necessary.
- No new accesses off of Highway 11 are being permitted and the existing entrances will be flipped to ensure access is off of a local road.
- All public Road accesses are to be a minimum of 400 m from Highway 11. The current proposed Draft Plan does not appear to meet this requirement.
- The Traffic Study should review the following items:
- The implementation of a 4 way intersection if the road entering the development is changed.
- The intersection at highway 11 and Menoke Beach Road as well as the queuing at the accesses of the proposed Draft Plan and whether or not a signalized intersection is required.
- The distance of the first entrance into the subdivision from Highway 11.
- Other ways to access the subject lands locally from other subdivisions.
- Lighting plans to ensure they do not affect the Highway
- Stormwater Management to ensure no negative impact on Highway 11.
- Detailed grading/servicing plans to show no negative impacts on Highway 11.
- A connection to Weber's would be desirable if possible.
- MTO will have to review the proposed lot fabric in relation to whether or not any road widening of the Highway would be required for taking.
- A 14 metre minimum setback from Highway 11 is required for any buildings.
- MTO can provide a list of conditions that would be required with respect to development along the Highway.
- Through the findings of the Traffic Study, if there are any upgrades or improvements required to any ramps, intersections, overpasses etc., it would be the developer's responsibility to pay for these improvements including design, construction etc.

Simcoe County, Julie Nolan, Planner III

- From a policy conformity perspective, the proposed subdivision is in the Settlements designation of the County Official Plan and generally conforms to the Settlements policies.
- A review of the site conditions i.e. natural heritage features, species at risk, etc. will need to be completed to ensure the suitability and form of the development and ensure no negative impacts and/or mitigation as found appropriate.
- Part of the lands are within the Delineated Built Boundary identified by MMAH, as the majority is outside. Please review these policies with respect to densities.
- Further investigation into the servicing capacity is required to confirm the phasing and dictate the density of the proposed Draft Plan. Please work with the Township to confirm.
- Typically two entrances are preferred for emergency services to access the subdivision. The Traffic Study should explore the options to incorporate this in conjunction with MTOs 400m setback from Highway 11.
- With respect to the design of the internal roadways, it may more efficient and desirable to have development on both sides of the street instead of a single sided road adjacent to open space (this speaks specifically to the road along the south boundary). Additionally, to prevent individual subdivisions becoming standalone "island" type developments, it is encouraged to create a more complete community by connecting the proposed Draft Plan with adjacent neighbourhoods/Draft Plans.

Township of Severn, Andrea Woodrow, Planning Director, Katie Mandeville, Senior Planner

- It would be desirable to incorporate a commercial/convenience block within the proposed subdivision based on the location and size of the proposed development.
- There are a couple developments to the north of the subject lands that have provided parkland dedication for future trail connections. Lands within the shadow creek area were dedicated to the Town for future park and trail purposes. The Township is undertaking a recreational master plan so there will be opportunity for connections for potential pedestrian connectivity. Please follow up with the Township for more information.
- The Township of Severn has a maximum of 3 stories due to Fire services' lateral fire trucks. Buildings higher than 3 storeys are not permitted due to fire safety restrictions.
- The proposed Draft Plan exceeds the prescribed density of the Official Plan. An Official Plan Amendment is required.
- The subject lands are within an intake protection zone (IPZ2). Severn Sound Environmental Association (SSEA) provides environmental review services to the Township of Severn and acts as their Risk Management Official.
- With respect to remaining water and wastewater capacity in West Shore, a report from 2018 (Township is undertaking uncommitted capacity reports to evaluate development capacity) stated that approximately 17090 additional units for water and 890 units for wastewater. However, that does not reflect what is left as of

July 2021 due to recent subdivision approvals. Please confirm with the Township the capacity and sequencing of the next servicing EA to determine phasing. The next EA commences once servicing is at 85% capacity

- SSEA works with the Township as a peer reviewer for all environmental works. Should the applicant wish to engage them earlier on in the process, a deposit would be required for their time. Engaging SSEA early on in the process will help better scope the environmental works to be completed.
- Please review the Township's pre-consultation form if you wish to engage the Township's engineer or peer reviewers while scoping and initiating the process.

Questions/Discussion

- During the Public Information Meeting held for Menoke Beach Phase 2 Draft Plan of Subdivision, community members had concerns about the traffic and road quality along Ardtrea Drive/Campbell Road. The Traffic Study should address the additional traffic and access to the interchanges/bridge both north bound and southbound d, ability to take on study should include volumes from Ardtrea, and southbound access to southbound traffic access to highway 11.
- The Township would like the exploration of local road connections from the proposed draft plan to other adjacent subdivisions. The applicant will explore the possibility to connect to local roads, however, there is a PSW and environmentally sensitive areas along the river and this may not be feasible to the south/east. The applicant would also need permissions from other land owners. The Township offered that there are still some vacant lots to the south along Amigo Drive Cres. (Simcoe Estates), that there may be some opportunity for a connection to link communities. Having that connectivity would be desirable to better connect the community.
- The applicant is happy to explore the feasibility of the option to link another road to other communities, however, due to the environmental features, it is difficult to create trails, roads, etc. while maintaining buffers. Further investigation through the EIS will determine what is on the ground and whether these types of connections are possible.
- Applicant would like water access along Shadow Creek canal system asking if the Town sees any issues with this waterway connection. The Town had no immediate concerns provided the results of the EIS prove to support it. The Town did note that the canal is very dry Aug-Sept. and has been dredged in the past.
- The Town suggested having more public consultation at the front end to mitigate any concerns or questions from local home owners.

Next Steps

- Revisions to the Draft Plan based on the pre-consultation discussion.
- EIS
- Confirmation of the servicing capacity from the Township to determine the phasing and potential for units
- Review of the geotechnical/hydrogeology by Azimuth to determine the feasibility of the site

Additional Information and Material Required

Legal \& Related

- Legal and/or Topographic Survey
- Parcel Register/PIN Abstract
- Corporate Profile or Articles of Incorporation

Historical \& Environmental Conditions

- Archaeological Assessment
- Environmental Impact Study
- Tree Identification/Preservation Plan

Policy Review \& Supporting Studies

- Planning Justification Report
- Growth Management
\circ
Architectural, Urban Design and Master Planning
- Site Plan
- Landscaping Plan
- Conceptual Building Renderings
- Open Space/Trail Plan

Engineering/Technical Plans, Studies and Reports

- Servicing Plan
- Functional Servicing Report
- Geotechnical/Soil Stability Report
- Hydrogeological Study/ Hydrology Study or Water Budget
- Lot Grading Plan
- Operations and Maintenance Manual (should you have condominium elements)
- Source Water Protection Land Use
- Lighting Plan per MTO specifications
- Stormwater Management Report
- Traffic Impact Study including on ramp to Highway 11, off ramp to Menoke Beach Road and surrounding roads to the proposed development
- Watershed/Sub-watershed Study

Other

- Pre-consultation comments response matrix
- One (1) digital copy of all submission materials

ApPENDIX B

MTO Highway Corridor Management Manual (September 2018)

Highway Corridor Management Manual
 ? ${ }^{2}$ Ontario

Provincial Highway Corridor Management Section
Ministry of Transportation

	Functional Intersection Area - Desirable Offset Spacing Criteria Public Road and Commercial / Private Road Access Connections (Medium / High Volume Traffic Generators)
Access Management Classification	Desirable Offset Criteria
Class 2A - Principal Arterial	$400 / 800 \mathrm{~m}$ (see Notes)
Class 2B - Arterial Class 3 - Collector Class 4 - Local	400 m

Notes:

All new Public Road connections, which are to be located downstream of an existing highway intersection, shall meet the desirable offset spacing criteria in accordance with the above table
All new medium / high volume Commercial / Private Road access connections, which are to be located downstream of an existing highway intersection, shall meet the desirable spacing offset criteria in accordance with the above table
For Principal Arterials where at-grade intersections are present and are not to be upgraded to interchanges, the desirable offset spacing is 400 m . However, where interchanges are proposed, the desirable offset spacing is 800 m .
A medium / high volume Commercial / Private Road access connection is one that provides access to a commercial development which is a medium / large traffic generator, and which warrants intersection improvements on the Public Road.
MTO requires the submission of a Traffic Impact Study for all commercial developments which are medium / high volume traffic generators. A Traffic Impact Study will determine the warranted improvements for both the highway intersection as well as the Commercial / Private Road access connection on the intersecting Public Road.

Desirable offset spacing distances may be increased / decreased based upon MTO's review of a Traffic Impact Study.
Distances provided in this Figure are provided to demonstrate desirable offset spacing for Public Roads and medium / high volume Commercial / Private Road access connections for corner and non-corner properties, in order to protect the safety and operational integrity of the intersection.

Corner properties, which have frontage on both the Provincial Highway and the Public Road shall obtain all access from the Public Road.
Desirable offset spacing criteria typically apply to requests for new Public Road and new medium / high volume Commercial / Private Road access connections.
All distances are measured from the centreline of the highway intersection to the centreline of the proposed Public Roads or proposed medium / high volume Commercial / Private Road access connection.
Existing Public Road or Commercial / Private Road access connections which fall with the desirable offset spacing criteria are constraints located within the Functional Intersection Area and will be permitted to remain for their existing use.

ApPENDIX C

National Fire Prevention Association Excerpts

NFPA

Standard for Fire Protection Infrastructure for Land Development in Wildland, Rural, and Suburban Areas
(2) The material is reported as passing ASTM E136, Standard Test Method for Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C.
(3) The material is reported as complying with the pass/fail criteria of ASTM E136 when tested in accordance with the test method and procedure in ASTM E2652, Standard Test Method for Behavior of Materials in a Tube Furnace with a Cone-shaped Aivflow Stabilizer, at 750 Degrees C.
[5000: 7.1.4.1.1]

Chapter 5 Means of Access

5.1 General.

5.1.1 This section shall apply to all means of access, publicly or privately owned, whether or not they are designated as public thoroughfares.
5.1.2 Means of access shall be provided to all buildings more than $400 \mathrm{ft}^{2}\left(37 \mathrm{~m}^{2}\right)$ in ground floor area and to public occupancies with structural components.
5.1.3 The AHJ shall have the authority to require a means of unlocking any security feature that is installed.
5.1.3.1 Any gates shall not be located closer than 30 ft $(9.144 \mathrm{~m})$ from an intersection and shall open in the direction of emergency vehicle travel unless other provisions are made for safe personnel operation.
5.1.3.2 The clear opening through gates shall have a usable width at least $2 \mathrm{ft}(0.6 \mathrm{~m})$ wider than the means of access it controls.

5.1.4 Number of Means of Access.

5.1.4.1* A land development shall have one or more means of access in accordance with Table 5.1.4.1 (a), Table 5.1.4.1(b), or 5.1 .4 .2 , whichever produces the greatest number.
5.1.4.2 Where residential areas are mixed with nonresidential areas, the minimum number of access routes shall be determined by calculating five parking spaces for each dwelling unit, adding that number to the parking spaces count for the nonresidential area, and using Table 5.1.4.1 (b).
5.1.4.3 Where multiple means of access are required, one of the means of access shall be permitted to be restricted for emergency use only, when approved by the AHJ.

Table 5.1.4.1 (a) Required Number of Access Routes for Residential Areas

Number of Households	Number of Access Routes
$0-100$	1
$101-600$	2
>600	3

Table 5.1.4.1(b) Required Number of Access Routes for Nonresidential Areas

Number of Parking Spaces	Number of Access Routes
$0-1250$	1
$1251-3000$	2
>3000	3

5.1.4.4 Where multiple means of access are required, they shall be located as remotely from each other as practical and acceptable to the AHJ .
5.2 Roadways. Roadways shall be constructed and maintained in accordance with this section.
5.2.1* The legal right-of-way for a roadway shall accommodate the width necessary for the construction, drainage, erosion control, and maintenance of the roadway, and provisions for utilities and sidewalks.
5.2.2 Roadways shall be constructed of a hard, all-weather surface designed to support all legal loads of the jurisdiction.
5.2.3 Roadways shall have a minimum clear width of 12 ft $(3.7 \mathrm{~m})$ for each lane of travel, excluding shoulders and parking.
5.2.3.1 Curves shall not reduce the width of the roadway.
5.2.3.2 Provisions shall be made for drainage, snowbanks, parking, utilities, and the like such that they do not impinge on the minimum clear width.
5.2.4 Where parking is permitted, such space shall be provided in accordance with Section 5.4.
5.2.5 Any roadway intersecting with another shall be sloped to prevent the accumulation of water and ice on either roadway.
5.2.6 At least 13 ft 6 in . (4.2 m) nominal vertical clearance shall be provided and maintained over the full width of the roadway.
5.2.7 Turns in roadways shall be constructed with a minimum radius of $60 \mathrm{ft}(18.2 \mathrm{~m})$ to the outside of the turn.
5.2.8 Median left-turn lanes and traffic signals shall be provided at intersections where necessary to prevent traffic from impeding fire department response time.
5.2.9 Where required by the AHJ , any traffic signal system shall have an automatic means for fire apparatus to control the signals to maintain an unimpeded right-of-way.
5.2.9.1 Sight distance shall be incorporated into the design of intersections.
5.2.10* Bridges and culverts shall be designed to accommodate a minimum of 100-year flood elevations and flows in accordance with accepted engineering practices.
5.2.11 Vehicle load limits shall be posted at both entrances to bridges where required by the AHJ .
5.2.12 Easements shall be obtained to permit vegetation clearance alongside roads to minimize the likelihood of evacuation routes being blocked during wildfire or other natural disasters.
5.2.13* Roadways shall not be designed and constructed to include speed bumps or speed humps.
5.2.14 Alternative traffic calming devices such as chicanes and roundabouts shall be acceptable with approval by the AHJ .
5.2.15 Roadway design shall incorporate provisions for emergency pull-offs, spaced according to the AHJ .

5.2.16 Grades.

5.2.16.1 Grades shall not be more than 10 percent, except as permitted by this section.

APPENDIX D
 Township of Severn's Official Plan Excerpts

Appendix E

Speed Limit Bylaw Excerpts

THE CORPORATION OF THE TOWNSHIP OF SEVERN

BY-LAW NO. 2021-75

BEING A BY-LAW TO AMEND BYOLAW NO. 2017-28 (Regulate Traffic \& Speed Limits on Highways)

WHEREAS the Council of the Corporation of the Township of Severn enacted By-law NO. 2017-28 to regulate traffic and speed limits on highways within the Corporation of the Township of Severn;

AND WHEREAS it is deemed expedient to amend By-law No. 2017-28 to reduce the speed limit on Carlyon Line from $80 \mathrm{~km} / \mathrm{hr}$ to $70 \mathrm{~km} / \mathrm{hr}$;

NOW THEREFORE THE COUNCIL OF THE CORPORATION OF THE TOWNSHIP OF

 SEVERN HEREBY ENACTS AS FOLLOWS:1. That By-law No. 2017-28 be and it is hereby amended by deleting Schedule "A" in its entirety and inserting Schedule "A" attached hereto and forming part of this By-law.
2. That this By-law shall come into force and effect on the date of passing thereof.

By-law read a first, second, third time and finally passed this $3^{\text {rd }}$ day of November, 2021.
CORPORATION OF THE TOWNSHIP OF SEVERN

MAYOR

CLERK

SCHEDULE "A" TO BY-LAW NO. 2021-75

Schedule "A" to By-law No. 2017-28, as amended
Speed of Vehicles

Highways			
Road Name	From	To	Speed Limit
Agnew Road	West Limit of South Sparrow Lake Road	West Limit of the Southbound Lane of Highway No. 11	$60 \mathrm{~km} / \mathrm{hr}$
Anderson Line	South Limit of County Road \#17 (Upper Big Chute Road)	200 Metres South of Donlands Court	$50 \mathrm{~km} / \mathrm{hr}$
Anderson Line	200 Metres South of Donlands Court	Foxmead Road	$60 \mathrm{~km} / \mathrm{hr}$
Antonio Court	North Limit of Brodie Drive	West Limit of Antonio Court	$40 \mathrm{~km} / \mathrm{hr}$
Avery Lane	East Limit of Town Line	West Limit of Hale Street	$50 \mathrm{~km} / \mathrm{hr}$
Baguley Road	East Limit of Saint. Amant Road	West Limit of Baguley Road	$40 \mathrm{~km} / \mathrm{hr}$.
Brennan Line	300 Metres North of Stockdale Road	732 Metres South of Stockdale Road	$50 \mathrm{~km} / \mathrm{hr}$
Brodie Drive	East Limit of Burnside Line	West Limit of Carlyon Line	$60 \mathrm{~km} / \mathrm{hr}$
Burnside Line	North Limit of Highway No. 11	North Limit of Birchcliffe Crescent	$60 \mathrm{~km} / \mathrm{hr}$
Cambrian Road	East Limit of Brennan Line	West Limit of Nichols Line	$60 \mathrm{~km} / \mathrm{hr}$
Canal Road	West Limit of Highway No. 11	East Limit of Cambrian Road	$50 \mathrm{~km} / \mathrm{hr}$
Carlyon Line	Division Road	Cambrian Road	70 km/hr
Centre Avenue	West Limit of Highway No. 11	North Limit of Telford Line	$50 \mathrm{~km} / \mathrm{hr}$
Coldwater Road	100 Metres South of Robinson Street	100 Metres North of Sturgeon Bay Road	$40 \mathrm{~km} / \mathrm{hr}$
Cumberland Road	East Limit of Bayou Road	West Limit of Highview Avenue	$40 \mathrm{~km} / \mathrm{hr}$
Cunningham Crescent	East Limit of Drinkwater Drive	West Limit of Wilson Point Road	$50 \mathrm{~km} / \mathrm{hr}$
Division Road East	East Limit of Burnside Line	West Limit of Telford Line	$60 \mathrm{~km} / \mathrm{hr}$
Division Road West	East Limit of Highway No. 12	East Limit of Martindale Crescent	$60 \mathrm{~km} / \mathrm{hr}$
Division Road West	West Limit of Wainman Line	30 Metres East of Uhthoff Line	$60 \mathrm{~km} / \mathrm{hr}$
Division Road West	East Limit of Martindale Crescent	West Limit of Wainman Line	$40 \mathrm{~km} / \mathrm{hr}$
Eastside Drive	East Limit of Soules Road	East Limit of Highway No. 11	$40 \mathrm{~km} / \mathrm{hr}$
Ellis road	West Limit of Pioneer Road	East Limit of Irish Line	$40 \mathrm{~km} / \mathrm{hr}$
Fairgrounds Road	East Limit of Highway No. 12	500 Meters North of Highway 12	$50 \mathrm{~km} / \mathrm{hr}$
Fairgrounds Road	500 Metres North of Highway 12	South Limit of Division Road	$60 \mathrm{~km} / \mathrm{hr}$
Forest Wood Drive	East Limit of Huronia Road	North End of Forest Wood Drive	$50 \mathrm{~km} / \mathrm{hr}$
Foxmead Road	West Limit of Town Line	500 Metres East on Foxmead Road	$50 \mathrm{~km} / \mathrm{hr}$
Foxmead Road	500 Metres from East Limit of Town Line	300 Metres West of Balkwill Line	$60 \mathrm{~km} / \mathrm{hr}$
Goldstein Road	East Limit of Highway No. 11	South Limit of Turnbull Drive	$50 \mathrm{~km} / \mathrm{hr}$

Highways (cont'd)

Road Name	From	To	Speed Limit
Gray Street	West Limit of Craddock Street	West Limit of Lot 55, Plan 1721 (51 Gray Street)	$40 \mathrm{~km} / \mathrm{hr}$
Hale Street	South Limit of Marchmont Road	Southerly Limit of Hale Street	$50 \mathrm{~km} / \mathrm{hr}$
Highview Avenue	East Limit of Highway No. 11	North Limit of Cumberland Road	$40 \mathrm{~km} / \mathrm{hr}$
Holcroft Road	Intersection of Forest Wood Avenue	South to Lake Couchiching	$50 \mathrm{~km} / \mathrm{hr}$
Hume Street	North Limit of Marchmont Road	Northerly Limit of Hume Street	$50 \mathrm{~km} / \mathrm{hr}$
Hurlwood Lane	West Limit of Burnside Line	West Limit of Hawk Ridge Crescent	$50 \mathrm{~km} / \mathrm{hr}$
Huronia Road	South Limit of Forest Wood Drive	City of Orillia Corporate Limits	$50 \mathrm{~km} / \mathrm{hr}$
Irish Line	South Limit of Lot 17, Concession 1	North Limit of Bridge over Black River	$40 \mathrm{~km} / \mathrm{hr}$
Irish Line	North Limit of County Road \#17 (Upper Big Chute Road)	South Limit of Oakley Sideroad	$60 \mathrm{~km} / \mathrm{hr}$
Jermey Road	East Limit of Burnside Line	East Limit of Jermey Road	$60 \mathrm{~km} / \mathrm{hr}$
Lakeside Drive	East Limit of Beachview Avenue	West Limit of Highview Avenue	$40 \mathrm{~km} / \mathrm{hr}$
Marchmont Road	East Limit of Town Line	150 Metres East of the Marchmont Bridge	$50 \mathrm{~km} / \mathrm{hr}$
Marchmont Road	150 Metres West of the Marchmont Bridge	West Limit of Wainman Line	$50 \mathrm{~km} / \mathrm{hr}$
Menoke Beach Road	South Limit of Ardtrea Drive	South Limit of Menoke Beach Road	$60 \mathrm{~km} / \mathrm{hr}$
Millwood Road	East Limit of Town Line	Southerly Limit of Hale Street	$50 \mathrm{~km} / \mathrm{hr}$
Mount Stephen Road	Upper Big Chute Road	Taylor Line	$60 \mathrm{~km} / \mathrm{hr}$
Muskoka Street	400 Feet North of Ramsay Street	South Limit of Coopers Falls Road (County Rd. \#52)	$50 \mathrm{~km} / \mathrm{hr}$
Narrows Road	East Limit of Saint Amant Road	West Limit of Saint Amant Road	$60 \mathrm{~km} / \mathrm{hr}$.
Nichols Line	West Limit of Highway No. 11	North Limit of Nichols Line	$60 \mathrm{~km} / \mathrm{hr}$
Peninsula Point Road	East Limit of South Sparrow Lake Road	North Limit of Bennett Avenue	$50 \mathrm{~km} / \mathrm{hr}$
Peninsula Point Road	North Limit of Bennett Avenue	North Limit of Peninsula Point Road	$40 \mathrm{~km} / \mathrm{hr}$
Port Stanton Parkway	Port Stanton Dock	Wild Echo Lodge Lane	$20 \mathrm{~km} / \mathrm{hr}$
Quarry Road	East Limit of Highway No. 400	500 Metres Easterly	$40 \mathrm{~km} / \mathrm{hr}$
Quarry Road	North Limit of North River Drive	North Limit of Upper Big Chute Road	$50 \mathrm{~km} / \mathrm{hr}$
Reservoir Road	South Entrance of Highway 400	Westerly Limit of Reservoir Road	$50 \mathrm{~km} / \mathrm{hr}$
Riverdale Drive	South Limit of Coopers Falls Road	End of Riverdale Drive	$50 \mathrm{~km} / \mathrm{hr}$
Riverwood Lane	South Limit of Marchmont Road	West Limit of Wainman Line	$50 \mathrm{~km} / \mathrm{hr}$
Russell Drive	North Limit of Narrows Road	North Limit of Russell Drive	$40 \mathrm{~km} / \mathrm{hr}$.
Shoreview Drive	East Limit of Highway No. 11	Southerly Limit of Anchor Drive	$40 \mathrm{~km} / \mathrm{hr}$
Silk Line	South Limit of Upper Big Chute Road	Lot Line Between Lots 5 \& 6	$50 \mathrm{~km} / \mathrm{hr}$
Silk Line	Lot Line Between Lots 5 \& 6	Lot Line Between Lots 4 \& 5	$25 \mathrm{~km} / \mathrm{hr}$.
South Sparrow Lake Road	West Limit of Highway No. 11	Intersection of Torpitt Road	$60 \mathrm{~km} / \mathrm{hr}$

Schedule "A" to By-law No. 2017-28, as amended (cont'd)

Road Name	From	To	Speed Limit
Stockdale Road	West Limit of New Brailey Line	East Limit of Telford Line	$60 \mathrm{~km} / \mathrm{hr}$
Taylor Line	Mount Stephen Road	Upper Big Chute Road	$60 \mathrm{~km} / \mathrm{hr}$
Thomson Crescent	South Boundary at Big Chief Road	North Boundary at Weald Way	$40 \mathrm{~km} / \mathrm{hr}$
Torpitt Road	North Limit of South Sparrow Lake Road	North Limit of Torpitt Road	$60 \mathrm{~km} / \mathrm{hr}$
Town Line	Southerly Boundary of Lot 15	Northerly Boundary of Lot 16	$60 \mathrm{~km} / \mathrm{hr}$
Town Line	East Limit of Highway No. 12	South Limit of Warminster Road	$50 \mathrm{~km} / \mathrm{hr}$
Treeline Drive	South Limit of Shoreview Drive	Southerly Limit of Treeline Drive	$40 \mathrm{~km} / \mathrm{hr}$
Turnbull Drive	East Limit of Grayshott Drive	500 Feet Easterly on Turnbull Drive	$50 \mathrm{~km} / \mathrm{hr}$
Uhthoff Line	City of Orillia Corporate Limits	. 5 Kilometres Northerly	$60 \mathrm{~km} / \mathrm{hr}$
Wainman Line	15 Metres North of Highway No. 12	300 Metres South of Marchmont Road	$60 \mathrm{~km} / \mathrm{hr}$
Weald Way	South Limit at Thomson Crescent	North Limit at Thomson Crescent	$40 \mathrm{~km} / \mathrm{hr}$
Wilson Point Road North	North Limit of Cunningham Crescent	Most Northerly Limit of Wilson Point Road North	$60 \mathrm{~km} / \mathrm{hr}$

Bridges

Bridge Name	From	To	Speed Limit
Marchmont Bridge	150 Metres West	150 Metres East	$40 \mathrm{~km} / \mathrm{hr}$
Woodrow Bridge	150 Metres West	Highway 12	$40 \mathrm{~km} / \mathrm{hr}$

APPENDIX F
 Traffic Data

Start Time	N Approach SOULES RD						E Approach CAMPBELL RD						S Approach SOULES RD						SE Approach DRIVEWAY						Int. Total (15 min)	$\underset{(1 \mathrm{hr})}{\substack{\text { Int. Total }}}$
	$\begin{aligned} & \text { Thru } \\ & \text { v:S } \end{aligned}$	$\begin{gathered} \text { Bear Left } \\ \mathrm{N}: S \mathrm{SE} \end{gathered}$	$\begin{aligned} & \text { Left } \\ & N: E \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \mathrm{N}: \mathrm{N} \end{aligned}$	Peds	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { R:N } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{E}: \mathrm{S} \end{aligned}$	Hard Left E:SE	$\underset{\text { UTurn }}{\substack{\text { UT: }}}$	Peds E:	Approach Total	$\begin{aligned} & \text { Hard Right } \\ & \text { S:SE } \end{aligned}$	$\begin{aligned} & \text { Right } \\ & \text { S:E } \end{aligned}$	$\underset{\text { Thru }}{\text { TiN }}$	$\begin{aligned} & \text { UTurn } \\ & \text { S:S } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	Hard Right SE:E	$\begin{aligned} & \text { Bear Right } \\ & \text { SE:N } \end{aligned}$	Hard Left SE:S	UTurn SE:SE	$\begin{aligned} & \text { Peds } \\ & \text { SE: } \end{aligned}$	Approach Total		
06:00:00	6	0	1	0	0	7	0	7	0	0	0	7	0	1	4	0	0	5	0	0	0	0	0	0	19	
06:15:00	7	0	3	0	0	10	0	7	0	0	0	7	0	2	4	0	0	6	0	0	0	0	0	0	23	
06:30:00	8	0	2	0	0	10	0	5	0	0	0	5	0	1	10	0	0	11	0	0	0	0	0	0	26	
06:45:00	10	0	0	0	0	10	0	7	0	0	0	7	0	1	9	0	0	10	0	0	0	0	0	0	27	95
07:00:00	4	0	1	0	0	5	0	3	0	0	0	3	0	2	14	0	0	16	0	0	0	0	1	0	24	100
07:15:00	9	0	2	0	0	11	0	2	0	0	0	2	0	1	21	0	0	22	0	0	0	0	0	0	35	112
07:30:00	6	0	0	0	0	6	0	10	0	0	0	10	0	2	6	0	0	8	0	0	1	0	0	1	25	111
07:45:00	15	0	0	0	0	15	0	10	0	0	0	10	0	2	18	0	0	20	0	0	0	0	0	0	45	129
08:00:00	5	0	0	0	0	5	0	8	0	0	0	8	0	3	12	0	0	15	0	0	0	0	0	0	28	${ }^{133}$
08:15:00	10	0	0	0	0	10	0	10	0	0	0	10	0	1	16	0	0	17	0	0	0	0	0	0	37	135
08:30:00	10	0	1	0	0	11	1	9	0	0	0	10	0	2	14	0	0	16	0	0	0	0	0	0	37	147
08:45:00	10	0	3	0	0	13	0	4	0	0	0	4	0	4	14	0	0	18	0	0	0	0	1	0	35	137
09:00:00	5	0	1	0	0	6	1	3	0	0	0	4	0	2	12	0	0	14	0	0	0	0	0	0	24	${ }^{133}$
09:15:00	12	0	1	0	0	13	0	3	0	0	0	3	0	0	7	0	0	7	0	0	0	0	0	0	${ }^{23}$	119
09:30:00	12	0	1	0	0	13	0	12	0	0	0	12	0	4	9	0	0	13	0	0	0	0	0	0	38	120
09:45:00	11	0	3	0	0	14	0	8	0	0	0	8	0	1	11	0	0	12	0	0	0	0	0	0	34	119
"'ВВREAK ${ }^{+\prime \prime}$																										
15:00:00	13	0	2	0	0	15	0	6	0	0	0	6	0	2	13	0	0	15	0	0	0	0	0	0	36	
15:15:00	${ }^{13}$	0	4	0	0	17	1	6	0	0	0	7	0	6	12	0	0	18	0	0	0	0	2	0	42	
15:30:00	21	0	2	0	0	${ }^{23}$	0	4	0	0	0	4	0	5	15	0	0	20	0	0	0	0	0	0	47	
15:45:00	21	0	4	0	0	25	0	6	0	0	0	6	0	4	17	0	0	21	0	0	0	0	0	0	52	177
16:00:00	20	0	3	0	0	${ }^{23}$	0	4	0	0	0	4	0	3	21	0	0	24	0	0	0	0	2	0	51	192
16:15:00	29	2	0	0	0	31	3	6	0	0	0	9	0	3	18	0	0	21	0	0	1	0	0	1	62	212
16:30:00	${ }^{23}$	0	2	0	0	25	0	10	0	0	0	10	0	2	16	0	0	18	0	0	0	0	0	0	53	218
16:45:00	22	0	2	0	0	24	0	4	0	0	1	4	0	2	${ }^{24}$	0	0	26	0	0	0	0	1	0	54	220
17:00:00	15	0	6	0	0	21	0	6	0	0	0	6	0	2	16	0	0	18	0	0	0	0	0	0	45	214
17:15:00	27	0	3	0	0	30	1	11	0	0	0	12	0	3	${ }^{13}$	0	0	16	0	0	0	0	0	0	58	210
17:30:00	11	0	1	0	0	12	0	3	0	0	0	3	0	5	13	0	0	18	0	0	0	0	0	0	${ }^{3}$	190
17:45:00	12	0	0	0	0	12	0	12	0	0	0	12	0	5	11	0	0	16	0	0	0	0	0	0	40	176
18:00:00	18	1	1	0	0	20	0	3	0	0	0	3	0	3	8	0	0	11	0	0	0	0	0	0	34	165
18:15:00	15	0	0	0	0	15	0	5	0	0	0	5	0	1	8	0	0	9	0	0	0	0	0	0	29	136
18:30:00	9	0	1	0	0	10	0	4	0	0	0	4	0	1	9	0	0	10	0	0	0	0	0	0	24	127
18:45:00	9	0	0	0	0	9	0	4	0	0	0	4	0	0	4	0	0	4	0	0	0	0	0	0	17	104
Grand Total	418	3	50	0	0	471	7	202	0	0	1	209	0	76	399	0	0	475	0	0	2	0	7	2	1157	-
Approach\%	88.7\%	0.6\%	10.6\%	0\%		-	3.3\%	96.7\%	0\%	0\%		-	0\%	16\%	84\%	0\%		-	0\%	0\%	100\%	0\%		-	-	-
Totals \%	36.1\%	0.3\%	4.3\%	0\%		40.7\%	0.6\%	17.5\%	0\%	0\%		18.1\%	0\%	6.6\%	34.5\%	0\%		41.1\%	0\%	0\%	0.2\%	0\%		0.2\%	\cdot	-
Heavy	27	0	2	0		-	0	9	0	0		-	0	7	30	0		-	0	0	0	0		-	-	-
Heavy \%	6.5\%	0\%	4\%	0\%		-	0\%	4.5\%	0\%	0\%		-	0\%	9.2\%	7.5\%	0\%		-	0\%	0\%	0\%	0\%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	\cdot	-
Bicycle \%	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Peak Hour: 07:45 AM-08:45 AM Weather: Overcast Clouds ($0.5{ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach SOULES RD						E Approach CAMPBELL RD						S Approach SOULES RD						SE Approach DRIVEWAY						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$
	Thru	Bear Left	Left	UTurn	Peds	Approach Total	Right	Left	Hard Left	UTurn	Peds	Approach Total	Hard Right	Right	Thru	UTurn	Peds	Approach Total	Hard Right	Bear Right	Hard Left	UTurn	Peds	Approach Total	
07:45:00	15	0	0	0	0	15	0	10	0	0	0	10	0	2	18	0	0	20	0	0	0	0	0	0	45
08:00:00	5	0	0	0	0	5	0	8	0	0	0	8	0	3	12	0	0	15	0	0	0	0	0	0	28
08:15:00	10	0	0	0	0	10	0	10	0	0	0	10	0	1	16	0	0	17	0	0	0	0	0	0	37
08:30:00	10	0	1	0	0	11	1	9	0	0	0	10	0	2	14	0	0	16	0	0	0	0	0	0	37
Grand Total	40	0	1	0	0	41	1	37	0	0	0	38	0	8	60	0	0	68	0	0	0	0	0	0	147
Apprach\%	97.6\%	0\%	2.4\%	0\%		-	2.6\%	97.4\%	0\%	0\%		-	0\%	11.8\%	88.2\%	0\%		-	0\%	0\%	0\%	0\%		-	-
Totals \%	27.2\%	0\%	0.7\%	0\%		27.9\%	0.7\%	25.2\%	0\%	0\%		25.9\%	0\%	5.4\%	40.8\%	0\%		46.3\%	0\%	0\%	0\%	0\%		0\%	-
PHF	0.67	0	0.25	0		0.68	0.25	0.93	0	0		0.95	0	0.67	0.83	0		0.85	0	0	0	0		0	-
Heavy	5	0	0	0		5	0	2	0	0		2	0	2	${ }^{-}$	0		5	0	${ }_{0}$	0	0		0	-
Heavy \%	12.5\%	0\%	0\%	0\%		12.2\%	0\%	5.4\%	0\%	0\%		5.3\%	0\%	25\%	5\%	0\%		7.4\%	0\%	0\%	0\%	0\%		0\%	.
Lights	35	0	1	0		36	1	35	0	0		36	0	6	57	0		63	0	0	${ }^{-}$	\bigcirc		0	-
Lights \%	87.5\%	0\%	100\%	0\%		87.8\%	100\%	94.6\%	0\%	0\%		94.7\%	0\%	75\%	95\%	0\%		92.6\%	0\%	0\%	0\%	0\%		0\%	-
Single-Unit Trucks	3	0	0	0		3	0	1	0	0		1	0	0	3	0		3	0	0	0	0		0	-
Single-Unit Trucks \%	7.5\%	0\%	0\%	0\%		7.3\%	0\%	2.7\%	0\%	0\%		2.6\%	0\%	0\%	5\%	0\%		4.4\%	0\%	0\%	0\%	0\%		0\%	-
Buses	1	0	0	0		1	0	1	0	0		1	0	2	0	0		2	0	0	0	0		0	\cdot
Buses \%	2.5\%	0\%	0\%	0\%		2.4\%	0\%	2.7\%	0\%	0\%		2.6\%	0\%	25\%	0\%	0\%		2.9\%	0\%	0\%	0\%	0\%		0\%	-
Ariculated Trucks	1	0	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks \%	2.5\%	0\%	0\%	0\%		2.4\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	.	0\%		.				0\%		-	-	.		0\%		0\%		.

Peak Hour: 04:00 PM - 05:00 PM Weather: Overcast Clouds (2																									
Start Time	N Approach SOULES RD						E Approach CAMPBELL RD						S Approach SOULES RD						SE Approach DRIVEWAY						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$
	Thru	Bear Left	Left	UTurn	Peds	Approach Total	Right	Left	Hard Left	UTurn	Peds	Approach Total	Hard Right	Right	Thru	UTum	Peds	Approach Total	Hard Right	Bear Right	Hard Left	UTurn	Peds	Approach Total	
16:00:00	20	0	3	0	0	${ }^{23}$	0	4	0	0	0	4	0	3	21	0	0	24	0	0	0	0	2	0	51
16:15:00	29	2	0	0	0	31	3	6	0	0	0	9	0	3	18	0	0	21	0	0	1	0	0	1	62
16:30:00	${ }^{23}$	0	2	0	0	25	0	10	0	0	0	10	0	2	16	0	0	18	0	0	0	0	0	0	53
16:45:00	22	0	2	0	0	24	0	4	0	0	1	4	0	2	24	0	0	26	0	0	0	0	1	0	54
Grand Total	94	2	7	0	0	103	3	24	0	0	1	27	0	10	79	0	0	89	0	0	1	0	3	1	220
Approach\%	91.3\%	1.9\%	6.8\%	0\%		\cdot	11.1\%	88.9\%	0\%	0\%		-	0\%	11.2\%	88.8\%	0\%		-	0\%	0\%	100\%	0\%		-	-
Totals \%	42.7\%	0.9\%	3.2\%	0\%		46.8\%	1.4\%	10.9\%	0\%	0\%		12.3\%	0\%	4.5\%	35.9\%	0\%		40.5\%	0\%	0\%	0.5\%	0\%		0.5\%	-
PHF	0.81	0.25	0.58	0		0.83	0.25	0.6	0	0		0.68	0	0.83	0.82	0		0.86	0	0	0.25	0		0.25	-
Heavy	1	0	0	${ }_{0}$		1	0	0	0	0		0	0	1	4	0		5	0	0	0	${ }^{-}$		0	-
Heavy \%	1.1\%	0\%	0\%	0\%		1\%	0\%	0\%	0\%	0\%		0\%	0\%	10\%	5.1\%	0\%		5.6\%	0\%	0\%	0\%	0\%		0\%	-
Lights	${ }_{93}$	2	7	${ }^{-}$		102	${ }^{-1}$	24	0	0		${ }_{27}$	0	${ }_{9}$	75	0		84	0	0	1	0		1	-
Lights \%	98.9\%	100\%	100\%	0\%		99\%	100\%	100\%	0\%	0\%		100\%	0\%	90\%	94.9\%	0\%		94.4\%	0\%	0\%	100\%	0\%		100\%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	-
Buses	1	0	0	0		1	0	0	0	0		0	0	1	2	0		3	0	0	0	0		0	-
Buses \%	1.1\%	0\%	0\%	0\%		1\%	0\%	0\%	0\%	0\%		0\%	0\%	10\%	2.5\%	0\%		3.4\%	0\%	0\%	0\%	0\%		0\%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	2	0		2	0	0	0	0		0	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	2.5\%	0\%		2.2\%	0\%	0\%	0\%	0\%		0\%	-
Pedestrians	-	,	-	-	0	-	\%	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	3	-	\cdot
Pedestrians\%	-	-	-	-	0\%		-	.	-	-	25\%		.	.	-	.	0\%		-	.	.	-	75\%		

Start Time	N Approach EApproach TELFORD LINE CENTRE AVE												SApproach W Approach TELLFORD LINE CENTRE AVE												$\begin{aligned} & \text { Itt. Total } \\ & \text { (15 in } \end{aligned}$	$\begin{gathered} \text { Int. Total } \\ (1 \mathrm{hr}) \end{gathered}$
	$\begin{aligned} & \text { Right } \\ & \mathrm{N}: \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \mathrm{N}: \mathrm{S} \end{aligned}$	$\begin{aligned} & \stackrel{\text { Left }}{ } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \mathrm{N}: \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \mathrm{N}: \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { E:N } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { T:W } \end{aligned}$	$\begin{gathered} \text { Left } \\ E: S \end{gathered}$	UTurn E:E	Peds E:	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { S:E } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { S: } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{S}: W \end{aligned}$	$\underset{\mathrm{S}: \mathrm{S}}{\substack{\text { UTurn }}}$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { W:S } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { W:E } \end{aligned}$	Left W:N	$\begin{aligned} & \text { UTurn } \\ & \text { W:W } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { M. } \end{aligned}$	Approach Total		
06:00:00	1	3	0	0	0	4	0	0	0	0	0	0	0	0	2	0	0	2	12	0	1	0	0	13	19	
06:15:00	0	1	0	0	0	1	0	1	0	0	0	1	0	0	6	0	0	6	16	0	1	0	0	17	25	
06:30:00	1	4	0	0	0	5	0	0	1	0	0	1	0	1	4	1	0	6	17	0	0	0	0	17	29	
06:45:00	2	4	0	0	0	6	0	1	0	0	0	1	0	0	1	0	0	1	15	0	5	0	0	20	28	101
07:00:00	1	3	0	0	0	4	0	0	0	0	1	0	0	1	6	0	0	7	7	0	3	0	0	10	21	103
07:15:00	2	5	0	0	0	7	0	0	0	0	0	0	0	1	7	0	0	8	12	0	2	0	0	14	29	107
07:30:00	1	6	0	0	0	7	0	0	0	0	0	0	0	0	10	0	0	10	16	0	2	0	0	18	35	113
07:45:00	0	5	0	0	0	5	0	0	1	0	0	1	0	1	8	0	0	9	${ }^{23}$	0	5	0	0	${ }^{28}$	43	128
08:00:00	3	6	0	0	0	9	0	0	0	0	0	0	0	1	10	0	0	11	19	1	2	0	0	22	42	149
08:15:00	2	7	0	0	0	9	0	1	0	0	0	1	0	1	9	0	0	10	22	0	2	0	0	24	44	164
08:30:00	1	6	0	0	0	7	0	0	1	0	3	1	0	0	8	0	0	8	21	0	5	0	0	26	42	171
08:45:00	3	6	0	0	0	9	0	1	0	0	0	1	0	1	8	0	0	9	9	0	7	0	0	16	35	163
09:00:00	1	2	0	0	0	3	0	2	0	0	0	2	0	1	10	0	0	11	7	0	3	0	0	10	26	147
09:15:00	0	3	0	0	0	3	1	1	0	0	0	2	1	1	5	1	0	8	13	0	6	0	0	19	32	135
09:30:00	1	5	1	0	0	7	1	0	0	0	0	1	1	0	11	0	0	12	18	0	7	0	0	25	45	138
09:45:00	2	3	0	0	0	5	0	0	1	0	0	1	0	0	5	0	0	5	22	0	4	0	0	${ }^{26}$	${ }^{37}$	140
*-'BrEAK***																										
15:00:00	2	3	0	0	0	5	1	0	0	0	0	1	0	1	11	0	0	12	17	0	6	0	0	${ }^{23}$	41	
15:15:00	1	4	0	0	0	5	0	1	0	0	0	1	1	2	9	0	0	12	14	0	11	0	1	25	43	
15:30:00	1	0	0	0	0	1	0	0	0	0	1	0	1	2	16	0	0	19	12	1	12	0	0	25	45	
15:45:00	4	5	1	0	0	10	0	2	0	0	8	2	0	2	12	0	0	14	17	1	15	0	0	33	59	188
16:00:00	1	3	0	0	0	4	0	0	0	0	0	0	0	0	14	0	0	14	15	1	10	0	0	26	44	191
16:15:00	2	4	0	0	0	6	1	1	3	0	0	5	0	1	${ }^{13}$	0	0	14	15	0	15	0	0	30	55	203
16:30:00	2	6	1	0	0	9	1	0	0	0	0	1	1	2	${ }^{13}$	0	0	16	${ }^{13}$	0	15	1	0	29	55	213
16:45:00	2	2	0	0	0	4	0	0	0	0	0	0	0	2	16	0	0	18	18	2	13	0	0	33	55	209
17:00:00	1	9	0	0	0	10	0	1	0	0	0	1	0	2	3	0	0	5	7	1	13	0	0	21	37	202
17:15:00	1	4	0	0	0	5	0	0	0	0	0	0	0	3	13	0	0	16	17	0	14	0	0	31	52	199
17:30:00	3	5	0	0	0	8	0	0	0	0	0	0	0	1	14	0	0	15	7	0	10	0	0	17	40	184
17:45:00	0	6	0	0	0	6	0	1	0	0	0	1	0	0	9	0	0	9	16	1	5	0	0	22	38	167
18:00:00	1	2	0	0	0	3	0	1	0	0	0	1	0	0	6	0	0	6	9	1	9	0	0	19	29	159
18:15:00	1	3	1	0	0	5	0	1	0	0	0	1	0	0	3	0	0	3	7	0	10	0	0	17	26	133
18:30:00	0	1	0	0	0	1	1	0	0	0	0	1	0	0	5	0	0	5	6	0	5	0	0	11	18	111
18:45:00	1	3	1	0	0	5	0	0	0	0	0	0	0	0	6	0	0	6	9	0	6	0	0	15	26	99
Grand Total	44	129	5	0	0	178	6	15	7	0	13	28	5	27	${ }^{273}$	2	0	307	448	9	224	1	1	682	1195	-
Approach\%	24.7\%	72.5\%	2.8\%	0\%		-	21.4\%	53.6\%	25\%	0\%		-	1.6\%	8.8\%	88.9\%	0.7\%		-	65.7\%	1.3\%	32.8\%	0.1\%		-	-	-
Totals \%	3.7\%	10.8\%	0.4\%	0\%		14.9\%	0.5\%	1.3\%	0.6\%	0\%		2.3\%	0.4\%	2.3\%	22.8\%	0.2\%		25.7\%	37.5\%	0.8\%	18.7\%	0.1\%		57.1\%	.	-
Heavy	3	4	0	0		-	0	0	0	0		-	0	4	20	2		-	21	0	11	0		-	-	\cdot
Heavy \%	6.8\%	3.1\%	0\%	0\%		-	0\%	0\%	0\%	0\%		-	0\%	14.8\%	7.3\%	100\%		-	4.7\%	0\%	4.9\%	0\%		-	-	\cdot
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle \%	-	-	-	-		\cdot	-	\cdot	-	-		\cdot	-	-	-	-		-	-	-	-	-		-	\cdot	-

Peak Hour: 07:45 AM-08:45 AM Weather: Overcast Clouds ($0.5{ }^{\circ} \mathrm{C}$)																									
Start Time	N ApproachTELFORD LINE						E Approach CENTRE AVE						S Approach TELFORD LINE						w Approach CENTRE AVE						Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTum	Peds	Approach Total	
07:45:00	0	5	0	0	0	5	0	0	1	0	0	1	0	1	8	0	0	9	${ }^{23}$	0	5	0	0	28	43
08:00:00	3	6	0	0	0	9	0	0	0	0	0	0	0	1	10	0	0	11	19	1	2	0	0	22	42
08:15:00	2	7	0	0	0	9	0	1	0	0	0	1	0	1	9	0	0	10	22	0	2	0	0	24	44
08:30:00	1	6	0	0	0	7	0	0	1	0	3	1	0	0	8	0	0	8	${ }^{21}$	0	5	0	0	26	42
Grand Total	6	24	0	0	0	30	0	1	2	0	3	3	0	3	35	0	0	38	85	1	14	0	0	100	171
Approach\%	20\%	80\%	0\%	0\%		-	0\%	33.3\%	66.7\%	0\%		-	0\%	7.9\%	92.1\%	0\%		-	85\%	1\%	14\%	0\%		-	-
Totals \%	3.5\%	14\%	0\%	0\%		17.5\%	0\%	0.6\%	1.2\%	0\%		1.8\%	0\%	1.8\%	20.5\%	0\%		22.2\%	49.7\%	0.6\%	8.2\%	0\%		58.5\%	-
PHF	0.5	0.86	0	0		0.83	0	0.25	0.5	0		0.75	0	0.75	0.88	0		0.86	0.92	0.25	0.7	0		0.89	.
Heavy	0	0	0	0		0	0	0	0	0		0	0	1	4	0		5	5	${ }_{0}$	2	0		7	-
Heavy \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	33.3\%	11.4\%	0\%		13.2\%	5.9\%	0\%	14.3\%	0\%		7\%	-
Lights	6	${ }^{-64}$	${ }_{0}$	${ }_{0}$		30	${ }^{-}$	${ }_{1}$	2	0		${ }_{3}$	0	2	31	${ }_{0}$		${ }_{33}$	80	1	${ }_{12}^{-7}$	${ }_{0}$		${ }_{93}$	-
Lights \%	100\%	100\%	0\%	0\%		100\%	0\%	100\%	100\%	0\%		100\%	0\%	66.7\%	88.6\%	0\%		86.8\%	94.1\%	100\%	85.7\%	0\%		93\%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	2	0		2	2	0	0	0		2	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	5.7\%	0\%		5.3\%	2.4\%	0\%	0\%	0\%		2\%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	1	1	0		2	2	0	2	0		4	-
Buses \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	33.3\%	2.9\%	0\%		5.3\%	2.4\%	0\%	14.3\%	0\%		4\%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	1	0		1	1	0	0	0		1	
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	2.9\%	0\%		2.6\%	1.2\%	0\%	0\%	0\%		1\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	3	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	-	0\%		-	-	-	-	100\%		-	-	-	-	0\%		-	-	-	-	0\%		-

Peak Hour: 03:45 PM - 04:45 PM Weather: Overcast Clouds ($2.74{ }^{\circ} \mathrm{C}$)																									
Start Time	N ApproachTELFORD LINE						E Approach CENTRE AVE						S Approach TELFORD LINE						W Approach CENTRE AVE						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:45:00	4	5	1	0	0	10	0	2	0	0	8	2	0	2	12	0	0	14	17	1	15	0	0	33	59
16:00:00	1	3	0	0	0	4	0	0	0	0	0	0	0	0	14	0	0	14	15	1	10	0	0	26	44
16:15:00	2	4	0	0	0	6	1	1	3	0	0	5	0	1	13	0	0	14	15	0	15	0	0	30	55
16:30:00	2	6	1	0	0	9	1	0	0	0	0	1	1	2	13	0	0	16	13	0	15	1	0	29	55
Grand Total	9	18	2	0	0	29	2	3	3	0	8	8	1	5	52	0	0	58	60	2	55	1	0	118	213
Approach\%	31\%	62.1\%	6.9\%	0\%		-	25\%	37.5\%	37.5\%	0\%		-	1.7\%	8.6\%	89.7\%	0\%		-	50.8\%	1.7\%	46.6\%	0.8\%		-	-
Totals \%	4.2\%	8.5\%	0.9\%	0\%		13.6\%	0.9\%	1.4\%	1.4\%	0\%		3.8\%	0.5\%	2.3\%	24.4\%	0\%		27.2\%	28.2\%	0.9\%	25.8\%	0.5\%		55.4\%	-
PHF	0.56	0.75	0.5	0		0.73	0.5	0.38	0.25	0		0.4	0.25	0.63	0.93	0		0.91	0.88	0.5	0.92	0.25		0.89	.
Heavy	2	1	0	0		${ }^{-}$	0	0	${ }_{0}$	0		${ }_{0}$	${ }_{0}$	1	5	0		${ }_{6}{ }^{-1}$	${ }_{3}^{-8}$	0	4	0_{0}^{-7}		7	-
Heavy \%	22.2\%	5.6\%	0\%	0\%		10.3\%	0\%	0\%	0\%	0\%		0\%	0\%	20\%	9.6\%	0\%		10.3\%	5\%	0\%	7.3\%	0\%		5.9\%	-
Lights	7	17	2	${ }_{0}$		26	2	${ }_{3}$	${ }_{3}$	0		8	${ }_{1}$	4	47	${ }_{0}$		52	57	2	51	1		111	-
Lights \%	77.8\%	94.4\%	100\%	0\%		89.7\%	100\%	100\%	100\%	0\%		100\%	100\%	80\%	90.4\%	0\%		89.7\%	95\%	100\%	92.7\%	100\%		94.1\%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	1	0		1	2	0	1	0		3	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	1.9\%	0\%		1.7\%	3.3\%	0\%	1.8\%	0\%		2.5\%	-
Buses	2	1	0	0		3	0	0	0	0		0	0	1	3	0		4	0	0	3	0		3	\cdot
Buses \%	22.2\%	5.6\%	0\%	0\%		10.3\%	0\%	0\%	0\%	0\%		0\%	0\%	20\%	5.8\%	0\%		6.9\%	0\%	0\%	5.5\%	0\%		2.5\%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	1	0		1	1	0	0	0		1	\cdot
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	1.9\%	0\%		1.7\%	1.7\%	0\%	0\%	0\%		0.8\%	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	8	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Pedestrians\%	-	-		-	0\%		-	-	-	-	100\%		-	\cdot	\cdot	-	0\%		-	-	-	-	0\%		.

Peak Hour: 03:45 PM - 04:45 PM
Weather: Overcast Clouds ($2.74{ }^{\circ} \mathrm{C}$)

Turning Movement Count (2 . MENOKE BEACH RD \& ARDTREA DR)

Start Time	N Approach MENOKE BEACH RD					S Approach MENOKE BEACH RD					W Approach ARDTREA DR					Int. Total (15 min)	Int. Total (1 hr)
	Right $\mathrm{N}: \mathrm{W}$	$\begin{aligned} & \text { Thru } \\ & \mathrm{N}: \mathrm{S} \end{aligned}$	UTurn $\mathrm{N}: \mathrm{N}$	Peds N :	Approach Total	$\begin{aligned} & \text { Thru } \\ & \text { S:N } \end{aligned}$	Left s:W	$\begin{aligned} & \text { UTurn } \\ & \mathrm{S}: \mathrm{S} \end{aligned}$	$\begin{gathered} \text { Peds } \\ \text { S: } \end{gathered}$	Approach Total	Right W:S	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	1	1	0	0	2	2	6	0	0	8	1	0	0	0	1	11	
06:15:00	0	0	0	0	0	1	3	0	0	4	0	0	0	0	0	4	
06:30:00	0	4	0	0	4	1	7	0	0	8	0	0	0	0	0	12	
06:45:00	0	3	0	0	3	1	3	0	0	4	0	0	0	0	0	7	34
07:00:00	0	0	0	0	0	5	3	0	0	8	1	0	0	0	1	9	32
07:15:00	0	2	0	0	2	1	1	0	0	2	1	0	0	0	1	5	33
07:30:00	2	0	0	0	2	4	6	0	0	10	0	0	0	0	0	12	33
07:45:00	0	3	0	0	3	3	6	0	0	9	1	0	0	0	1	13	39
08:00:00	0	2	0	0	2	3	4	0	0	7	1	0	0	0	1	10	40
08:15:00	0	4	0	0	4	2	8	0	0	10	0	0	0	0	0	14	49
08:30:00	0	2	0	0	2	0	5	0	0	5	3	1	0	2	4	11	48
08:45:00	0	5	0	0	5	4	2	0	0	6	3	0	0	0	3	14	49
09:00:00	0	6	0	0	6	2	3	1	0	6	1	1	0	0	2	14	53
09:15:00	0	3	0	0	3	3	3	0	0	6	0	0	0	0	0	9	48
09:30:00	0	3	0	0	3	3	10	0	0	13	2	3	0	0	5	21	58
09:45:00	2	1	0	0	3	3	4	0	0	7	1	0	0	0	1	11	55

15:00:00	0	4	0	0	4	2	2	0	0	4	0	0	0	0	0	8	
15:15:00	0	7	0	0	7	3	4	0	0	7	0	0	0	0	0	14	
15:30:00	0	2	0	0	2	1	4	0	0	5	5	0	0	0	5	12	
15:45:00	1	5	0	0	6	3	2	0	0	5	2	0	0	0	2	13	47
16:00:00	0	10	0	0	10	1	2	0	0	3	3	1	0	1	4	17	56
16:15:00	0	9	0	0	9	2	2	0	0	4	1	0	0	0	1	14	56
16:30:00	3	6	0	0	9	0	3	0	0	3	1	1	0	0	2	14	58
16:45:00	1	8	0	0	9	1	2	0	0	3	2	0	0	0	2	14	59
17:00:00	0	12	0	0	12	3	2	0	0	5	1	0	0	0	1	18	60
17:15:00	0	6	0	0	6	0	3	0	0	3	1	1	0	0	2	11	57
17:30:00	0	10	0	0	10	5	4	0	0	9	3	2	0	0	5	24	67
17:45:00	2	6	0	0	8	1	4	0	0	5	3	0	0	0	3	16	69
18:00:00	1	4	0	0	5	0	1	0	0	1	2	1	0	0	3	9	60
18:15:00	0	1	0	0	1	2	5	0	0	7	0	0	0	0	0	8	57
18:30:00	1	3	0	0	4	1	2	0	0	3	1	0	0	0	1	8	41
18:45:00	0	4	0	0	4	0	1	0	0	1	0	0	0	0	0	5	30

Grand Total	14	136	0	0	150	63	117	1	0	181	40	11	0	3	51	382	-
Approach\%	9.3\%	90.7\%	0\%		-	34.8\%	64.6\%	0.6\%		-	78.4\%	21.6\%	0\%		-	-	-
Totals \%	3.7\%	35.6\%	0\%		39.3\%	16.5\%	30.6\%	0.3\%		47.4\%	10.5\%	2.9\%	0\%		13.4\%	-	-
Heavy	2	8	0		-	8	4	0		-	4	0	0		-	-	-
Heavy \%	14.3\%	5.9\%	0\%		-	12.7\%	3.4%	0\%		-	10\%	0\%	0\%		-	-	-

Bicycles
Bicycle \%

Peak Hour: 08:45 AM-09:45 AM Weather: Overcast Clouds (0.5 ${ }^{\circ} \mathrm{C}$)																
Start Time	N Approach MENOKE BEACH RD					S Approach MENOKE BEACH RD					W Approach ARDTREA DR					Int. Total (15 min)
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	
08:45:00	0	5	0	0	5	4	2	0	0	6	3	0	0	0	3	14
09:00:00	0	6	0	0	6	2	3	1	0	6	1	1	0	0	2	14
09:15:00	0	3	0	0	3	3	3	0	0	6	0	0	0	0	0	9
09:30:00	0	3	0	0	3	3	10	0	0	13	2	3	0	0	5	21
Grand Total	0	17	0	0	17	12	18	1	0	31	6	4	0	0	10	58
Approach\%	0\%	100\%	0\%		-	38.7\%	58.1\%	3.2\%		-	60\%	40\%	0\%		-	-
Totals \%	0\%	29.3\%	0\%		29.3\%	20.7\%	31\%	1.7\%		53.4\%	10.3\%	6.9\%	0\%		17.2\%	-
PHF	0	0.71	0		0.71	0.75	0.45	0.25		0.6	0.5	0.33	0		0.5	-
Heavy	0	2	0		2	2	1	0		3	2	0	0		2	-
Heavy \%	0\%	11.8\%	0\%		11.8\%	16.7\%	5.6\%	0\%		9.7\%	33.3\%	0\%	0\%		20\%	-
Lights	0	15	0		15	10	17	1		28	4	4	0		8	-
Lights \%	0\%	88.2\%	0\%		88.2\%	83.3\%	94.4\%	100\%		90.3\%	66.7\%	100\%	0\%		80\%	-
Single-Unit Trucks	0	0	0		0	1	0	0		1	0	0	0		0	-
Single-Unit Trucks \%	0\%	0\%	0\%		0\%	8.3\%	0\%	0\%		3.2\%	0\%	0\%	0\%		0\%	-
Buses	0	2	0		2	1	0	0		1	1	0	0		1	-
Buses \%	0\%	11.8\%	0\%		11.8\%	8.3\%	0\%	0\%		3.2\%	16.7\%	0\%	0\%		10\%	-
Articulated Trucks	0	0	0		0	0	1	0		1	1	0	0		1	-
Articulated Trucks \%	0\%	0\%	0\%		0\%	0\%	5.6\%	0\%		3.2\%	16.7\%	0\%	0\%		10\%	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	0\%		-	-	-	0\%		-	-	-	0\%		-

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds $\left(2.74{ }^{\circ} \mathrm{C}\right)$

Start Time	N Approach MENOKE BEACH RD					S Approach MENOKE BEACH RD					W Approach ARDTREA DR					Int. Total (15 min)
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	
17:00:00	0	12	0	0	12	3	2	0	0	5	1	0	0	0	1	18
17:15:00	0	6	0	0	6	0	3	0	0	3	1	1	0	0	2	11
17:30:00	0	10	0	0	10	5	4	0	0	9	3	2	0	0	5	24
17:45:00	2	6	0	0	8	1	4	0	0	5	3	0	0	0	3	16
Grand Total	2	34	0	0	36	9	13	0	0	22	8	3	0	0	11	69
Approach\%	5.6\%	94.4\%	0\%		-	40.9\%	59.1\%	0\%		-	72.7\%	27.3\%	0\%		-	-
Totals \%	2.9\%	49.3\%	0\%		52.2\%	13\%	18.8\%	0\%		31.9\%	11.6\%	4.3\%	0\%		15.9\%	-
PHF	0.25	0.71	0		0.75	0.45	0.81	0		0.61	0.67	0.38	0		0.55	-
Heavy	0	0	0		0	0	0	0		0	0	0	0		0	-
Heavy \%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	-
Lights	2	34	0		36	9	13	0		22	8	3	0		11	-
Lights \%	100\%	100\%	0\%		100\%	100\%	100\%	0\%		100\%	100\%	100\%	0\%		100\%	-
Single-Unit Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Single-Unit Trucks \%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	-
Buses	0	0	0		0	0	0	0		0	0	0	0		0	-
Buses \%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	-
Articulated Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Articulated Trucks \%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	0\%		-	-	-	0\%		-	-	-	0\%		-

Peak Hour: 08:45 AM - 09:45 AM Weather: Overcast Clouds $\left(0.5^{\circ} \mathrm{C}\right)$

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds $\left(2.74{ }^{\circ} \mathrm{C}\right)$

Turning Movement Count (1. MENOKE BEACH RD \& HWY 11)																										
Start Time	N Approach BRENNAN LINE						E Approach HWY 11						S Approach MENOKE BEACH RD						W Approach HWY 11						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$	$\underset{(1 \mathrm{hr})}{\substack{\text { Int. Total }}}$
	$\begin{aligned} & \text { Right } \\ & \text { R:W } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \mathrm{N}: \mathrm{S} \end{aligned}$	$\begin{gathered} \text { Left } \\ \mathrm{N}: \mathrm{E} \end{gathered}$	$\begin{aligned} & \text { UTurn } \\ & \text { N:N } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \mathrm{N:} \end{aligned}$	Approach Total	Right E:N	$\begin{gathered} \text { Thru } \\ \text { T:W } \end{gathered}$	$\begin{aligned} & \text { Left } \\ & \mathrm{E}: S \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \text { E:E } \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { E: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { S: } \end{aligned}$	$\begin{gathered} \text { Thru } \\ \text { S:N } \end{gathered}$	$\begin{aligned} & \text { Left } \\ & \text { S:W } \end{aligned}$	$\begin{aligned} & \text { UTurn } \\ & \mathrm{S}: \mathrm{S} \end{aligned}$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { W:S } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { W:E } \end{aligned}$	$\begin{gathered} \text { Left } \\ \mathrm{W}: N \end{gathered}$	$\begin{aligned} & \text { UTurn } \\ & \text { W:W } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { eds } \\ \mathrm{w} \end{array} \end{aligned}$	Approach Total		
06:00:00	1	0	0	0	0	1	0	86	0	0	0	86	1	0	0	0	0	1	1	86	0	0	0	87	175	
06:15:00	2	0	0	0	0	2	0	138	0	0	0	138	1	0	0	0	0	1	1	103	0	0	0	104	245	
06:30:00	3	0	0	0	0	3	1	152	0	0	0	153	1	0	0	0	0	1	3	127	0	0	0	130	287	
06:45:00	5	0	0	0	0	5	0	147	0	0	0	147	1	0	0	0	0	1	3	144	0	0	0	147	300	1007
07:00:00	1	0	0	0	0	1	1	182	0	0	0	183	5	0	0	0	0	5	0	162	0	0	0	162	351	1183
07:15:00	4	0	0	0	0	4	0	219	0	0	0	219	1	0	0	0	0	1	2	176	0	0	0	178	402	1340
07:30:00	5	0	0	0	0	5	0	273	0	0	0	273	4	0	0	0	0	4	1	169	0	0	0	170	452	1505
07:45:00	9	0	0	0	0	9	1	254	0	0	0	255	3	0	0	0	0	3	3	212	0	0	0	215	482	1687
08:00:00	6	0	0	0	0	6	0	230	0	0	0	230	4	0	0	0	0	4	4	195	0	0	0	199	439	1775
08:15:00	9	0	0	0	0	9	0	244	0	0	0	244	1	0	0	0	0	1	3	206	0	0	0	209	463	1836
08:30:00	4	0	0	0	0	4	0	191	0	0	0	191	1	0	0	0	0	1	3	182	0	0	0	185	381	1765
08:45:00	0	0	0	0	0	0	1	${ }^{227}$	0	0	0	228	4	0	0	0	0	4	5	164	0	0	0	169	401	1684
09:00:00	3	0	0	0	0	3	0	207	0	0	0	207	3	0	0	0	0	3	6	173	0	0	0	179	392	1637
09:15:00	3	0	0	0	0	3	2	220	0	0	0	222	3	0	0	0	0	3	3	172	0	0	0	175	403	1577
09:30:00	4	0	0	0	0	4	0	244	0	0	0	244	5	0	0	0	0	5	4	176	0	0	0	180	433	1629
09:45:00	3	0	0	0	0	3	2	211	0	0	0	${ }^{213}$	2	0	0	0	0	2	2	151	0	0	0	153	371	1599
${ }^{\text {"*Break }}{ }^{\text {+" }}$																										
15:00:00	4	0	0	0	0	4	3	212	0	0	0	215	2	0	0	0	0	2	4	247	0	0	0	251	472	
15:15:00	2	0	0	0	0	2	0	${ }^{233}$	0	0	0	233	3	0	0	0	0	3	7	248	0	0	0	255	493	
15:30:00	2	0	0	0	0	2	0	245	0	0	0	245	1	0	0	0	0	1	2	267	0	0	0	269	517	
15:45:00	3	0	0	0	0	3	0	226	0	0	0	226	4	0	0	0	0	4	8	247	0	0	0	255	488	1970
16:00:00	2	0	0	0	0	2	4	255	0	0	0	259	2	0	0	0	0	2	9	295	0	0	0	304	567	2065
16:15:00	2	0	0	0	0	2	4	260	0	0	0	264	2	0	0	0	0	2	10	304	0	0	0	314	582	2154
16:30:00	2	0	0	0	0	2	1	266	0	0	0	267	1	0	0	0	0	1	6	286	0	0	0	292	562	2199
16:45:00	4	0	0	0	0	4	1	269	0	0	0	270	1	0	0	0	0	1	11	307	0	0	0	318	593	2304
17:00:00	5	0	0	0	0	5	3	262	0	0	0	265	3	0	0	0	0	3	9	301	0	0	0	310	583	2320
17:15:00	4	0	0	0	0	4	2	${ }^{251}$	0	0	0	253	2	0	0	0	0	2	9	271	0	0	0	280	539	2277
17:30:00	4	0	0	0	0	4	4	219	0	0	0	223	6	0	0	0	0	6	8	${ }^{228}$	0	0	0	236	469	2184
17:45:00	3	0	0	0	0	3	2	200	0	0	0	202	1	0	0	0	0	1	8	198	0	0	0	206	412	2003
18:00:00	1	0	0	0	0	1	2	161	0	0	0	163	1	0	0	0	0	1	4	209	0	0	0	213	378	1798
18:15:00	2	0	0	0	0	2	0	144	0	0	0	144	2	0	0	0	0	2	1	175	0	0	0	176	324	1583
18:30:00	0	0	0	0	0	0	0	132	0	0	0	132	1	0	0	0	0	1	4	154	0	0	0	158	291	1405
18:45:00	0	0	0	0	0	0	2	123	0	0	0	125	0	0	0	0	0	0	4	142	0	0	0	146	271	1264
Grand Total	102	0	0	0	0	102	36	6683	0	0	0	6719	72	0	0	0	0	72	148	6477	0	0	0	6625	13518	-
Approach\%	100\%	0\%	0\%	0\%		-	0.5\%	99.5\%	0\%	0\%		-	100\%	0\%	0\%	0\%		-	2.2\%	97.8\%	0\%	0\%		-	\cdot	\cdot
Totals \%	0.8\%	0\%	0\%	0\%		0.8\%	0.3\%	49.4\%	0\%	0\%		49.7\%	0.5\%	0\%	0\%	0\%		0.5\%	1.1\%	47.9\%	0\%	0\%		49\%	-	-
Heavy	12	0	0	0		-	7	${ }^{661}$	0	0		-	8	0	0	0		-	10	${ }^{628}$	0	0			\cdot	-
Heayy \%	11.8\%	0\%	0\%	0\%		-	19.4\%	9.9\%	0\%	0\%		-	11.1\%	0\%	0\%	0\%		-	6.8\%	9.7\%	0\%	0\%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-			-	-	-
Bicycle \%	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Peak Hour: 07:30 AM-08:30 AM Weather: Overcast Clouds ($0.5{ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach BRENNAN LINE						E Approach HWY 11						S Approach MENOKE BEACH RD						W Approach HWY 11						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
07:30:00	5	0	0	0	0	5	0	273	0	0	0	273	4	0	0	0	0	4	1	169	0	0	0	170	452
07:45:00	9	0	0	0	0	9	1	254	0	0	0	255	3	0	0	0	0	3	3	212	0	0	0	215	482
08:00:00	6	0	0	0	0	6	0	230	0	0	0	230	4	0	0	0	0	4	4	195	0	0	0	199	439
08:15:00	9	0	0	0	0	9	0	244	0	0	0	244	1	0	0	0	0	1	3	206	0	0	0	209	463
Grand Total	29	0	0	0	0	29	1	1001	0	0	0	1002	12	0	0	0	0	12	11	782	0	0	0	793	1836
Approach\%	100\%	0\%	0\%	0\%		-	0.1\%	99.9\%	0\%	0\%		-	100\%	0\%	0\%	0\%		-	1.4\%	98.6\%	0\%	0\%		-	-
Totals \%	1.6\%	0\%	0\%	0\%		1.6\%	0.1\%	54.5\%	0\%	0\%		54.6\%	0.7\%	0\%	0\%	0\%		0.7\%	0.6\%	42.6\%	0\%	0\%		43.2\%	-
PHF	0.81	0	0	0		0.81	0.25	0.92	0	0		0.92	0.75	0	0	0		0.75	0.69	0.92	0	0		0.92	-
Heavy	4	0	0	0		4	0	67	0	0		67	2	0	0	0		2	1	114	0	0		115	.
Heavy \%	13.\%	0\%	0\%	0\%		13.8\%	0\%	6.7\%	0\%	0\%		6.7\%	16.7\%	0\%	0\%	0\%		16.7\%	9.1\%	14.6\%	0\%	0\%		14.5\%	.
Lights	25	0	0	0		25	1	934	0	0		935	10	0	0	0		10	10	668	0	0		678	-
Lights \%	86.2\%	0\%	0\%	0\%		86.2\%	100\%	93.3\%	0\%	0\%		93.3\%	88.3\%	0\%	0\%	0\%		83.3\%	90.9\%	85.4\%	0\%	0\%		85.5\%	-
Single-Unit Trucks	0	0	0	0		0	0	17	0	0		17	1	0	0	0		1	1	40	0	0		41	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	1.7\%	0\%	0\%		1.7\%	8.3\%	0\%	0\%	0\%		8.3\%	9.1\%	5.1\%	0\%	0\%		5.2\%	-
Buses	3	0	0	0		3	0	11	0	0		11	1	0	0	0		1	0	8	0	0		8	-
Buses \%	10.3\%	0\%	0\%	0\%		10.3\%	0\%	1.1\%	0\%	0\%		1.1\%	8.3\%	0\%	0\%	0\%		8.3\%	0\%	1\%	0\%	0\%		1\%	-
Ariculated Trucks	1	0	0	0		1	0	39	0	0		39	0	0	0	0		0	0	66	0	0		66	-
Articulated Trucks \%	3.4\%	0\%	0\%	0\%		3.4\%	0\%	3.9\%	0\%	0\%		3.9\%	0\%	0\%	0\%	0\%		0\%	0\%	8.4\%	0\%	0\%		8.3\%	-

Peak Hour: 04:15 PM - 05:15 PM Weather: Overcast Clouds ($2.74{ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach BRENNAN LINE						E Approach HWY 11						S Approach MENOKE BEACH RD						w Approach HWY 11						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	UTur	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:15:00	2	0	0	0	0	2	4	260	0	0	0	264	2	0	0	0	0	2	10	304	0	0	0	314	582
16:30:00	2	0	0	0	0	2	1	266	0	0	0	267	1	0	0	0	0	1	6	286	0	0	0	292	562
16:45:00	4	0	0	0	0	4	1	269	0	0	0	270	1	0	0	0	0	1	11	307	0	0	0	318	593
17:00:00	5	0	0	0	0	5	3	262	0	0	0	265	3	0	0	0	0	3	9	301	0	0	0	310	583
Grand Total	13	0	0	0	0	13	9	1057	0	0	0	1066	7	0	0	0	0	7	36	1198	0	0	0	1234	2320
Approach\%	100\%	0\%	0\%	0\%		-	0.8\%	99.2\%	0\%	0\%		-	100\%	0\%	0\%	0\%		-	2.9\%	97.1\%	0\%	0\%		-	-
Totals \%	0.6\%	0\%	0\%	0\%		0.6\%	0.4\%	45.\%	0\%	0\%		45.9\%	0.3\%	0\%	0\%	0\%		0.3\%	1.6\%	51.6\%	0\%	0\%		53.2\%	-
PHF	0.65	0	0	0		0.65	0.56	0.98	0	0		0.99	0.58	0	0	0		0.58	0.82	0.98	0	0		0.97	-
Heavy	1	0	0	0		1	1	89	0	0		90	1	0	0	0		1	1	47	0	0		48	.
Heavy \%	7.7\%	0\%	0\%	0\%		7.7\%	11.1\%	8.4\%	0\%	0\%		8.4\%	14.3\%	0\%	0\%	0\%		14.3\%	2.8\%	3.9\%	0\%	0\%		3.9\%	.
Lights	12	${ }^{-}$	0	0		12	8	968	0	0		976	6	0	0	0		6	35	${ }_{1151}$	0	0		1186	-
Lights \%	92.3\%	0\%	0\%	0\%		92.3\%	88.9\%	91.6\%	0\%	0\%		91.6\%	85.7\%	0\%	0\%	0\%		85.7\%	97.2\%	96.1\%	0\%	0\%		96.1\%	-
Single-Unit Trucks	0	0	0	0		0	1	27	0	0		28	0	0	0	0		0	0	8	0	0		8	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	11.1\%	2.6\%	0\%	0\%		2.6\%	0\%	0\%	0\%	0\%		0\%	0\%	0.7\%	0\%	0\%		0.6\%	-
Buses	0	0	0	0		0	0	7	0	0		7	1	0	0	0		1	1	3	0	0		4	-
Buses \%	0\%	0\%	0\%	0\%		0\%	0\%	0.7\%	0\%	0\%		0.7\%	14.3\%	0\%	0\%	0\%		14.3\%	2.8\%	0.3\%	0\%	0\%		0.3\%	-
Ariculated Trucks	1	0	0	0		1	0	55	0	0		55	0	0	0	0		0	0	36	0	0		36	-
Articulated Trucks \%	7.7\%	0\%	0\%	0\%		7.7\%	0\%	5.2\%	0\%	0\%		5.2\%	0\%	0\%	0\%	0\%		0\%	0\%	3\%	0\%	0\%		2.9\%	-

Peak Hour: 07:30 AM - 08:30 AM

Weather: Overcast Clouds $\left(0.5^{\circ} \mathrm{C}\right)$

Peak Hour: 04:15 PM - 05:15 PM
Weather: Overcast Clouds ($2.74{ }^{\circ} \mathrm{C}$)

Spectrum

Start Time	N Approach TELFORD LINE					E Approach HIGHWAY 11				S Approach SOULES RD				W Approach HWY 11					Int. Total (15 min)	Int. Total (1 hr)
	Right $\mathrm{N}: \mathrm{W}$	$\begin{aligned} & \text { UTurn } \\ & \mathrm{N}: \mathrm{N} \end{aligned}$	Peds N :	Approach Total	Right E:N	Thru E:W	UTurn E:E	Peds E:	Approach Total	Right S:E	$\begin{aligned} & \text { UTurn } \\ & \mathrm{S}: \mathrm{S} \end{aligned}$	Peds S:	Approach Total	Right W:S	Thru W:E	UTurn W:W	Peds W:	Approach Total		
06:00:00	16	0	0	16	1	82	0	0	83	4	0	0	4	7	86	0	0	93	196	
06:15:00	15	0	0	15	4	121	0	0	125	4	0	0	4	11	99	0	0	110	254	
06:30:00	25	0	0	25	7	153	0	0	160	10	0	0	10	9	116	0	0	125	320	
06:45:00	20	0	0	20	1	134	0	0	135	9	0	0	9	10	132	0	0	142	306	1076
07:00:00	10	0	0	10	7	167	0	0	174	14	0	0	14	5	149	0	0	154	352	1232
07:15:00	18	0	0	18	8	219	0	0	227	21	0	0	21	12	163	0	0	175	441	1419
07:30:00	21	0	0	21	8	256	0	0	264	6	0	0	6	6	173	0	0	179	470	1569
07:45:00	29	0	0	29	10	254	0	0	264	18	0	0	18	15	191	0	0	206	517	1780
08:00:00	20	0	0	20	10	231	0	0	241	12	0	0	12	5	198	0	0	203	476	1904
08:15:00	31	0	0	31	10	234	0	0	244	17	0	0	17	10	194	0	0	204	496	1959
08:30:00	26	0	0	26	9	190	0	0	199	15	0	0	15	11	167	0	0	178	418	1907
08:45:00	15	0	0	15	7	220	0	0	227	14	0	0	14	13	161	0	0	174	430	1820
09:00:00	9	0	0	9	11	201	0	0	212	13	0	0	13	6	165	0	0	171	405	1749
09:15:00	17	0	0	17	7	222	0	0	229	7	0	0	7	13	172	0	0	185	438	1691
09:30:00	24	0	0	24	12	223	0	0	235	9	0	0	9	13	175	0	0	188	456	1729
09:45:00	26	0	0	26	6	220	0	0	226	11	0	0	11	14	141	0	0	155	418	1717

15:00:00	20	0	0	20	11	201	0	0	212	13	0	0	13	15	235	0	0	250	495	
15:15:00	18	0	0	18	12	224	0	0	236	13	0	0	13	17	244	0	0	261	528	
15:30:00	10	0	0	10	17	232	0	0	249	15	0	0	15	23	254	0	0	277	551	
15:45:00	22	0	0	22	15	223	0	0	238	17	0	0	17	25	243	0	0	268	545	2119
16:00:00	19	0	0	19	14	236	0	0	250	21	0	0	21	24	293	0	0	317	607	2231
16:15:00	20	0	0	20	14	238	0	0	252	21	0	0	21	30	282	0	0	312	605	2308
16:30:00	19	0	0	19	14	259	0	0	273	16	0	0	16	25	273	0	0	298	606	2363
16:45:00	21	0	0	21	18	256	0	0	274	24	0	0	24	25	294	0	0	319	638	2456
17:00:00	15	0	0	15	6	260	0	0	266	16	0	0	16	20	291	0	0	311	608	2457
17:15:00	20	0	0	20	17	240	0	0	257	14	0	0	14	30	255	0	0	285	576	2428
17:30:00	12	0	0	12	15	205	0	0	220	13	0	0	13	12	217	0	0	229	474	2296
17:45:00	19	0	0	19	8	196	0	0	204	11	0	0	11	13	188	0	0	201	435	2093
18:00:00	14	0	0	14	7	153	0	0	160	8	0	0	8	19	207	0	0	226	408	1893
18:15:00	10	0	0	10	3	150	0	0	153	8	0	0	8	15	164	0	0	179	350	1667
18:30:00	7	0	0	7	5	132	0	0	137	9	0	0	9	10	142	0	0	152	305	1498
18:45:00	10	0	0	10	6	113	0	0	119	4	0	0	4	9	136	0	0	145	278	1341
Grand Total	578	0	0	578	300	6445	0	0	6745	407	0	0	407	472	6200	0	0	6672	14402	-

Location Name: SOULES RD / TELFORD LINE \& HIGHWAY 11 Date: Wed, Dec 01, 2021 Deployment Lead: Theo Daglis

SUITE 3014 40 HURON STREET

Totals \%	4\%	0\%	4\%	2.1\%	44.8\%	0\%	46.8\%	2.8\%	0\%	2.8\%	3.3\%	43\%	0\%
Heavy	26	0	-	26	639	0	-	30	0	-	30	611	0
Heavy \%	4.5\%	0\%	-	8.7\%	9.9\%	0\%	-	7.4\%	0\%	-	6.4\%	9.9\%	0\%
Bicycles	-	-	-	-	-	-	-	-	-	-	-	-	-

Bicycle \%

Peak Hour: 07:30 AM-08:30 AM Weather: Overcast Clouds (0.5 ${ }^{\circ} \mathrm{C}$)																			
Start Time	N Approach TELFORD LINE				E Approach HIGHWAY 11					S Approach SOULES RD				W Approach HWY 11					Int. Total (15 min)
	Right	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	Right	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	
07:30:00	21	0	0	21	8	256	0	0	264	6	0	0	6	6	173	0	0	179	470
07:45:00	29	0	0	29	10	254	0	0	264	18	0	0	18	15	191	0	0	206	517
08:00:00	20	0	0	20	10	231	0	0	241	12	0	0	12	5	198	0	0	203	476
08:15:00	31	0	0	31	10	234	0	0	244	17	0	0	17	10	194	0	0	204	496
Grand Total	101	0	0	101	38	975	0	0	1013	53	0	0	53	36	756	0	0	792	1959
Approach\%	100\%	0\%		-	3.8\%	96.2\%	0\%		-	100\%	0\%		-	4.5\%	95.5\%	0\%		-	-
Totals \%	5.2\%	0\%		5.2\%	1.9\%	49.8\%	0\%		51.7\%	2.7\%	0\%		2.7\%	1.8\%	38.6\%	0\%		40.4\%	-
PHF	0.81	0		0.81	0.95	0.95	0		0.96	0.74	0		0.74	0.6	0.95	0		0.96	-
Heavy	${ }^{-}$	0		2	3	71	0		74	4	0		4	4	103	0		107	--
Heavy \%	2\%	0\%		2\%	7.9\%	7.3\%	0\%		7.3\%	7.5\%	0\%		7.5\%	11.1\%	13.6\%	0\%		13.5\%	-
Lights	99	0		99	35	904	0		939	49	0		49	32	653	0		685	-
Lights \%	98\%	0\%		98\%	92.1\%	92.7\%	0\%		92.7\%	92.5\%	0\%		92.5\%	88.9\%	86.4\%	0\%		86.5\%	-
Single-Unit Trucks	1	0		1	2	19	0		21	3	0		3	2	34	0		36	-
Single-Unit Trucks \%	1\%	0\%		1\%	5.3\%	1.9\%	0\%		2.1\%	5.7\%	0\%		5.7\%	5.6\%	4.5\%	0\%		4.5\%	-
Buses	1	0		1	1	11	0		12	0	0		0	2	8	0		10	-
Buses \%	1\%	0\%		1\%	2.6\%	1.1\%	0\%		1.2\%	0\%	0\%		0\%	5.6\%	1.1\%	0\%		1.3\%	-
Articulated Trucks	0	0		0	0	41	0		41	1	0		1	0	61	0		61	-
Articulated Trucks \%	0\%	0\%		0\%	0\%	4.2\%	0\%		4\%	1.9\%	0\%		1.9\%	0\%	8.1\%	0\%		7.7\%	-

Peak Hour: 04:15 PM - 05:15 PM Weather: Overcast Clouds ($2.74{ }^{\circ} \mathrm{C}$)

Start Time	N Approach TELFORD LINE				E Approach HIGHWAY 11					S Approach SOULES RD				W Approach HWY 11					Int. Total (15 min)
	Right	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	Right	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	
16:15:00	20	0	0	20	14	238	0	0	252	21	0	0	21	30	282	0	0	312	605
16:30:00	19	0	0	19	14	259	0	0	273	16	0	0	16	25	273	0	0	298	606
16:45:00	21	0	0	21	18	256	0	0	274	24	0	0	24	25	294	0	0	319	638
17:00:00	15	0	0	15	6	260	0	0	266	16	0	0	16	20	291	0	0	311	608
Grand Total	75	0	0	75	52	1013	0	0	1065	77	0	0	77	100	1140	0	0	1240	2457
Approach\%	100\%	0\%		-	4.9\%	95.1\%	0\%		-	100\%	0\%		-	8.1\%	91.9\%	0\%		-	-
Totals \%	3.1\%	0\%		3.1\%	2.1\%	41.2\%	0\%		43.3\%	3.1\%	0\%		3.1\%	4.1\%	46.4\%	0\%		50.5\%	-
PHF	0.89	0		0.89	0.72	0.97	0		0.97	0.8	0		0.8	0.83	0.97	0		0.97	-
Heavy	1	0		1	2	88	0		90	$\overline{1}$	0		1	1	47	0		48	-
Heavy \%	1.3\%	0\%		1.3\%	3.8\%	8.7\%	0\%		8.5\%	1.3\%	0\%		1.3\%	1\%	4.1\%	0\%		3.9\%	-
Lights	74	0		74	50	925	0		975	76	0		76	99	1093	0		1192	-
Lights \%	98.7\%	0\%		98.7\%	96.2\%	91.3\%	0\%		91.5\%	98.7\%	0\%		98.7\%	99\%	95.9\%	0\%		96.1\%	-
Single-Unit Trucks	0	0		0	1	25	0		26	0	0		0	0	8	0		8	-
Single-Unit Trucks \%	0\%	0\%		0\%	1.9\%	2.5\%	0\%		2.4\%	0\%	0\%		0\%	0\%	0.7\%	0\%		0.6\%	-
Buses	0	0		0	0	6	0		6	0	0		0	1	4	0		5	-
Buses \%	0\%	0\%		0\%	0\%	0.6\%	0\%		0.6\%	0\%	0\%		0\%	1\%	0.4\%	0\%		0.4\%	-
Articulated Trucks	1	0		1	1	57	0		58	1	0		1	0	35	0		35	-
Articulated Trucks \%	1.3\%	0\%		1.3\%	1.9\%	5.6\%	0\%		5.4\%	1.3\%	0\%		1.3\%	0\%	3.1\%	0\%		2.8\%	-

Peak Hour: 07:30 AM-08:30 AM Weather: Overcast Clouds ($0.5^{\circ} \mathrm{C}$)

Peak Hour: 04:15 PM - 05:15 PM Weather: Overcast Clouds $\left(2.74{ }^{\circ} \mathrm{C}\right)$

Start Time	N Approach SOULES RD					S Approach SOULES RD					W Approach CENTRE AVE					Int. Total (15 min)	Int. Total (1 hr)
	Right N:W	Thru $\mathrm{N}: \mathrm{S}$	UTurn $\mathrm{N}: \mathrm{N}$	Peds N :	Approach Total	$\begin{aligned} & \text { Thru } \\ & \text { S:N } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{S}: \mathrm{W} \end{aligned}$	UTurn S:S	Peds S:	Approach Total	Right W:S	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	12	0	0	0	12	1	1	0	0	2	0	2	0	0	2	16	
06:15:00	15	0	0	0	15	0	3	0	0	3	0	4	0	0	4	22	
06:30:00	16	0	0	0	16	0	3	0	0	3	0	13	0	0	13	32	
06:45:00	17	0	0	0	17	1	4	0	0	5	0	7	0	0	7	29	99
07:00:00	6	1	0	0	7	1	2	0	0	3	0	16	0	0	16	26	109
07:15:00	15	1	0	0	16	2	4	0	0	6	0	17	0	0	17	39	126
07:30:00	21	1	0	0	22	2	2	0	0	4	0	10	0	0	10	36	130
07:45:00	23	0	0	0	23	2	4	0	0	6	1	18	0	0	19	48	149
08:00:00	18	0	0	0	18	2	5	0	0	7	1	15	0	0	16	41	164
08:15:00	23	1	0	0	24	1	9	0	0	10	0	15	0	0	15	49	174
08:30:00	22	0	0	0	22	2	3	0	0	5	1	15	0	0	16	43	181
08:45:00	13	0	0	0	13	0	1	0	0	1	2	20	0	0	22	36	169
09:00:00	8	0	0	0	8	0	3	0	0	3	2	15	0	0	17	28	156
09:15:00	15	0	0	0	15	0	4	0	0	4	1	7	0	0	8	27	134
09:30:00	23	0	0	0	23	1	5	0	0	6	0	9	0	0	9	38	129
09:45:00	20	0	0	0	20	1	5	0	0	6	1	10	0	0	11	37	130

15:00:00	20	1	0	0	21	1	0	0	0	1	0	16	0	0	16	38	
15:15:00	22	0	0	0	22	0	1	0	1	1	0	18	0	0	18	41	
15:30:00	25	2	0	0	27	1	2	0	0	3	1	23	0	0	24	54	
15:45:00	27	1	0	0	28	1	9	0	0	10	2	21	0	0	23	61	194
16:00:00	19	1	0	0	20	0	4	0	0	4	4	22	0	0	26	50	206
16:15:00	33	1	0	0	34	0	4	0	0	4	0	21	0	0	21	59	224
16:30:00	32	1	0	0	33	2	4	0	0	6	1	23	0	0	24	63	233
16:45:00	24	0	0	0	24	0	7	0	0	7	2	24	0	1	26	57	229
17:00:00	21	0	0	0	21	0	2	0	0	2	0	18	0	0	18	41	220
17:15:00	35	1	1	0	37	0	0	0	0	0	1	13	0	0	14	51	212
17:30:00	12	0	0	0	12	0	3	0	0	3	3	18	0	0	21	36	185
17:45:00	24	0	0	0	24	1	1	0	0	2	4	14	0	0	18	44	172
18:00:00	15	2	0	0	17	0	0	0	0	0	1	10	0	0	11	28	159
18:15:00	16	0	0	0	16	0	2	0	0	2	0	9	0	0	9	27	135
18:30:00	17	0	0	0	17	0	1	0	0	1	0	10	0	0	10	28	127
18:45:00	11	0	0	0	11	0	0	0	0	0	0	5	0	0	5	16	99

Grand Total	620	14	1	0	635	22	98	0	1	120	28	458	0	1	486	1241	-
Approach\%	97.6\%	2.2\%	0.2\%		-	18.3\%	81.7\%	0\%		-	5.8\%	94.2\%	0\%		-	-	-
Totals \%	50\%	1.1\%	0.1\%		51.2\%	1.8\%	7.9\%	0\%		9.7\%	2.3\%	36.9\%	0\%		39.2\%	-	-
Heavy	31	3	0		-	2	0	0		-	2	35	0		-	-	-
Heavy \%	5\%	21.4\%	0\%		-	9.1\%	0\%	0\%		-	7.1\%	7.6\%	0\%		-	-	-
Bicycles	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycle \%	-	-	-		-	-	-	-		-	-	-	-		-	-	-

Peak Hour: 07:45 AM-08:45 AM Weather: Overcast Clouds (0.5 ${ }^{\circ} \mathrm{C}$)																
Start Time	N Approach SOULES RD					S Approach SOULES RD					W Approach CENTRE AVE					Int. Total (15 min)
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	
07:45:00	23	0	0	0	23	2	4	0	0	6	1	18	0	0	19	48
08:00:00	18	0	0	0	18	2	5	0	0	7	1	15	0	0	16	41
08:15:00	23	1	0	0	24	1	9	0	0	10	0	15	0	0	15	49
08:30:00	22	0	0	0	22	2	3	0	0	5	1	15	0	0	16	43
Grand Total	86	1	0	0	87	7	21	0	0	28	3	63	0	0	66	181
Approach\%	98.9\%	1.1\%	0\%		-	25\%	75\%	0\%		-	4.5\%	95.5\%	0\%		-	-
Totals \%	47.5\%	0.6\%	0\%		48.1\%	3.9\%	11.6\%	0\%		15.5\%	1.7\%	34.8\%	0\%		36.5\%	-
PHF	0.93	0.25	0		0.91	0.88	0.58	0		0.7	0.75	0.88	0		0.87	-
Heavy	10	0	0		10	1	0	0		1	0	5	0		5	-
Heavy \%	11.6\%	0\%	0\%		11.5\%	14.3\%	0\%	0\%		3.6\%	0\%	7.9\%	0\%		7.6\%	-
Lights	76	1	0		77	6	21	0		27	3	58	0		61	-
Lights \%	88.4\%	100\%	0\%		88.5\%	85.7\%	100\%	0\%		96.4\%	100\%	92.1\%	0\%		92.4\%	-
Single-Unit Trucks	5	0	0		5	0	0	0		0	0	3	0		3	-
Single-Unit Trucks \%	5.8\%	0\%	0\%		5.7\%	0\%	0\%	0\%		0\%	0\%	4.8\%	0\%		4.5\%	-
Buses	4	0	0		4	1	0	0		1	0	1	0		1	-
Buses \%	4.7\%	0\%	0\%		4.6\%	14.3\%	0\%	0\%		3.6\%	0\%	1.6\%	0\%		1.5\%	-
Articulated Trucks	1	0	0		1	0	0	0		0	0	1	0		1	-
Articulated Trucks \%	1.2\%	0\%	0\%		1.1\%	0\%	0\%	0\%		0\%	0\%	1.6\%	0\%		1.5\%	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	0\%		-	-	-	0\%		-	-	-	0\%		-

Peak Hour: 03:45 PM - 04:45 PM W																
Start Time	N Approach SOULES RD					S Approach SOULES RD					W Approach CENTRE AVE					Int. Total (15 min)
	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	
15:45:00	27	1	0	0	28	1	9	0	0	10	2	21	0	0	23	61
16:00:00	19	1	0	0	20	0	4	0	0	4	4	22	0	0	26	50
16:15:00	33	1	0	0	34	0	4	0	0	4	0	21	0	0	21	59
16:30:00	32	1	0	0	33	2	4	0	0	6	1	23	0	0	24	63
Grand Total	111	4	0	0	115	3	21	0	0	24	7	87	0	0	94	233
Approach\%	96.5\%	3.5\%	0\%		-	12.5\%	87.5\%	0\%		-	7.4\%	92.6\%	0\%		-	-
Totals \%	47.6\%	1.7\%	0\%		49.4\%	1.3\%	9\%	0\%		10.3\%	3\%	37.3\%	0\%		40.3\%	-
PHF	0.84	1	0		0.85	0.38	0.58	0		0.6	0.44	0.95	0		0.9	-
Heavy	5	0	0		5	1	0	0		1	0	7	0		7	-
Heavy \%	4.5\%	0\%	0\%		4.3\%	33.3\%	0\%	0\%		4.2\%	0\%	8\%	0\%		7.4\%	-
Lights	106	4	0		110	2	21	0		23	7	80	0		87	-
Lights \%	95.5\%	100\%	0\%		95.7\%	66.7\%	100\%	0\%		95.8\%	100\%	92\%	0\%		92.6\%	-
Single-Unit Trucks	2	0	0		2	0	0	0		0	0	0	0		0	-
Single-Unit Trucks \%	1.8\%	0\%	0\%		1.7\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	-
Buses	3	0	0		3	1	0	0		1	0	6	0		6	-
Buses \%	2.7\%	0\%	0\%		2.6\%	33.3\%	0\%	0\%		4.2\%	0\%	6.9\%	0\%		6.4\%	-
Articulated Trucks	0	0	0		0	0	0	0		0	0	1	0		1	-
Articulated Trucks \%	0\%	0\%	0\%		0\%	0\%	0\%	0\%		0\%	0\%	1.1\%	0\%		1.1\%	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians\%	-	-	-	0\%		-	-	-	0\%		-	-	-	0\%		-

Peak Hour: 07:45 AM - 08:45 AM Weather: Overcast Clouds $\left(0.5{ }^{\circ} \mathrm{C}\right)$

Peak Hour: 03:45 PM - 04:45 PM Weather: Overcast Clouds $\left(2.74{ }^{\circ} \mathrm{C}\right)$

Appendix G

Level of Service Definitions

Level of Service Definitions
Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
A	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
B	>10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
C	>15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	>25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queve lengths develop on the minor street.
E	>35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queve lengths become noticeable.
F	>50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queve lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

ApPENDIX H

Detailed Capacity Analysis

	\rangle	\rightarrow		7			4	\uparrow	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			¢			¢	
Traffic Volume (veh/h)	2	18	9	52	5	1	55	2	60	3	,	2
Future Volume (Veh/h)	2	18	9	52	5	1	55	2	60	3	3	2
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	2	20	10	58	6	1	61	2	67	3	3	2
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	7			30			155	152	25	220	156	6
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	7			30			155	152	25	220	156	6
tC, single (s)	4.1			4.2			7.2	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			96			92	100	94	100	100	100
cM capacity (veh/h)	1627			1533			773	714	1043	671	710	1082
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	32	65	130	8								
Volume Left	2	58	61	3								
Volume Right	10	1	67	2								
cSH	1627	1533	890	759								
Volume to Capacity	0.00	0.04	0.15	0.01								
Queue Length 95th (m)	0.0	0.9	4.1	0.3								
Control Delay (s)	0.5	6.7	9.7	9.8								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.5	6.7	9.7	9.8								
Approach LOS			A	A								
Intersection Summary												
Average Delay			7.6									
Intersection Capacity Utilization			26.3\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\%	7	\Perp	4	4	9	p	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			$\$$			4			\&	
Traffic Volume (veh/h)	0	26	7	45	4	0	15	2	167	3	2	0
Future Volume (Veh/h)	0	26	7	45	4	0	15	2	167	3	2	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	0	27	7	46	4	0	15	2	172	3	2	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	4			34			128	126	30	300	130	4
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	4			34			128	126	30	300	130	4
tC , single (s)	4.1			4.2			7.2	6.5	6.3	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.4	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	83	99	100	100
cM capacity (veh/h)	1618			1521			798	745	1032	534	741	1085
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	34	50	189	5								
Volume Left	0	46	15	3								
Volume Right	7	0	172	0								
cSH	1618	1521	1005	601								
Volume to Capacity	0.00	0.03	0.19	0.01								
Queue Length 95th (m)	0.0	0.7	5.5	0.2								
Control Delay (s)	0.0	6.9	9.4	11.0								
Lane LOS		A	A	B								
Approach Delay (s)	0.0	6.9	9.4	11.0								
Approach LOS			A	B								
Intersection Summary												
Average Delay			7.8									
Intersection Capacity Utilization			27.2\%		CU Level	Service			A			
Analysis Period (min)			15									

4: Soules Road \& Campbell Road

	4	\rightarrow	\cdots	\checkmark		4	4	4	p		$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\leftrightarrow			\&			\&	
Traffic Volume (veh/h)	3	19	10	84	6	2	58	3	114	4	4	3
Future Volume (Veh/h)	3	19	10	84	6	2	58	3	114	4	4	3
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	21	11	93	7	2	64	3	127	4	4	3
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	9			32			232	228	26	355	232	8
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	9			32			232	228	26	355	232	8
tC , single (s)	4.1			4.2			7.2	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			94			91	100	88	99	99	100
cM capacity (veh/h)	1624			1530			674	633	1041	503	630	1080
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	35	102	194	11								
Volume Left	3	93	64	4								
Volume Right	11	2	127	3								
cSH	1624	1530	875	644								
Volume to Capacity	0.00	0.06	0.22	0.02								
Queue Length 95th (m)	0.0	1.6	6.8	0.4								
Control Delay (s)	0.6	6.9	10.3	10.7								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	6.9	10.3	10.7								
Approach LOS			B	B								
Intersection Summary												
Average Delay			8.3									
Intersection Capacity Utilization			31.5\%		CU Level	Service			A			
Analysis Period (min)			15									

4: Soules Road \& Campbell Road

4: Soules Road \& Campbell Road

	$\stackrel{*}{ }$	\rightarrow		7		4	4	\uparrow	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			¢			\dagger	
Traffic Volume (veh/h)	3	20	10	87	6	2	61	3	117	4	4	3
Future Volume (Veh/h)	3	20	10	87	6	2	61	3	117	4	4	3
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	22	11	97	7	2	68	3	130	4	4	3
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	9			33			240	236	28	367	241	8
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	9			33			240	236	28	367	241	8
tC, single (s)	4.1			4.2			7.2	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			94			90	100	87	99	99	100
cM capacity (veh/h)	1624			1529			663	624	1039	491	621	1080
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	36	106	201	11								
Volume Left	3	97	68	4								
Volume Right	11	2	130	3								
cSH	1624	1529	865	633								
Volume to Capacity	0.00	0.06	0.23	0.02								
Queue Length 95th (m)	0.0	1.6	7.2	0.4								
Control Delay (s)	0.6	6.9	10.4	10.8								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	6.9	10.4	10.8								
Approach LOS			B	B								
Intersection Summary												
Average Delay			8.4									
Intersection Capacity Utilization			32.2\%		U Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\%	$\%$	\Perp	4	4	9	p	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			$\$$			4			\&	
Traffic Volume (veh/h)	0	28	7	49	4	0	17	2	176	3	2	0
Future Volume (Veh/h)	0	28	7	49	4	0	17	2	176	3	2	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	0	29	7	51	4	0	18	2	181	3	2	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	4			36			140	138	32	320	142	4
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	4			36			140	138	32	320	142	4
tC , single (s)	4.1			4.2			7.2	6.5	6.3	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.4	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	82	99	100	100
cM capacity (veh/h)	1618			1519			782	731	1030	510	728	1085
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	36	55	201	5								
Volume Left	0	51	18	3								
Volume Right	7	0	181	0								
cSH	1618	1519	997	579								
Volume to Capacity	0.00	0.03	0.20	0.01								
Queue Length 95th (m)	0.0	0.8	6.0	0.2								
Control Delay (s)	0.0	6.9	9.5	11.3								
Lane LOS		A	A	B								
Approach Delay (s)	0.0	6.9	9.5	11.3								
Approach LOS			A	B								
Intersection Summary												
Average Delay			7.9									
Intersection Capacity Utilization			28.1\%		CU Level	Service			A			
Analysis Period (min)			15									

4: Soules Road \& Campbell Road

	4	\rightarrow	\cdots	\checkmark		4	4	4	p		$\frac{1}{1}$	$+$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\leqslant			\leftrightarrow			\&			\&	
Traffic Volume (veh/h)	3	21	11	90	6	2	64	3	120	4	4	3
Future Volume (Veh/h)	3	21	11	90	6	2	64	3	120	4	4	3
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	23	12	100	7	2	71	3	133	4	4	3
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	9			35			248	244	29	378	249	8
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	9			35			248	244	29	378	249	8
tC , single (s)	4.1			4.2			7.2	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.6	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			93			89	100	87	99	99	100
cM capacity (veh/h)	1624			1526			654	617	1037	481	613	1080
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	38	109	207	11								
Volume Left	3	100	71	4								
Volume Right	12	2	133	3								
cSH	1624	1526	857	624								
Volume to Capacity	0.00	0.07	0.24	0.02								
Queue Length 95th (m)	0.0	1.7	7.6	0.4								
Control Delay (s)	0.6	6.9	10.5	10.9								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	6.9	10.5	10.9								
Approach LOS			B	B								
Intersection Summary												
Average Delay			8.4									
Intersection Capacity Utilization			32.9\%		CU Level	Service			A			
Analysis Period (min)			15									

APPENDIX I

Menoke Beach TIS Addendum (Tatham Engineering, 2020)

File 304844-9

October 2, 2020

Andrea Woodrow, MCIP, RPP Director of Planning \& Development Township of Severn 1024 Hurlwood Lane Orillia, Ontario L3V 6J3
awoodrow@townshipofsevern.com

Re: Menoke Beach Subdivision, Phase 2, Township of Severn Traffic Impact Study (TIS) Addendum

Dear Andrea:

On behalf of Menoke Beach Developments, we have prepared this addendum to the Orsi Development Traffic Impact Study ${ }^{1}$, with a focus on Phase 2 of the proposed Menoke Beach subdivision development.

LOCATION

As illustrated in Figure 1, the proposed development is located on Menoke Beach Road between Amigo Drive and Couchiching Avenue, on the east side of Highway 11.

DEVELOPMENT PLAN

In the 2005 Traffic Impact Study, the Menoke Beach subdivision was proposed to include a total of 271 units, comprised of the following:

- 203 single family detached units; and
- 68 units in seventeen 4-plex units. 177 townhouse units (Phases 1 and 2);

Subsequent to this, the subdivision proposal has evolved and 4.4 ha of land was transferred to the Township for a proposed recreation centre. The remaining lands are to support 189 units, as follows:

- 92 single family detached units in Phase 1; and
- 83 single family units and 14 townhouse units in Phase 2.

Given the above, the total residential unit count has been reduced from 271 to 189 units. The corresponding development plans are illustrated in Figure 2 and Figure 3.

[^0]Phase 1 is currently under construction with all underground infrastructure in place and home construction anticipated to commence soon. The revised Phase 2 is in the design stage.

SITE ACCESS

Initially, 4 new access points to Menoke Beach Road were proposed (via the new subdivision road system).
As part of the current development plan, there are 2 proposed access points to Menoke Beach Road (1 in each of Phase 1 and Phase 2) in addition to a connection to Couchiching Avenue (also in Phase 1). The following access/intersection spacings are noted (as illustrated in Figure 3):

- Quayside Drive (Phase 1 access to Menoke Beach Road) is approximately 250 metres north of Couchiching Avenue (measured centre to centre); and
- Sunbank Crescent (Phase 2 access to Menoke Beach Road) is approximately 260 metres north of Quayside Drive and 125 metres south of Amigo Drive.

Given the local road nature of Menoke Beach Road, Quayside Drive and Sunbank Crescent, the relatively minor traffic volumes on each, and their expected stop-control on the minor street configuration, the noted spacings are considered appropriate.

SITE TRAFFIC

Trip Generation

The change in the number of units within the Menoke Beach subdivision will result in a reduction in the number of trips being generated. Table 1 illustrates the associated trip estimates from the initial development plan and traffic study, whereas Table 2 reflects the revised plan taking into account the recent changes in the overall development size and unit count.

The revised development levels represent a reduction of 30\% in the total unit yield (189 vs 271 units) and a reduction of 25% in the associated peak hour traffic volumes. As noted, the site will generate 46 fewer trips in the AM peak hour and 61 fewer trips in the PM peak hour.

Table 1: Site Generated Traffic - Initial Development Plan

LAND USE	SIZE	AM PEAK HOUR				PM PEAK HOUR	
		IN	OUT	TOTAL	IN	OUT	TOTAL
4-plexes (17 bldgs)	68 units	5	25	30	25	12	37
single family	203 units	38	114	152	131	74	205
Total	$\mathbf{2 7 1}$ units	$\mathbf{4 3}$	$\mathbf{1 3 9}$	$\mathbf{1 8 2}$	$\mathbf{1 5 6}$	$\mathbf{8 6}$	$\mathbf{2 4 2}$

Table 2: Site Generated Traffic - Current Development Plan

LAND USE	AM PEAK HOUR			PM PEAK HOUR			
		IN	OUT	TOTAL	IN	OUT	TOTAL
Phase 1 singles	92 units	17	51	68	57	34	91
Phase 2 singles	83 units	15	46	61	52	30	82
Phase 2 towns	14 units	1	5	6	5	3	8
Total	$\mathbf{1 8 9}$ units	$\mathbf{3 4}$	$\mathbf{1 0 2}$	$\mathbf{1 3 6}$	$\mathbf{1 1 4}$	$\mathbf{6 7}$	$\mathbf{1 8 1}$
Reduction in Trips		$\mathbf{9}$	$\mathbf{3 7}$	$\mathbf{4 6}$	$\mathbf{4 2}$	$\mathbf{1 9}$	$\mathbf{6 1}$

In considering only Phase 2 traffic (in that Phase 1 is under construction), an additional 67 trips will be generated during the AM peak hour and 90 trips during the PM peak hour, which translates to approximately 1 to 1.5 trips per minute.

Trip Distribution \& Assignment

As employed in the initial 2005 Traffic Impact Study, the following distribution of traffic has been assumed:

- 25% to/from the north; and
- 75% of traffic to/from the south.

This is considered reasonable and appropriate for this study given that the closest urban centres (major trip attractors) are the cities of Orillia and Barrie, located just south of the site.

Traffic was assigned to the site access points in consideration of the phase of development (ie. Phase 1 traffic was assigned to Quayside Drive and Lakepoint Crossing (via Couchiching Avenue); Phase 2 traffic was assigned to Sunbank Crescent). Beyond the site, traffic was assigned to the area road system in consideration of the noted distributions and means of access, recognizing that Menoke Beach Road is limited to a right-in/right-out only with Highway 11 (traffic from the north and to the south must otherwise use the Telford Line/Soules Road interchange with Highway 11). The resulting assignment of the site generated traffic to the area road system is illustrated in Figure 4 for Phase 1, Figure 5 for Phase 2 and Figure 6 for Phase 1 plus Phase 2. It is reiterated that Phase 1 servicing and roads have been constructed, with house construction to commence in the near future.

ApPENDIX J

ITE $11^{\text {th }}$ Edition Trip Generation Excerpts

Land Use: 210 Single-Family Detached Housing

Description

A single-family detached housing site includes any single-family detached home on an individual lot. A typical site surveyed is a suburban subdivision.

Specialized Land Use

Data have been submitted for several single-family detached housing developments with homes that are commonly referred to as patio homes. A patio home is a detached housing unit that is located on a small lot with little (or no) front or back yard. In some subdivisions, communal maintenance of outside grounds is provided for the patio homes. The three patio home sites total 299 dwelling units with overall weighted average trip generation rates of 5.35 vehicle trips per dwelling unit for weekday, 0.26 for the AM adjacent street peak hour, and 0.47 for the PM adjacent street peak hour. These patio home rates based on a small sample of sites are lower than those for single-family detached housing (Land Use 210), lower than those for single-family attached housing (Land Use 251), and higher than those for senior adult housing -- single-family (Land Use 251). Further analysis of this housing type will be conducted in a future edition of Trip Generation Manual.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

For 30 of the study sites, data on the number of residents and number of household vehicles are available. The overall averages for the 30 sites are 3.6 residents per dwelling unit and 1.5 vehicles per dwelling unit.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Arizona, California, Connecticut, Delaware, Illinois, Indiana, Kentucky, Maryland, Massachusetts, Minnesota, Montana, New Jersey, North Carolina, Ohio, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, Virginia, and West Virginia.

Source Numbers

$100,105,114,126,157,167,177,197,207,211,217,267,275,293,300,319,320,356,357,367$, $384,387,407,435,522,550,552,579,598,601,603,614,637,711,716,720,728,735,868,869$, $903,925,936,1005,1007,1008,1010,1033,1066,1077,1078,1079$

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 192
Avg. Num. of Dwelling Units: 226
Directional Distribution: 26\% entering, 74% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	$0.27-2.27$	0.24

Data Plot and Equation

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 208
Avg. Num. of Dwelling Units: 248
Directional Distribution: 63% entering, 37% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.94	$0.35-2.98$	0.31

Data Plot and Equation

Land Use: 220 Multifamily Housing (Low-Rise)

Description

Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

- A walkup apartment typically is two or three floors in height with dwelling units that are accessed by a single or multiple entrances with stairways and hallways.
- A mansion apartment is a single structure that contains several apartments within what appears to be a single-family dwelling unit.
- A fourplex is a single two-story structure with two matching dwelling units on the ground and second floors. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.
- A stacked townhouse is designed to match the external appearance of a townhouse. But, unlike a townhouse dwelling unit that only shares walls with an adjoining unit, the stacked townhouse units share both floors and walls. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.

Multifamily housing (mid-rise) (Land Use 221), multifamily housing (high-rise) (Land Use 222), affordable housing (Land Use 223), and off-campus student apartment (low-rise) (Land Use 225) are related land uses.

Land Use Subcategory

Data are presented for two subcategories for this land use: (1) not close to rail transit and (2) close to rail transit. A site is considered close to rail transit if the walking distance between the residential site entrance and the closest rail transit station entrance is $1 / 2$ mile or less.

Additional Data

For the three sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.72 residents per occupied dwelling unit.

For the two sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96.2 percent of the total dwelling units were occupied.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip
generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

For the three sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.72 residents per occupied dwelling unit.

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. To assist in future analysis, trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex).

The sites were surveyed in the 1980s, the 1990s, the 2000s, the 2010s, and the 2020s in British Columbia (CAN), California, Delaware, Florida, Georgia, Illinois, Indiana, Maine, Maryland, Massachusetts, Minnesota, New Jersey, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah, and Washington.

Source Numbers

188, 204, 237, 300, 305, 306, 320, 321, 357, 390, 412, 525, 530, 579, 583, 638, 864, 866, 896, 901, $903,904,936,939,944,946,947,948,963,964,966,967,1012,1013,1014,1036,1047,1056$, 1071, 1076

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 49
Avg. Num. of Dwelling Units: 249
Directional Distribution: 24% entering, 76% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.40	$0.13-0.73$	0.12

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 59
Avg. Num. of Dwelling Units: 241
Directional Distribution: 63\% entering, 37\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.51	$0.08-1.04$	0.15

Data Plot and Equation

ApPENDIX K

Transportation Tomorrow Survey Results

Appendix L

Auxiliary Left-Turn Lane Warrants

Exhibit 9A-11

2036 - FT AM Full Moves

Exhibit 9A-12

Exhibit 9A-14

94138

Exhibit 9A-12

Exhibit 9A-14

2036 - FT AM

Exhibit 9A-14

2036 - FT AM WBL
2036 - FT PM WBL

322

94
138

APPENDIX M

TAC GDGCR Stopping Sight Distance

Stopping sight distance is the sum of the distance travelled during the perception and reaction time and the braking distance.

$$
\begin{equation*}
\mathrm{SSD}=0.278 \mathrm{Vt}+0.039 \frac{\mathrm{~V}^{2}}{\mathrm{a}} \tag{2.5.2}
\end{equation*}
$$

Where:

$$
\begin{aligned}
\mathrm{SSD} & =\text { Stopping sight distance }(\mathrm{m}) \\
\mathrm{t} & =\text { Brake reaction time, } 2.5 \mathrm{~s} \\
\mathrm{~V} & =\text { Design speed }(\mathrm{km} / \mathrm{h}) \\
\mathrm{a} & =\text { Deceleration rate }\left(\mathrm{m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Table 2.5.2 gives the minimum stopping sight distances on level grade, on wet pavement, for a range of design speeds. These values are used for vertical curve design, intersection geometry and the placement of traffic control devices. The stopping sight distances quoted in Table 2.5.2 may need to be increased for a variety of reasons related to grade and vehicle type as noted below.

Table 2.5.2: Stopping Sight Distance on level roadways for Automobiles ${ }^{54}$

Design speed $\mathbf{(k m} / \mathrm{h})$	Brake reaction distance $\mathbf{(m)}$	Braking distance on level (m)	Stopping sight distance	
	Calculated (m)			
20	13.9	4.6	18.5	20
30	20.9	10.3	31.2	35
40	27.8	18.4	46.2	50
50	34.8	28.7	63.5	65
60	41.7	41.3	83.0	85
70	48.7	56.2	104.9	105
80	55.6	73.4	129.0	130
90	62.6	92.9	155.5	160
100	69.5	114.7	184.2	185
110	76.5	138.8	215.3	220
120	83.4	165.2	248.6	250
130	90.4	193.8	284.2	285

Note: Brake reaction distance predicated on a time of 2.5 s ; deceleration rate of $3.4 \mathrm{~m} / \mathrm{s}^{2}$ used to determine calculated sight distance.

Table 9.9.3: Time Gap for Case B1, Left Turn from Stop

Design Vehicle	Time Gap $\left(t_{g}\right)(s)$ at Design Speed of Major Road
Passenger car	7.5
Single-unit truck	9.5
Combination truck (WB 19 and WB 20)	11.5
Longer truck	To be established by road authority

Notes: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.2 s for each percent grade for left turns.
- Some road authorities use higher values for certain specialized vehicles (e.g., Alberta uses 22 s for very long log trucks).

The intersection sight distance along the major road (distance b in Figure 9.9.2) is determined by:

$$
\begin{equation*}
\mathrm{ISD}=0.278 \mathrm{~V}_{\text {major }} t_{\mathrm{g}} \tag{9.9.1}
\end{equation*}
$$

Where:
ISD = intersection sight distance (length of the leg of sight triangle along the major road) (m)
$\mathrm{V}_{\text {major }}=$ design speed of the major road (km / h)
$t_{\mathrm{g}}=$ time gap for minor road vehicle to enter the major road (s)
For example, a passenger car turning left onto a two-lane major road should be provided sight distance equivalent to a time gap of 7.5 s in major-road traffic. If the design speed of the major road is $100 \mathrm{~km} / \mathrm{h}$, this corresponds to a sight distance of $0.278(100)(7.5)=208.5$ or 210 m , rounded for design.

A passenger car turning left onto a four-lane undivided roadway will need to cross two near lanes, rather than one. This increases the recommended gap in major-road traffic from 7.5 to 8.0 s . The corresponding value of sight distance for this example would be 223 m . If the minor-road approach to such an intersection is located on a 4\% upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9.9.4. Figure 9.9.4 includes design values, based on the time gaps for the design vehicles included in Table 9.9.3.

No adjustment of the recommended sight distance values for the major-road grade is generally needed because both the major- and minor-road vehicle will be on the same grade when departing from the intersection. However, if the minor-road design vehicle is a heavy truck and the intersection is located near a sag vertical curve with grades over 3\%, then an adjustment to extend the recommended sight distance based on the major-road grade should be considered.

Table 9.9.4: Design Intersection Sight Distance - Case B1, Left Turn From Stop

Design Speed $\mathbf{(k m / h)}$	Stopping 5ight Distance $\mathbf{(m)}$	Intersection Sight Distance for Passenger Cars	
	20	Calculated $\mathbf{(m)}$	Design (m)
30	35	41.7	45
40	50	62.6	65
50	65	83.4	85
60	85	104.3	105
70	105	125.1	130
80	130	146.0	150
90	160	166.8	170
100	185	187.7	190
110	220	208.5	210
120	250	229.4	230
130	285	250.2	255

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.
Sight distance design for left turns at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided-highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehicle with a clearance to the through lanes of approximately 1 m at both ends of the vehicle, no separate analysis for the departure sight triangle for left turns is needed on the minor-road approach for the near roadway to the left. In most cases, the departure sight triangle for right turns (case B2) will provide sufficient sight distance for a passenger car to cross the near roadway to reach the median. Possible exceptions are addressed in the discussion of case B3.

The time gaps in Table 9.9 .3 can be decreased by 1.0 s for right-turn maneuvers without undue interference with major-road traffic. These adjusted time gaps for the right turn from the minor road are shown in Table 9.9.5. Design values based on these adjusted time gaps are shown in Table 9.9.6 for passenger cars. Figure 9.9.5 includes the design values for the design vehicles for each of the time gaps in Table 9.9.5.

Table 9.9.5: Time Gap for Case B2—Right Turn from Stop and Case B3—Crossing Maneuver

Design Vehicle	Time Gap $\left(\boldsymbol{t}_{g}\right)(\boldsymbol{s})$ at Design Speed of Major Road
Passenger car	6.5
Single-unit truck	8.5
Combination truck (WB 19 and WB 20)	10.5

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.1 s for each percent grade for left turns.

Table 9.9.6: Design Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver

Design Speed $(\mathbf{k m} / \mathbf{h})$	Stopping Sight Distance $\mathbf{(m)}$	Intersection Sight Distance for Passenger Cars	
	Calculated (m)	Design (m)	
20	20	36.1	40
30	35	54.2	55
40	50	72.3	75
50	65	90.4	95
60	85	108.4	110
70	105	126.5	130
80	130	144.6	145
90	160	162.6	165
100	185	180.7	185
110	220	198.8	200
120	250	216.8	220
130	285	234.9	235

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or to cross a two-lane highway with no median and with grades of 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Figure 9.9.5: Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver (Calculated and Design Values Plotted)

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3 :
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Draft Plan of Subdivision (MHBC, January 2022)
Site Location Plan
Existing Traffic Controls and Lane Configuration
2021 Traffic Volumes
Background Development Traffic Volumes
Future Background 2026 Traffic Volumes
Future Background 2031 Traffic Volumes
Future Background 2036 Traffic Volumes
Trip Distribution
Trip Assignment
Future Total 2026 Traffic Volumes
Future Total 2031 Traffic Volumes
Future Total 2036 Traffic Volumes
One RIRO Access and One Full Moves Access Trip Assignment
One Emergency Access and One Full Moves Access Trip Assignment

Legend	Shadow Creek Subdivision		Figure 2
\square Location of the Site	Site Location		Project No. 1935-6103 Date. Nov. 17th 2021 Analyst. E.H.

 Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control Stop Control

Shadow Creek Subdivision
Existing Volumes

Figure 4
Project No. 1935-6103
Date. Nov. 17th 2021
Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Shadow Creek Subdivision

- Stop Control

Figure 5
Project No. 1935-6103
Date. Nov. 17th 2021 Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Stop Control

Shadow Creek Subdivision
2026 Future Background Volumes

CROZIER
comsultine Emsimeris

Figure 6
Project No. 1935-6103
Date. Nov. 17th 2021
Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Stop Control

Shadow Creek Subdivision
2031 Future Background Volumes

CROZIER
comsultine Emsimeris

Figure 7
Project No. 1935-6103
Date. Nov. 17th 2021
Analyst. E.H.

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
∇ Yield Contro

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Shadow Creek Subdivision

- Stop Control

Figure 10
Project No. 1935-6103 Date. Nov. 17th 2021 Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Stop Control
Shadow Creek Subdivision

2026 Future Total Volumes

Figure 11

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Stop Control

Figure 12
Project No. 1935-6103 Date. Nov. 17th 2021

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control

- Stop Control

Figure 13
Project No. 1935-6103
Date. Nov. 17th 2021
Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control
Stop Control

Shadow Creek Subdivision
One RIRO and One Full MovesTrip Assignment

CROZIER
CONSULTING ENGINEERS

Figure 14
Project No. 1935-6103 Date. Nov. 17th 2021 Analyst. E.H.

Legend

XX A.M. Peak Hour Traffic Volumes
(YY) P.M. Peak Hour Traffic Volumes
Yield Control

Shadow Creek Subdivision
One Emergency Access and One Full Moves Site Trip Assignment

Figure 15
Project No. 1935-6103 Date. Nov. 17th 2021 Analyst. E.H.

[^0]: ${ }^{1}$ Orsi Development Traffic Impact Study. Cansult Tatham Transportation Consultants, December 2005.

