

Azimuth Environmental Consulting, Inc.

Environmental Assessments & Approvals

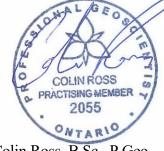
January 20, 2022

AEC 21-098

LIV Communities 1005 Skyview Drive, Suite 301 Burlington, Ontario L7P 5B1

Attention: Sam Badawi Land Development

Re: Preliminary Hydrogeological Assessment Parts of Lots 3, 4, & 5, Concession 9, Township of Severn, Ontario


Dear Mr. Badawi:

Azimuth Environmental Consulting, Inc. (Azimuth) is pleased to provide our Preliminary Hydrogeological Assessment for the property located within Parts of Lots 3, 4, & 5, Concession 9, within the Township of Severn, Ontario (the "Site"). The municipal address of the Site is 3651 Menoke Beach Road and 8743 Highway 11. This evaluation was focused on the existing soil and ground water regime underlying the Site.

Should you have any questions or wish to discuss the report in greater detail, please do not hesitate to contact the undersigned.

Yours truly,

AZIMUTH ENVIRONMENTAL CONSULTING, INC.

Colin Ross, B.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

pag
Letter of Transmittal
1.0 INTRODUCTION1
2.0 BACKGROUND1
3.0 ENVIRONMENTAL SETTING1
3.1 Soil
3.2 Physiography2
3.3 Topography and Drainage2
3.4 Bedrock Geology
3.5 Quaternary Geology
3.6 Hydrogeology
4.0 MONITORING 4
4.1 Groundwater Elevations
4.2 Hydraulic Conductivity Testing5
4.3 Infiltration Testing
4.3.1 Methodology
4.3.2 Test Results
5.0 WATER BALANCE
5.1 Land Use
5.1.1 Pre-Development
5.1.2 Post-Development
5.2 Infiltration
5.2.1 Pre-Development Infiltration
5.2.2 Post-Development Infiltration
5.3 Water Balance Summary 11
6.0 SUMMARY AND CONCLUSIONS 12
7.0 REFERENCES

List of In-Text Tables

Table 1:	Summary of Adjacent Well Record Depth	4
Table 2:	Summary of Ground Water Measurements	5
Table 3:	Hydraulic Testing Results	5
Table 4:	Results of Infiltration Assessment	8
Table 5:	Pre Development Area Classification	9
Table 6:	Post Development Area Classification	9
Table 7:	Summary of Pervious Land Infiltration Factor1	0

List of Figures

Figure 1 Site Location

- Figure 2 Site Layout
- Figure 3 MECP Well Records
- Figure 4 Ground Water Elevations and Flow Map
- Figure 5 Site Topography

List of Appendices

Appendix A:	Figures
Appendix B:	Development Plan
Appendix C:	MECP Well Records
Appendix D:	Water Balance Information
Appendix E:	Borehole / Monitoring Well Details and Ground Water Elevations
Appendix F:	Slug Testing Results
1. 1. 6	

Appendix G: Guelph Permeameter Testing Data

1.0 INTRODUCTION

Azimuth Environmental Consulting, Inc. ("Azimuth") has been retained by LIV Communities to conduct a Hydrogeological Assessment for the proposed Shadow Creek Subdivision development located within Parts of Lots 3, 4, & 5, Concession 9, within the Township of Severn, Ontario (the "Site"). The municipal address of the Site is 3651 Menoke Beach Road and 8743 Highway 11 (Figure 1).

The proposed development is approximately 45.4 hectares (ha) in size and is located on the south east side of Highway 11 and the north east side of Menoke Beach Road (Figure 2). The parcel is currently composed of agricultural land, with numerous drainage channels intersecting the site in a west to east direction. The channels are surrounded with shrub and/or forest vegetation, and flow toward Lake Couchiching, which is located approximately 230 m to the east. A cluster of barn structures and a silo are located adjacent to Highway 11 in the north west portion of the Site.

The proposed development includes the construction of 319 single lot residential homes and 215 townhomes with associated road, storm water management, open space, and park space (Site Plan; Appendix B)

The current assessment provides a summary of the existing environmental conditions as it relates to the soil and ground water regime at the Site. A preliminary water balance was also completed, which compares the pre- and post-development infiltration/runoff values for the Site.

2.0 BACKGROUND

The following documents were reviewed as part of the current assessment:

• Soil-Mat Engineers & Consultants Ltd. 2021. Preliminary Geotechnical Investigation. Proposed Shadow Creek Residential Development. Highway 11 and Menoke Beach Road. Township of Severn, Ontario.

3.0 ENVIRONMENTAL SETTING

3.1 Soil

The soil map of Simcoe County (Soil Survey Report No. 29, Scale 1:63,360) shows the uppermost soil at the Site to be composed primarily of Lovering silty clay loam with some Tioga loamy sand along the Highway 11 corridor. Lovering silty clay loam is classified within hydrologic soil group C, while Tioga loamy sand is classified within hydrologic soil group A. Group A soils represent material with low runoff potential and

high infiltration rates even when thoroughly wetted. Group C soils represent material with moderately high runoff potential when thoroughly wet and where water transmission through the soil is somewhat restricted.

3.2 Physiography

The Ontario Geologic Survey (Chapman and Putnam, 1984) describes the area as being located within the Simcoe Lowlands Physiographic region. The Simcoe Lowlands represent areas that were flooded by glacial Lake Algonquin and are bordered by shorecliffs, beaches, and boulder terraces. This area covers approximately 2,850 square kilometres and is separated into two areas: the Lake Simcoe basin and the Nottawasaga River basin, of which the Site is located in the Lake Simcoe basin. This area was under Lake Algonquin, so some beaches and offshore sand deposits are found locally.

3.3 Topography and Drainage

According to local topographic mapping and the information reviewed in Appendix B, the Site is found at an elevation of 219 - 226 masl (Figure 5). In general, the Site and surrounding area slopes from west to east, toward the shore of Lake Couchiching. Numerous drainage channels intersect the Site, collecting runoff from the onsite and upland agricultural area. The drainage channels direct water into a wetland area immediately east of the Site associated with Shadow Creek which flows from the north and an unnamed creek flowing from the south. These features are directly connected to Lake Couchiching, such that water levels in these features are primarily controlled by the lake levels (Figure 5).

Figure 5 displays the presence of surface water drainage channels and the adjacent wetland feature on the Site and in the vicinity of the Site. The EIS also completed by Azimuth for the Site has identified potential ground water seepage areas along the northern branch of the retained wetland area at the western side of the Site. These areas were noted through vegetation assessment and persistent saturation into late spring / early summer, where the remaining drainage channels were observed to have only trickle flow, indicating that from a quantitative perspective, the on-site and off-site wetland and water course features are primarily surface water fed. Despite the ground water seepage present, the flow from these are noted to be localized and do not create a significant contribution to the main Site drainage channel relative to the surface water contributions from the surrounding area.

3.4 Bedrock Geology

The Ontario Geologic Survey (OGS) Earth Database shows that the uppermost bedrock unit at the subject property consists of limestone and dolostone of the Simcoe Group of the Gull River Formation (OGS, 2021). The Simcoe Group is Middle Ordovician in age. Based on information reviewed in Section 3.5, the depth to bedrock was inferred based on auger refusal, and was found between 2.3 and 11 mbgs.

3.5 Quaternary Geology

The mapped surficial material for the Site is composed primarily of coarse-textured glaciolacustrine deposits containing sand, gravel, and minor silt and clay (OGS, 2021). However, a portion of the Site to the south east is reportedly composed of fine-textured glaciolacustrine deposits containing silt and clay with minor sand and gravel.

Soil Mat Engineers & Consultants Ltd. completed a geotechnical drilling program for the Site on April 8th and 9th, 2021 (Soil-Mat, 2021). As part of this program, nine (9) boreholes were advanced at the Site to a depth between 2.3 and 11.0 mbgs. Four of the boreholes were completed as monitoring wells (MW-3, MW-6, MW-7, and MW-9). The soils are described as silt and clayey silt with trace sand and gravel content ranging from firm to stiff indicating the surficial material is comprised of glacial till. Additional test pits were completed across the Site to facilitate Guelph Permeameter testing and installation of shallow standpipe monitoring wells at additional locations on the Site. The soils observed in these locations generally matched those described in the Soil Mat logs comprised mainly of sandy and clayey silt glacial till although more surficial granular sands were observed at the western and eastern extents of the Site. All borehole / monitoring well locations have been in illustrated on Figure 2, while the logs for each are included in Appendix E.

3.6 Hydrogeology

The Ontario Ministry of Environment, Conservation, and Parks (MECP)'s Water Well Records (Appendix D) were referenced for any recorded well information within the vicinity (1,000 m of centre) of the Site (GIN, 2021). The development will be serviced with municipal services (water and sewer); however many adjacent parcels still utilize private wells for potable water. Historic well records can also be used to gain subsurface information which can provide insight into the geological formations within the area. All wells within 1,000 m of the centre of the Site are provided on Figure 4 and a table summarizing the details for each well are provided in Appendix C.

The well records indicated they were advanced primarily for domestic use, with some commercial, cooling and A/C, livestock, and public water users listed. Three records were listed as abandoned. Table 1 below summarizes the well depths recorded.

Tuble IV Summing of Hujucene Wen Record Depen			
Depth (m)	Number of Records		
0 - 10	19		
10 - 20	60		
20 - 30	18		
30-40	6		
40+	11		
Total	114		

 Table 1: Summary of Adjacent Well Record Depth

The wells were drilled between 6.5 and 91.4 mbgs, with corresponding water levels ranging between 0.0 and 31.4 mbgs. In general, the overburden material is composed of surficial clay over limestone bedrock. The limestone was typically encountered within 10 m of the ground surface.

Nineteen (19) well records within 1,000 m of the Site are reportedly less than 10 m deep. This is not unexpected due to the shallow ground water level and proximity of the Site to Lake Couchiching. Due to the fine grained nature of the surficial material (clay and silt), most wells records are drilled into and obtain potable water from the underlying limestone bedrock.

The entire Site is considered a Significant Ground Water Recharge Area (SGRA) and a Highly Vulnerable Aquifer (HVA). The Site is also considered an Intake Protection Zone (IPZ) 2, due to the proximity to the West Shore Water Treatment Plant and associated intake pipe within Lake Couchiching. Given the development is residential in nature, located in the IPZ-2, with a vulnerability score of 5.6, there would be no additional reporting requirement (*i.e.* risk management plans) or development limitations due to its location within the IPZ. This was confirmed with the Severn Sound Environmental Association (SSEA) Risk Management Official.

4.0 MONITORING

4.1 Groundwater Elevations

The water level at each of the monitoring wells installed at the Site were measured in April and November of 2021. The ground water table elevations are given in the below Table 2 and Figure 4. Continued water level monitoring is being completed every three months for a year including continuous water level monitoring at three monitoring well locations to assess shorter term trending. The data collected to date would suggest high

water table conditions exist across the Site (<1 mbgs) and that the November 2021 data is likely most representative of the seasonally high water table.

Well ID	Ground Elevation	Screen Interval	Water Level (mbgs)		W	ater Level (ma	sl)	
10	(masl)	(mbgs)	13-Apr-21	11-Nov-21	17-Nov-21	13-Apr-21	11-Nov-21	17-Nov-21
BH-3	221.06	2.8 to 5.8	0.78	0.81	0.69	220.28	220.25	220.37
BH-6	220.99	2.8 to 5.4	0.33	0.28	0.13	220.66	220.71	220.86
BH-7	219.83	3.3 to 4.0	0.57	0.45	0.30	219.26	219.38	219.53
BH-9	221.28	2.7 to 4.2	0.67	0.82	0.72	220.61	220.46	220.56
TP-1	226.30	0.13 to 1.5			0.12			226.18
TP-2	224.80	1.5 to 3.0			1.06			223.74
TP-3	219.48	0.6 to 2.1			0.16			219.32
TP-4	225.20	1.4 to 2.9			1.52			223.68
TP-5	221.98	1.4 to 2.9			0.43			221.55

 Table 2: Summary of Ground Water Measurements

In general, the available data shows the shallow ground water flow matches the local topography and flows from west to east (Figure 5). This is consistent with the regional understanding, which is that shallow ground water flows toward Lake Couchiching discharging into the Lake.

4.2 Hydraulic Conductivity Testing

Azimuth staff completed single well response tests (slug tests) within three (3) monitoring wells at the Site, which given the general consistency in geology across the Site is considered representative for establish hydraulic properties of the shallow water table aquifer. The results are shown in the below Table 3 and in Appendix F.

A slug test involves the instantaneous injection or withdrawal of a volume or slug of water or solid cylinder of known volume. This is accomplished by adding or displacing a known volume to/from a well and measuring water level response time to return to equilibrium.

Monitoring Well	Log Hydraulic Conductivity (m/s)	Soil Description
BH-3	8.1 x 10 ⁻⁷	Clayey Silt / Silt
BH-6	1.6 x 10 ⁻⁶	Silt
BH-9	1.3 x 10 ⁻⁶	Silt

Table 3: Hydraulic Testing Results

Notes: Values rounded off for presentation purposes

Slug test data indicates that the hydraulic conductivity of the deposits range between 8.1 x 10^{-7} to 1.6 x 10^{-6} m/s. These results indicate relative consistency across the Site which as noted above is expected given the general consistency in soils.

4.3 Infiltration Testing

The current Infiltration Assessment focused on the potential across the Site to accommodate potential LID features by determining infiltration rates. As such, locations were selected to provide coverage across the entire Site, while input on locations were also solicited from the project storm water engineers. The locations correlated with the "TP" monitoring well locations on Figure 4.

4.3.1 Methodology

A field program was conducted by Azimuth staff on November 9th and 10th 2021 during which the weather was approximately 4-13°C and overcast. The locations were recorded by a handheld GPS and incorporated into the Site drawings such that a spot elevation from the Site survey could be utilized to establish elevations for each location.

The Infiltration Assessment was completed in accordance with Appendix C of the *Low Impact Development Stormwater Management Planning and Design Guide* (TRCA 7 CVC, 2010). As no details are available with respect to target elevations for the potential LID's, test pits were excavated such that testing depths would target approximately 0.5 m above the observed water table based on visual observations of seepage within the test pits upon completion. A hand auger was then used within the test pit to remove approximately 0.2 m of additional soil. Test pits were typically about 2 m wide and 4 m long with depths ranging between 2 and 3.3 mbgs to visually assess ground water conditions, while testing depths ranged between 0.4 and 1.1 mbgs.

The Guelph Permeameter Model 2800K1 (Soil Moisture Equipment Corp.) was used to measure the in-situ hydraulic conductivity as per the *Guelph Permeameter Operating Instructions* (Soil Moisture, 2012). The two head method utilizing a combined reservoir was utilized. Two tests are typically completed with varying well head height; however, saturation in some locations were observed as the testing sequence was completed such that only a single test was complete or the second test did not show a response due to the saturated conditions.

Soil samples were collected from each test pit at the depth of the testing intervals for laboratory grain size and T-Time analysis. The soil sample analysis was used to confirm the in-situ results. After the infiltration tests were completed, the test pits were utilized for standpipe installations and were backfilled with the original soil material.

4.3.2 Test Results

The material encountered within the test pit was composed of mainly of sandy and clayey silt glacial till to approximately 3.0 mbgs. Ground water was observed in all test pits

with the exception of TP-4 with observed seepage depths ranging from 0.8 m to 3.2 mbgs although saturated conditions more elevated in the test pit profile developed over the testing sequence. The complete test pit log is included in Appendix E, while the results of the infiltration assessment are included in Appendix G and Table 4 below.

The Guelph Permeameter generates a result as a hydraulic conductivity (K_{fs}) value. As per Table C1 from CVC & TRCA (2010), the K_{fs} values from the Guelph Permeameter and percolation rate (T-Time) values from the grain size analysis have been converted to an infiltration rate (1/T).

Based on the information provided in Table 4, the measured in-situ infiltration rate at the Site ranged between 0 and 46 mm/hr. As per TRCA & CVC (2010), the infiltration rate used to design infiltration LIDs must incorporate a safety correction factor that compensates for potential reductions in soil permeability due to compaction or smearing during construction, gradual accumulation of fine sediments over the lifespan of the LID, and an uncertainty in measured values when less permeable soil horizons exist. Based on the results of the current test pit program and the geotechnical program completed in May (Soil-Mat, 2021), significantly less permeable soil horizons below the testing depth are not anticipated. Therefore, a safety correction factor of 2.5 was used as per TRCA & CVC (2010) and incorporated into the Design Infiltration Rate. Overall, these rates are variable and elevated in some instances above values expected from a silt or clayey silt. Given the saturated conditions observed at the outset of the test pit excavation, throughout testing, and measured water table conditions the following week, it is apparent that the saturated conditions limited the ability to collect accurate infiltration data. As such, for reference, it is likely more appropriate to utilize the estimated infiltration rate determined through the soil sample T-time data for design of any potential LID's at the Site above the water table. Regardless, the results for the Site indicate that the infiltration rate for the material observed in the shallow soils at the Site are considered low.

	Guelph Permeameter Results					Estimated
Test Pit ID / Depth (mbgs)	Soil Type at Depth ¹	Test # 1 Infiltration Rate ² (mm/hr)	Test # 2 Infiltration Rate ² (mm/hr)	Geometric Mean Infiltration Rate (mm/hr)	Design Infiltration Rate (mm/hr)	Infiltration Rate from Soil Sample ^{1,3} (mm/hr)
TP-1 (0.4)	Silt, Some Sand, Some Clay	0*	0*	0*	0*	12 mm/hr
TP-2 (0.7)	Sandy Silt, Trace Clay	42	0*	42	17	15 mm/hr
TP-3 (0.8)	Silt, Some Sand, Trace Clay	Testing not att	empted as satura completion	nediately upon	12 mm/hr	
TP-4 (0.7)	Clayey Silt, Trace Sand	46	0*	46	18	< 12 mm/hr
TP-5 (0.4)	Silt, Trace Clay, Trace Sand	34	0*	34	14	12 mm/hr

Table 4: Results of Infiltration Assessment

Notes:

1 - As per GEI Consultants T-Time Analyses (Appendix G)

2 - Guelph Permeameter results are converted from K_{fs} to 1/T according to Table C1 from TRCA & CVC (2010)

3- Soil sample collection results are converted from T-Time to 1/T according to Table C1 from TRCA & CVC (2010)

* - Test not analyzed as no or insufficient infiltration was observed owing to saturated conditions in the soil

5.0 WATER BALANCE

In order to determine the potential changes to the natural ground water recharge conditions, a pre- and post-development water balance assessment has been completed using the Thornthwaite and Mather method (1957). This method evaluates evapotranspiration based on precipitation and temperature. Residual soil saturation is a function of topography and soil type. Monthly data are tabulated from daily average temperature and precipitation, and the water budget is a continuous calculation over the period of record. To clarify, the method and the approach used by many individuals in examining infiltration resets annual conditions (moisture deficit, snow storage, etc) over the winter months because of the general lack of infiltration during the frost period. However, we maintain those records and carry them forward from month to month during the entire period of record.

Values were determined on a monthly basis, compiled from daily Environment Canada meteorological data station located in Orillia, Ontario between 1992 and 2019 (Station ID 6115811). The calculations are based on the average conditions during this period; the average precipitation was 1,079 mm, rainfall was 742 mm, evapotranspiration was 542 mm and the surplus was 537 mm.

5.1 Land Use

5.1.1 Pre-Development

The pre-development Site area was classified according to land use/vegetation type. Land within the pre-development area is considered structure and pavement, agricultural, naturalized forest/shrub, and wetland. A summary of the pre-development land use is provided in Table 5.

Land Use		Land Area (m ²)
Structure and Pavement (impervious)		2,500
Agricultural (pervious)		306,500
Forest/ shrub (pervious)		118,386
Wetland (impervious)		27,114
	TOTAL	454,500

Table 5: Pre Development Area Classification

Land within the pre-development scenario is considered 7% impervious.

5.1.2 Post-Development

The land classification in the post-development scenario was based on the proposed MHBC development plan (Appendix B). Land within the post-development Site is summarized in the below Table 6:

 Table 6: Post Development Area Classification

Land Use	Land Area (m ²)
Townhomes (pervious)*	22,040
Townhomes Roof (impervious)*	27,550
Townhomes Driveway (impervious)*	5,510
Single Detached Lot Grass (pervious)*	53,200
Single Detached Lots Roof (impervious)*	66,500
Single Detached Lots Driveway (impervious)*	13,300
Streets / Walkways (impervious)**	71,570
Streets / Walkways (pervious [grass blvd.])**	12,630
Stormwater Management Pond Blocks (pervious)***	15,350
Stormwater Management Pond Blocks (impervious)***	15,350
Pump Station Block (pervious)***	500
Pump Station Block (impervious)***	500
Environmental Protection Area (pervious [forested])	111,186
Waterfront Access & Open Space (pervious [grassed])	12,200
Environmental Protection Area (impervious [wetland])	27,114
TOTAL	454,500

* - Roof (50%) / Driveway (10%) / Grass (40%) ratio assumed

** - Road, Sidewalk & Blvd. Driveway (85%) / Grass Blvd. (15%) ratio assumed

*** - impervious (50%) / pervious (50%) ratio assumed

Land within the post-development scenario is considered 50% impervious.

5.2 Infiltration

Infiltration is generated one of two ways: (1) directly from rainfall impact on pervious surfaces; and (2) indirectly when runoff from impervious surfaces is diverted into adjacent naturalized areas.

Infiltration factors for the Site were estimated based on the underlying soil, local topography, and ground cover as per Table 2 of the Ministry of Environment and Energy (MOEE) Hydrogeological Technical Information Requirements for Land Development Applications (1995).

The soil variable factor was determined by taking into account information obtained from the regional geologic mapping and the Site borehole / test pit logs (Appendix E). This information suggests that the surficial material at the Site is primarily composed of silt till native material. The infiltration factors utilized in the water balance assessment are summarized in Table 7 below.

Table 7. Summary of Fervious Land Innitiation Factor					
Scenario	Land Use	Infiltration Assumption			
		Factor			
Pre-Development	Equast / Shaph	0.55	Rolling land (0.2), silt till soil		
	Forest / Shrub		(0.15), woodland (0.2)		
	Agricultural	0.45	Rolling land (0.2), silt till soil		
	Agricultural	0.45	(0.15), cultivated lands (0.1)		
	Wetland	0.0	Saturated ground does not permit		
	wettand	0.0	infiltration		
Post-Development	Landscaped	0.45	Rolling land (0.2), silt till soil		
	Lanuscapeu	0.45	(0.15), cultivated lands (0.1)		
	Forest / Shrub	0.55	Rolling land (0.2), silt till soil		
	rolest / Sillub	0.55	(0.15), woodland (0.2)		
	Wetland	0.0	Saturated ground does not permit		
	wettand 0.0		infiltration		
	Impervious	0.0	No infiltration on hard surface		
	(rooftop, road,				
	stormwater pond,				
	other hard surface)				

 Table 7: Summary of Pervious Land Infiltration Factor

5.2.1 Pre-Development Infiltration

Pre-development infiltration was determined by multiplying the annual average surplus amount, the area of each land use, and the infiltration factor for each land use. The pre-development annual infiltration is therefore $108,625 \text{ m}^3/\text{year}$ (Appendix D).

5.2.2 Post-Development Infiltration

Post-development infiltration (without mitigation) was determined by multiplying the annual average surplus amount, the area of each land use, and the infiltration factor for each land use. The post-development annual direct infiltration is therefore $60,624 \text{ m}^3/\text{year}$. There is therefore a decrease in infiltration of $48,001 \text{ m}^3/\text{year}$ from preto post-development without any mitigation measures employed.

Additional infiltration will be gained by directing rooftop runoff toward the adjacent grass surface. There is approximately $101,150 \text{ m}^2$ of rooftop area which will contribute to indirect infiltration. The infiltration volume for rooftop downspouts is determined by multiplying the area (94,550 m²) by the annual rainfall (742 mm) by the by 50% as per the CVC LID Manual for HSG A & B soils and by 80% to account for a 20% evapotranspiration factor. The total infiltration gained through this method is 28,062 m³/year. This brings the total infiltration to 88,687 m³/year in the post-development (with mitigation) scenario which leaves a deficit of 19,938 m³/year or a reduction of approximately 18% from the predevelopment setting. In reality, this deficit is likely lower as the rooftop infiltration assumes only rainfall is collected, whereas snow melt, although difficult to quantify given the variability in snow pack conditions and presence of ground frost in the winter would create additional infiltration potential.

5.3 Water Balance Summary

Using the climate model data and calculations mentioned above, the water balance was completed for pre-development, post-development, and post-development with mitigation (Appendix D).

The pre-development infiltration volume is 108,625 m³/year. This assumes the Site is composed of forest, shrub/meadow, wetland, pavement/gravel, and existing structures. The post-development without mitigation infiltration volume is 60,624 m³/year, which is a deficit of 48,001 m³/year. This assumes the Site is composed of forest, landscaped grass, and impervious land (road, structures, driveways, storm water management ponds, etc). An additional 28,062 m³/year of infiltration can be obtained by direction of rooftop runoff to adjacent yards, creating a post-development with mitigation volume of 88,687 m³/year. This represents a decrease of 19,938 m³/year (18%) from the predevelopment setting.

As noted above, infiltration testing was completed to assess feasibility of additional subsurface LID features to promote additional ground water infiltration. However, it is noted that high water table conditions are present across the Site and the soils have shown to have limited permeability / infiltration such that there may be limitations with respect to mitigation at the Site. It is noted that the low permeability of the soils would limit ground water infiltration at the Site such that the adjacent wetland features are primarily sourced by surface runoff which will be maintained post development, however, the details of the stormwater management plan are not known at this time. Although there is ground water seepage present at the Site, it is noted to be localized and does not represent the primary source for water contributions to this retained feature or the off-site wetland.

It is noted that the above water balance is considered preliminary and could be updated with additional information relating to the stormwater management design for the Site, including potential LID's to mitigated ground water deficits if feasible.

6.0 SUMMARY AND CONCLUSIONS

Azimuth was retained by LIV Communities to conduct a Preliminary Hydrogeological Assessment for the proposed Shadow Creek Subdivision development located at within Parts of Lots 3, 4, & 5, Concession 9, within the Township of Severn. The proposed development is approximately 45.6 ha in size and is located on the south east side of Highway 11 and the north east side of Menoke Beach Road. The parcel is currently composed of agricultural land, with numerous drainage channels intersecting the site in a west to east direction. The proposed development includes the construction of 319 single lot residential homes and 215 townhomes with associated road, storm water management, open space, and park space.

The Site is found at an elevation of 219 – 226 masl. In general, the Site slopes from west to east towards Lake Couchiching, while an unevaluated wetland is present along Shadow Creek that bound much of the eastern section of the Site. Numerous drainage channels extend through the Site, including a larger feature which is composed of a wetland which is being retained as part of the development. Flow in these features has been observed to be only trickle flow indicating that from a quantitative perspective, the on-site and off-site wetland and water course features are primarily surface water fed. An area of ground water seepage was documented at the western end of the retained wetland feature; however, the flow is noted to be localized and does not create a significant contribution to the main Site drainage channel relative to the surface water contributions from the surrounding area.

Ground water table measurements were collected from nine (9) monitoring wells installed across the Site in November 2021 and four (4) locations in April 2021. The

measured water level at the Site ranged from 219.26-223.68 masl. In general, the available data shows the shallow ground water flow matches the local topography and flows from west to east. Although spring water levels were only measured at four locations, the data when correlated to the November data would indicate that the November 2021 data likely represents high water table conditions. It is noted that monitoring will continue into the summer of 2022 such that high water table conditions can be confirmed during the spring of 2022.

Hydraulic (slug) testing was completed at three (3) of the monitoring wells to characterize the hydraulic conductivity of the soils associated with the shallow water table aquifer. The hydraulic conductivity ranged between 8.1×10^{-7} to 1.6×10^{-6} m/s. These results indicate relative consistency across the Site which is expected given the general consistency in soils across the Site. The results also correlate to the sandy and clayey silt glacial till, which have low to moderate hydraulic conductivity.

A water balance was completed for pre-development, post-development, and postdevelopment with mitigation scenarios of the Site. The pre-development infiltration volume is 108,625 m³/year. This assumes the Site is composed of forest, shrub/meadow, wetland, pavement/gravel, and existing structures. The post-development without mitigation infiltration volume is 60,624 m³/year, which is a deficit of 48,001 m³/year. This assumes the Site is composed of forest, landscaped grass, and impervious land (road, structures, driveways, storm water management ponds, etc). An additional 28,062 m³/year of infiltration can be obtained by direction of rooftop runoff to adjacent yards, creating a post-development with mitigation volume of 88,687 m³/year. This represents a decrease of 19,938 m³/year (18%) from the pre-development setting.

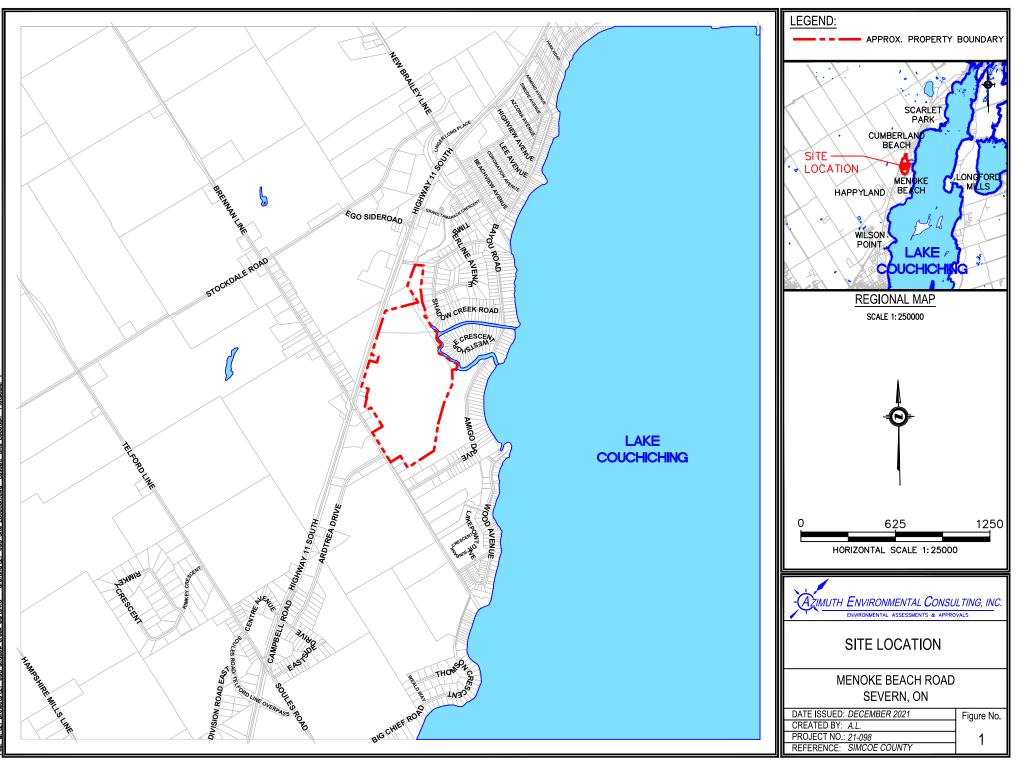
Further ground water infiltration mitigation may be incorporated in the stormwater management design; however, it is noted that high water table conditions are present across the Site and the soils have shown to have limited permeability / infiltration such that there may be limitations with respect to mitigation at the Site. It is also noted that the low permeability of the soils would limit ground water infiltration at the Site such that the adjacent wetland features are primarily sourced by surface runoff which will be maintained post-development, although the details of the stormwater management plan are not known at this time. Despite there being ground water seepage present within the wetland at the Site, it is noted to be localized and does not represent the primary source for water contributions to this retained feature or the off-site wetland.

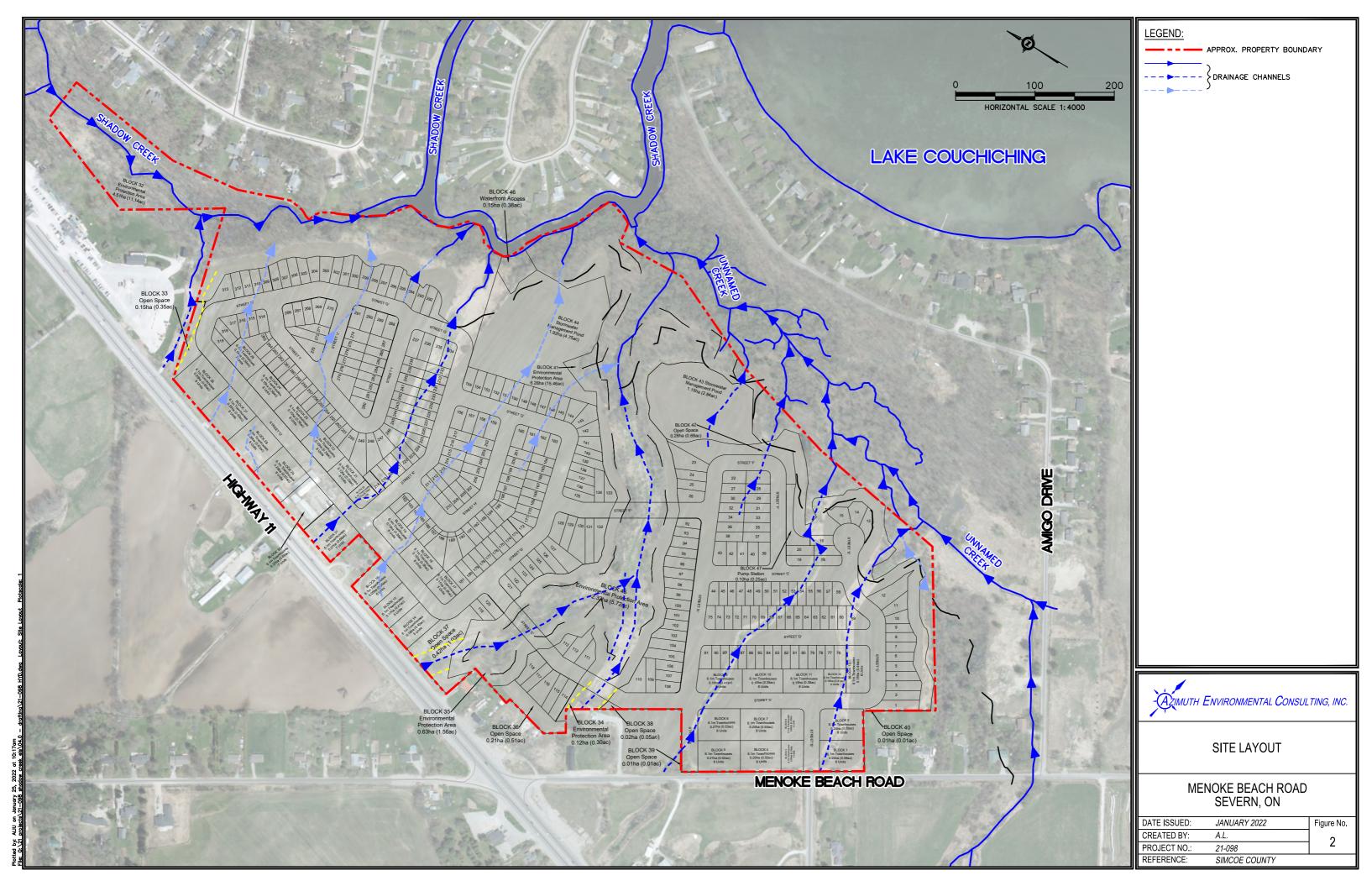
It is noted that the water balance prepared as part of this report is considered preliminary and could be updated with additional information relating to the stormwater management design for the Site, including potential LIDs to mitigate ground water deficits if feasible.

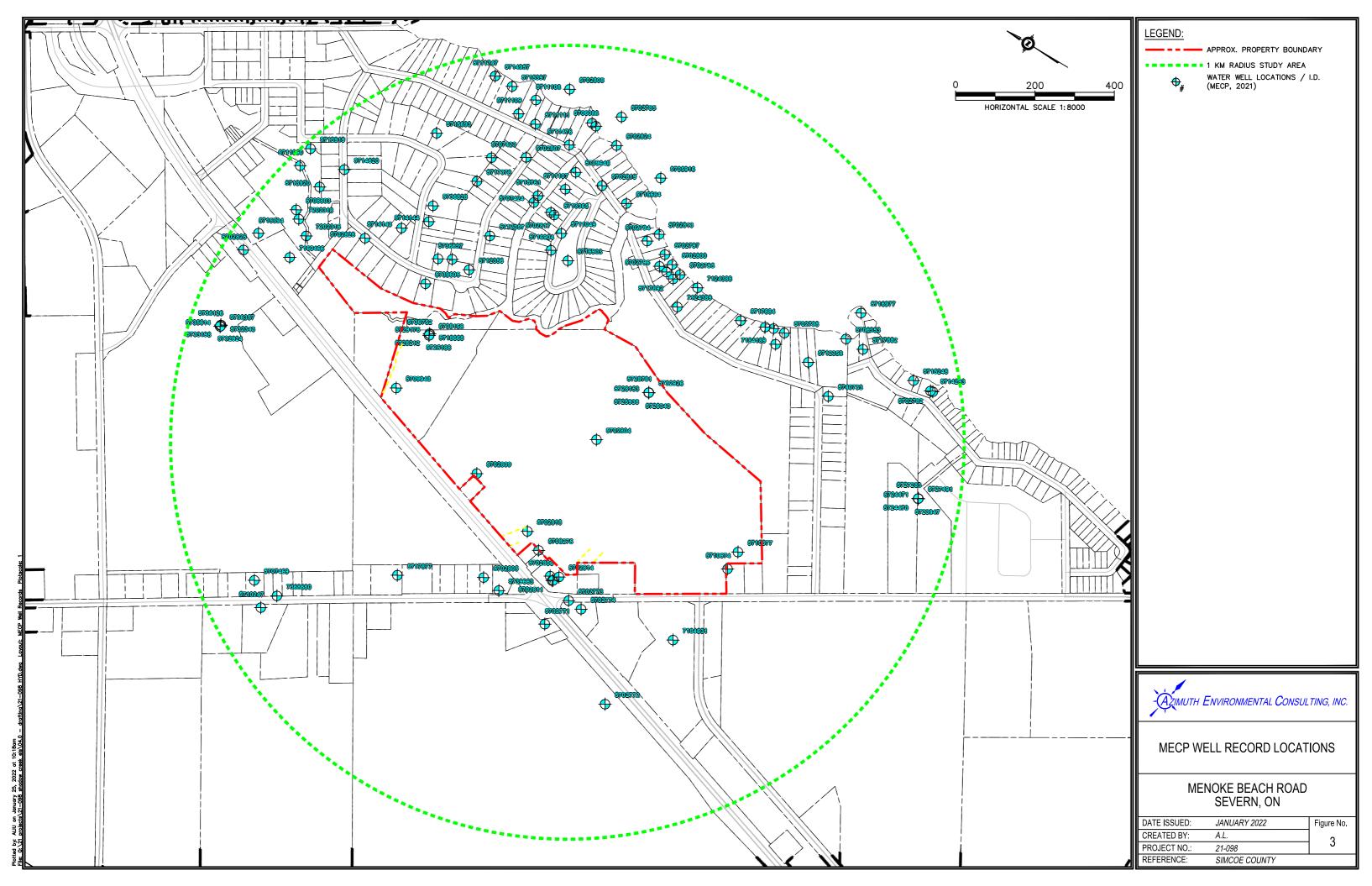
7.0 REFERENCES

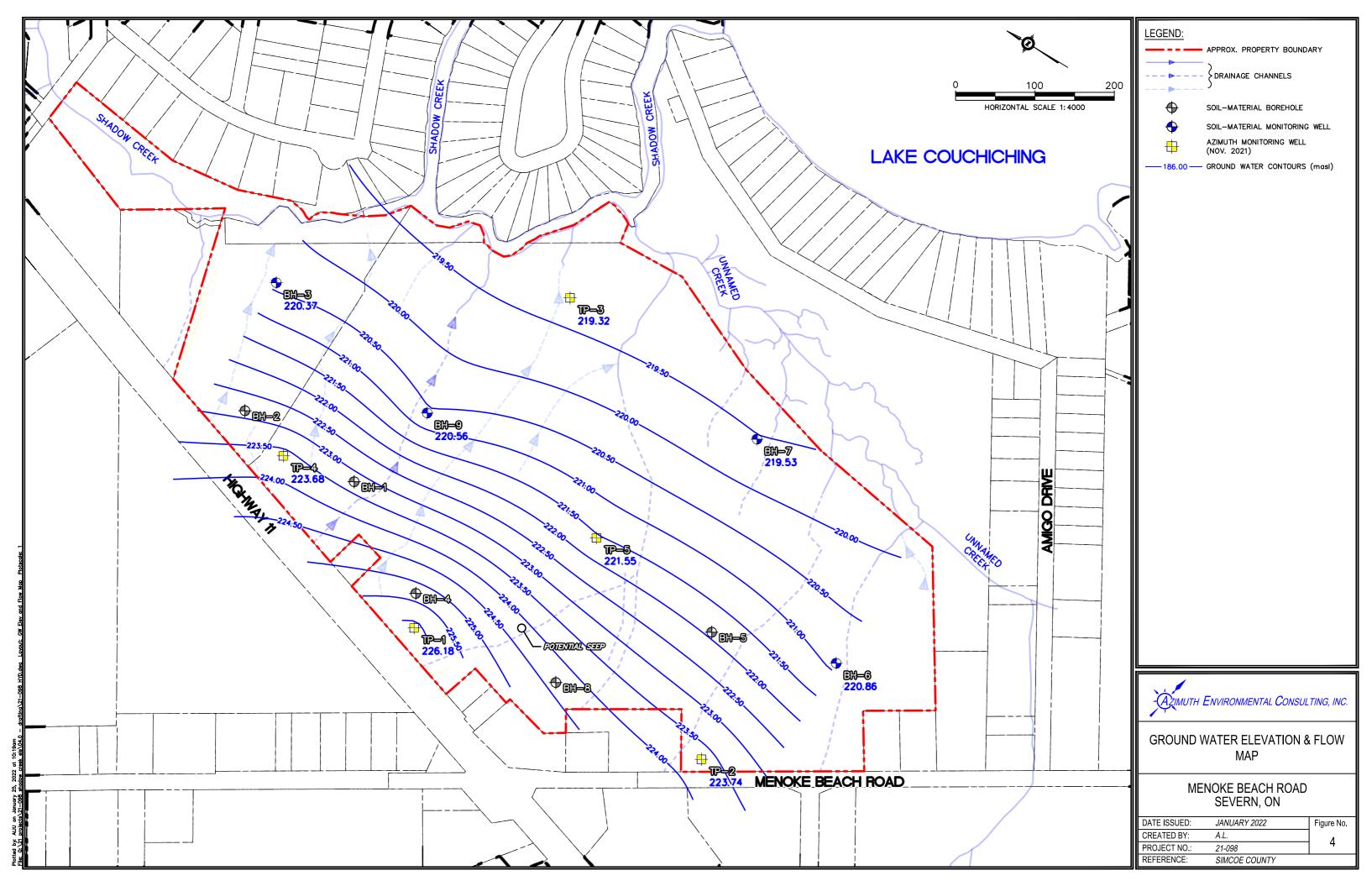
- Barnett, P.J., Cowan, W.R. and Henry, A.P. 1991. Quaternary Geology of Ontario, Ontario Geological Survey, Map 2556, Scale 1:1,000,000.
- Chapman L.J., and D.F. Putnam, 1984. The Physiography of Southern Ontario. 3rd Edition, OGS Special Volume 2, Ministry of Natural Resources.
- Hoffman, D.W. & N.R. Richards, 1962. Soil Survey of Simcoe County. Report No. 29 of the Ontario Soil Survey.
- Ontario Geological Survey (OGS). 2021. OGS Earth Mapping. Obtained from: https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth
- Ontario Ministry of the Environment and Climate Change (MOECC), 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications.
- Soil-Mat Engineers & Consultants Ltd. 2021. Preliminary Geotechnical Investigation. Proposed Shadow Creek Residential Development. Highway 11 and Menoke Beach Road. Township of Severn, Ontario
- Soil Moisture Equipment Corp. (Soil Moisture). 2012. Guelph Permeameter Operating Instructions. Model 2800K1.
- South Georgian Bay-Lake Simcoe Source Protection Committee., 2015. Approved Assessment Report: Lakes Simcoe and Couchiching- Black River Source Protection Area Part 1.
- Thornthwaite, C.W., and Mather, J.R., 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Climatology, vol. 10.

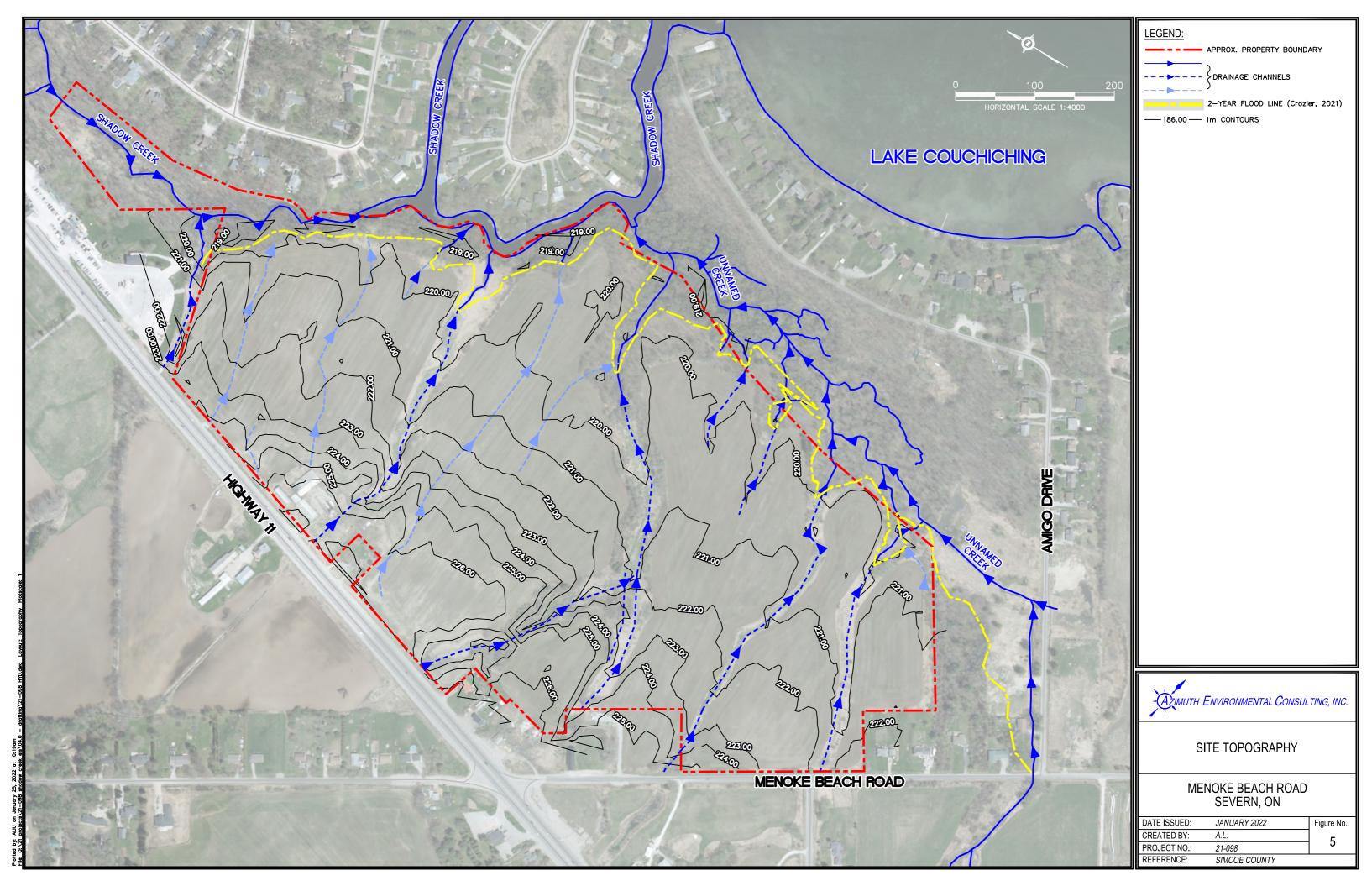
APPENDICES

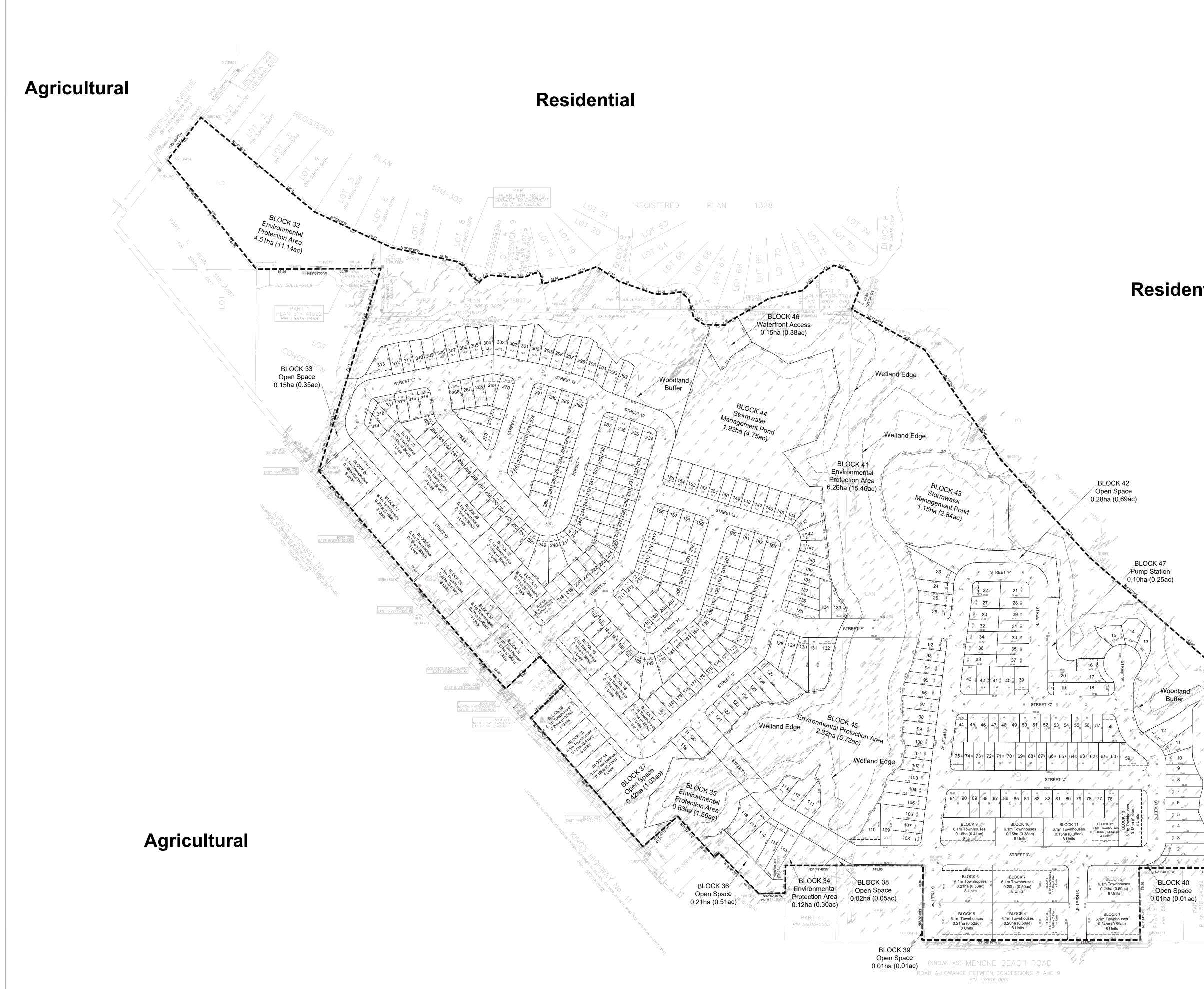

Appendix A:FiguresAppendix B:Development PlanAppendix C:MECP Well RecordsAppendix D:Water Balance InformationAppendix E:Borehole / Monitoring Well Details and Ground Water ElevationsAppendix F:Slug Testing ResultsAppendix G:Guelph Permeameter Testing Data




APPENDIX A


Figures


AZIMUTH ENVIRONMENTAL CONSULTING, INC.



APPENDIX B

Development Plan

Agricultural

	CON	PART OF LOTS 3, 4, AN NCESSION 9 (NORTH DI PHIC TOWNSHIP OF NC NOW IN THE TOWNSHIP OF SEVEF COUNTY OF SIMCOB	VISION) RTH ORILLIA) RN
	Owner's Certificate I HEREBY AUTHORIZE MACNAU TO SUBMIT THIS PLAN FOR AP	JGHTON HERMSEN BRITTON CL PROVAL.	ARKSON PLANNING LIMITED
	DATE:		LIV Communities
	Surveyor's Certificate		
	Revision No. Date	Issued / Revision	n By
ntial	Additional Information Required U A. As Shown D. Residential, Parkland G. As Shown J. As Shown L. As Shown	nder Section 51(17) of the Planning B. As Shown E. As Shown H. Municipal Water Supp K. All Services As Requi	
	KEY PLAN	LAKE COUCHICHING	SUBJECT LANDS
	P.13, AS AMENDED		LANNING ACT RSO, 1990, CHAPTER
		DIRECTOR OF PLANNI COUNTY OF SIMCOE	NG, DEVELOPMENT AND TOURISM
	Area Schedule Description 11m (36') Single Detached	Lots/Blocks 9-11, 44-91, 130-132, 135-140, 164-229, 232-233, 238-239, 242-265, 271-287	Units Area 170 6.36 ha (15.70 ac)
	12.2m (40') Single Detached 6.1m (20') Townhouses	1-8, 12-43, 92-129, 133-134, 141-163, 230-231, 234-237, 240-241, 266-270, 288-318 Block 1-31	149 6.94 ha (17.14 ac) 215 5.51 ha (13.62 ac)
	Open Space Pump Station Environmental Protection Area Stormwater Management Pond	Block 33, 36, 37, 38, 39, 40, 42 Block 47 Block 32, 34, 35, 41, 45 Block 43, 44	
	Waterfront Access Street A-K Total	Block 46	0.15 ha (0.38 ac) 8.42 ha (20.80 ac) 534 45.45 ha (112.31 ac)
		URI & L HBC AR	A N N I N G BAN DESIGN ANDSCAPE CHITECTURE 905 761 5589 WWW.MHBCPLAN.COM
	Stamp		Date November 9, 2021
	d		15226X Plan Scale 1:2000 (Arch D)
			Drawn By T.H.
Berfe-0009			Checked By E.T.
A - 24287 A - 2427 A	Project		Other
PLAN 516-242 PW 58616-000	8743 Highway 11 Draft Plan of Subdiv	<i>r</i> ision	49.Jour
	File Name DRAFT PLAN	OF SUBDIVISION	Dwg No. 1 of 1
		50 100 MENTS SHOWN ON THIS PLAN ARE IN CONVERTED TO FEET BY DIVIDING B	
	N:\15226\X — MBR Phase III — Shadow Creek, S		26X- Draft Plan of Subdivision- 03 January 2022.dwg

APPENDIX C

MECP Well Records

AZIMUTH ENVIRONMENTAL CONSULTING, INC.

Well Records	Within	1,000m	of Site	Centre

WellID	Elevation (m)	Depth (m)	WaterLevel (m)	WaterYield (lps)	Water use	Water status	Lithology	Completio Date
5702771 5702772	220.98 228.60	17.07 11.58	4.88 4.88	N/A N/A	Public Domestic	Water Supply Water Supply	Limestone Clay	08/15/1947
5702773	220.98	11.89	4.27	N/A	Commercial	Water Supply Water Supply	Clay	06/14/1955
5702774 5702782	220.98 219.46	15.54 7.92	2.44 0.30	13.64 N/A	Livestock Domestic	Water Supply Water Supply	Clay Limestone	04/20/1963
5702783	219.46	7.92	0.30	N/A	Domestic	Water Supply	Clay	11/17/1954
5702785 5702792	219.46 219.46	7.62	0.61	13.64 N/A	Domestic Domestic	Water Supply Water Supply	Limestone Limestone	06/14/1961
5702793	219.46	7.32	1.52	N/A	Domestic	Water Supply	Gravel	07/13/1953
5702794 5702795	219.46 219.46	14.33 14.33	1.83	N/A N/A	Domestic Domestic	Water Supply Water Supply	Clay Limestone	08/20/1954
5702796	219.46	16.76	1.83	N/A	Domestic	Water Supply	Limestone	06/21/1955
5702797 5702798	219.46 219.46	13.11 15.54	0.30	113.65 13.64	Domestic Domestic	Water Supply Water Supply	Limestone Soil	09/25/1959
5702799	219.46	26.82	N/A	45.46	Domestic	Water Supply	Limestone	06/07/1963
5702800 5702801	219.46 220.98	15.24 10.67	1.52 4.57	22.73 N/A	Domestic Domestic	Water Supply Water Supply	Soil Unknown material	07/12/196
5702804	220.98	14.63	1.83	N/A	Domestic	Water Supply	Clay	06/27/1952
5702805 5702806	220.98 220.98	18.29 12.19	13.72 3.05	N/A N/A	Domestic Commercial	Water Supply Water Supply	Limestone Limestone	07/05/1955
5702807	219.46	11.89	0.30	N/A	Domestic	Water Supply	Diamicton	06/29/196
5702808 5702809	219.46 220.98	10.67 18.29	1.83 3.66	13.64 13.64	Domestic Domestic	Water Supply Water Supply	Gravel Soil	08/23/196
5702811	220.98	11.28	1.22	18.18	Domestic	Water Supply	Sand Gravel	08/14/196
5702813 5702814	219.46 220.98	11.89 8.53	0.91 3.05	45.46 36.37	Domestic Public	Water Supply Water Supply	Clay Sand Clay	06/17/196
5702817	220.98	12.80	2.44	36.37	Domestic	Water Supply	Clay	07/20/1964
5702818 5702819	220.98 220.98	6.71 11.89	3.05 0.91	45.46 22.73	Domestic Domestic	Water Supply Water Supply	Limestone Limestone	08/16/196
5702824	219.46	12.80	1.52	45.46	Domestic	Water Supply	Shale	10/03/196
5702828 5702832	220.98	42.37 9.45	2.44 0.61	18.18 90.92	Commercial Domestic	Water Supply Water Supply	Granite Sand	05/01/196
5705916	219.46	9.14	2.44	31.82	Domestic	Water Supply	Limestone	07/02/196
5706086 5706353	219.46 220.98	14.02 15.54	N/A 2.13	22.73 45.46	Domestic Domestic	Water Supply Water Supply	Clay Sand Clay	12/21/196 04/29/196
5707061	220.98	13.41	2.44	45.46	Domestic	Water Supply	Limestone	09/08/196
5707064 5707423	220.98 220.98	12.19 16.46	3.66 4.27	31.82 13.64	Domestic Domestic	Water Supply Water Supply	Shale Limestone Clay	08/16/196 08/27/197
5707424	220.98	28.04	1.83	36.37	Domestic	Water Supply	Clay Gravel	08/20/197
5707469 5708275	236.22 227.08	44.81 91.44	15.24 8.23	31.82 18.18	Domestic Commercial	Water Supply Water Supply	Limestone Soil	07/17/197 04/01/197
5708803	220.98	7.62	4.57	9.09	Domestic	Water Supply	Sand	04/11/197
5709648 5709948	222.50 222.50	26.21 19.81	1.22	36.37 9.09	Domestic Domestic	Water Supply Water Supply	Granite	12/01/197 04/13/197
5710247	236.22	46.33	18.29	36.37	Domestic	Water Supply	Granite	08/30/197
5710674 5710677	224.03 224.03	9.14 8.53	1.83 2.44	36.37 54.55	Domestic Domestic	Water Supply Water Supply	Clay Sand Clay Sand	03/16/197
5711049	222.50	11.89	0.30	68.19	Domestic	Water Supply	Gravel	05/24/197
5711107 5711108	222.50 219.46	12.19 28.35	0.00	36.37 N/A	Domestic Domestic	Water Supply Water Supply	Gravel Granite	06/02/197 06/15/197
5711109	220.98	20.73	3.66	18.18	Domestic	Water Supply	Clay	06/02/197
5711111 5711476	220.98 220.98	30.18 28.35	0.61	4.55	Domestic Domestic	Water Supply Water Supply	Limestone Clay Sand	06/09/197 06/13/197
5711747	219.46	14.02	0.61	22.73	Domestic	Water Supply	Clay	09/09/197
5712201 5712356	222.50 222.50	27.13 27.13	0.00	22.73 22.73	Domestic Domestic	Water Supply Water Supply	Limestone / Granite Granite	06/05/197 06/09/197
5712357	222.50	16.46	1.52	45.46	Domestic	Water Supply	Limestone	06/15/197
5712358 5713365	220.98 220.98	7.01	1.52	22.73 45.46	Domestic Domestic	Water Supply Water Supply	Gravel	06/19/197
5713920	220.98	14.94	0.91	45.46	Domestic	Water Supply Water Supply	Gravel	11/05/197
5714143 5714144	222.50 222.50	19.81 21.64	1.52 0.91	22.73 45.46	Domestic	Water Supply	Limestone	04/25/197 05/07/197
5714293	219.46	10.67	1.52	54.55	Domestic Domestic	Water Supply Water Supply	Clay Limestone	03/24/197
5714620 5714957	220.98 219.46	26.82 13.11	2.44 0.30	45.46 N/A	Domestic Domestic	Water Supply Water Supply	Limestone	06/22/197 05/18/197
5715248	219.46	10.67	0.61	90.92	Domestic	Water Supply	Limestone	06/12/197
5715397 5715684	219.46 220.98	22.25 13.11	0.91 10.67	45.46 45.46	Domestic Domestic	Water Supply Water Supply	Limestone Limestone	07/11/197 10/15/197
5715693	220.98	10.36	2.13	40.91	Domestic	Water Supply	Sand Silt	11/21/197
5715761 5716903	220.98 220.98	22.86 11.89	3.66 0.61	90.92 45.46	Domestic Domestic	Water Supply Water Supply	Clay Clay	10/13/197 06/27/198
5716904	220.98	11.28	0.30	45.46	Domestic	Water Supply	Clay	07/02/198
5716977 5717378	220.98 220.98	7.01 15.85	0.91 3.66	90.92 31.82	Domestic Domestic	Water Supply Water Supply	Clay Sand Clay Gravel	10/28/197 03/28/198
5717877	228.60	45.72	11.89	45.46	Domestic	Water Supply	Granite	07/29/198
5717882 5717884	220.98	7.92 28.96	3.05	36.37 27.28	Domestic Domestic	Water Supply Water Supply	Clay Limestone	08/13/198
5717892	220.98	28.35	4.57	31.82	Domestic	Water Supply	Limestone	06/16/198
5718668 5723947	N/A N/A	57.30 9.14	0.91 2.44	0.00 36.37	Commercial Domestic	Water Supply Water Supply	Sand Diamicton	09/12/198 07/10/198
5724470	N/A	16.15	3.66	27.28	Public	Water Supply	Clay Sand	12/29/198
5724471 5725187	N/A N/A	34.14 12.19	2.74 0.00	9.09 18.18	Public Public	Water Supply Water Supply	Limestone Limestone	12/15/198 06/25/198
5725188	N/A	27.43	3.66	9.09	Cooling And A/C	Water Supply	Limestone	01/12/198
5725807 5725938	N/A N/A	25.30 7.92	9.14 1.83	18.18 36.37	Domestic Domestic	Water Supply Water Supply	Limestone Limestone	09/05/198
5726343	N/A	8.84	0.91	45.46	Domestic	Water Supply	Limestone	02/13/199
5726453 5726809	N/A N/A	18.29 75.59	3.66 1.83	45.46 9.09	Domestic Public	Water Supply Water Supply	Clay Gravel Granite	11/29/198
5727254	N/A	72.54	5.49	68.19	Domestic	Water Supply	Granite	07/09/199
5727283 5727491	N/A N/A	10.06 15.24	1.52 2.74	45.46 18.18	Domestic Domestic	Water Supply Water Supply	Clay Limestone	08/10/199
5727692	N/A	17.98	13.72	90.92	Domestic	Water Supply	Limestone	09/18/199
5728153 5728212	N/A N/A	8.23 24.69	2.44 8.23	68.19 22.73	Domestic Domestic	Water Supply Water Supply	Sand Limestone	06/15/199
5728781	N/A	10.67	2.13	136.38	Domestic	Water Supply	Limestone	12/15/199
5729176 5729922	N/A N/A	39.01 25.91	31.39 3.66	45.46 45.46	Domestic Domestic	Water Supply Water Supply	Gravel Limestone	05/10/199 10/05/199
5729925	N/A	17.68	3.96	45.46	Domestic	Water Supply	Diamicton Gravel	08/20/199
5730993 5731907	N/A N/A	13.41 76.20	1.83 4.57	18.18 22.73	Domestic Domestic	Water Supply Water Supply	Clay Silt Unknown material Granite	07/03/199
5732343	N/A	38.40	5.18	54.55	Domestic	Water Supply	Granite	07/26/199
5732924 5732926	N/A N/A	54.86 18.29	3.66 17.98	90.92 36.37	Commercial Domestic	Water Supply Water Supply	Bedrock Limestone	08/07/199 04/25/199
5733198	N/A		N/A	N/A	Commercial	Abandoned-Other	N/A	12/08/199
5735614	N/A N/A	39.93	3.66 N/A	136.38 N/A	Domestic	Water Supply	Granite N/A	11/07/200
5736126 5736357	N/A N/A	54.86	N/A 3.05	N/A 4.55	Commercial Domestic	Abandoned-Other Water Supply	N/A Granite	06/23/200
5736637	N/A	18.59	3.66	22.73	Domestic	Water Supply	Clay	12/18/200
5736752 5736828	N/A N/A	13.41 17.98	4.27 4.27	45.46 31.82	Domestic Domestic	Water Supply Water Supply	Limestone Sand Clay Silt	04/11/200
5738158	N/A	14.33	3.05	31.82	Domestic	Water Supply	Clay	08/27/200
5739605 5739663	N/A N/A	15.24 38.10	6.40 8.00	22.00 45.00	Domestic Domestic	Water Supply Water Supply	Limestone Clay	12/01/200 04/10/200
5740733	N/A	13.40	2.74	40.00	Domestic	Water Supply	Limestone	05/22/200
7124388	N/A	6.50	0.74	172.07 N/A	Domestic Not Used	Water Supply Abandoned-Other	Clay Sand Gravel N/A	05/17/200

APPENDIX D

Water Balance Information

AZIMUTH ENVIRONMENTAL CONSULTING, INC.

Table A: Pre-Development

Catchment Designation	Agricultural	Forest	Wetland	Impervious	Total	
Area (m²)	306,500	118,386	27,114	2,500	454,500	
Pervious Area (m ²)	306,500	118,386	0	0	424,886	
Impervious Area (m ²)	0	0	27,114	2,500	29,614	
Infiltration Factors	-		,	_,		
Topography Infiltration Factor	0.2	0.2	0	0		
Soil Infiltration Factor	0.15	0.15	0	0		
Land Cover Infiltration Factor	0.1	0.2	0	0		
Infiltration Factor	0.45	0.55	0	0		
Run-Off Coefficient	0.55	0.45	1	1		
Run-Off From Impervious Surfaces	0.8	0.8	0.8	0.8		
Inputs (Per Unit Area)						
Precipitation (mm/yr)	1,077	1,077	1,077	1,077	1,077	
Rainfall (mm/yr)	742	742	742	742	742	
Run-On (mm/yr)	0	0	0	0	0	
Other Inputs (mm/yr)	0	0	0	0	0	
Total Inputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	
Outputs (Per Unit Area)						
Precipitation Surplus (mm/yr)	535	535	862	862	556	
Net Surplus (mm/yr)	535	535	862	862	556	
Evapotranspiration (mm/yr)	542	542	215	215	521	
Infiltration (mm/yr)	241	294	0	0	239	
Surplus Infiltration (mm/yr)	0	0	0	0	0	
Total Infiltration (mm/yr)	241	294	0	0	239	
Run-Off Pervious Areas (mm/yr)	294	241	0	0	261	
Run-Off Impervious Areas (mm/yr)	0	0	862	862	56	
Total Run-Off (mm/yr)	294	241	862	862	317	
Total Outputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	
Difference (Inputs - Outputs)	0	0	0	0	0	
Inputs (Volumes)	1	L	I	1		
Precipitation (m ³ /yr)	330,101	127,502	29,202	2,693	489,497	
Run-On (m ³ /yr)	0	0	0	0	0	
Other Inputs (m³/yr)	0	0	0	0	0	
Total Inputs (m³/yr)	330,101	127,502	29,202	2,693	489,497	
Outputs (Volumes)						
Precipitation Surplus (m ³ /yr)	163,978	63,337	23,361	2,154	252,829	
Net Surplus (m ³ /yr)	163.978	63.337	23,361	2,154	252.829	
Evapotranspiration (m ³ /yr)	166,123	64,165	5,840	539	236,667	
Infiltration (m ³ /yr)	73,790	34,835	0	0	108,625	
Surplus Infiltration (m ³ /yr)	0	0	0	0	0	
Total Infiltration (m ³ /vr)	73,790	34,835	0	0	108,625	
Run-Off Pervious Areas (m ³ /yr)	90,188	28,501	0	0	118,689	
Run-Off Impervious Areas (m ³ /yr)	0	0	23,361	2,154	25,515	
Total Run-Off (m ³ /yr)	-	-	23,361	2,154	144,204	
	90,188	28,501				
Total Outputs (m ³ /yr)	330,101	127,502	29,202	2,693	489,497	
Difference (Inputs - Outputs)	0	0	0	0	0	

Table B: Post-Development (no mit)

				_				
Catchment Designation	Forest	Landscaped Grass	Driveway	Roads	Wetland	SWM Pond	Rooftop	Total
Area (m ²)	111,186	115,920	18,810	71,570	27,114	15,350	94,550	454,500
Pervious Area (m ²)	111,186	115,920	0 0		0	0	0	227,106
Impervious Area (m²)	0	0	18,810	71,570	27,114	15,350	94,550	227,394
Infiltration Factors				1	1	-	1	
Topography Infiltration Factor	0.2	0.2	0	0	0	0	0	
Soil Infiltration Factor	0.15	0.15	0	0	0	0	0	
Land Cover Infiltration Factor	0.2	0.1	0	0	0	0	0	
Infiltration Factor	0.55	0.45	0	0	0	0	0	
Run-Off Coefficient	0.45	0.55	1	1	1	1	1	
Run-Off From Impervious Surfaces	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Inputs (Per Unit Area)	-			1	1	-	1	
Precipitation (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Rainfall (mm/yr)	742	742	742	742	742	742	742	742
Run-On (mm/yr)	0	0	0	0	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0	0	0	0	0
Total Inputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Outputs (Per Unit Area)								
Precipitation Surplus (mm/yr)	535	535	862	862	862	862	862	698
Net Surplus (mm/yr)	535	535	862	862	862	862	862	698
Evapotranspiration (mm/yr)	542	542	215	215	215	215	215	379
Infiltration (mm/yr)	294	241	0	0	0	0	0	133
Surplus Infiltration (mm/yr)	0	0	0	0	0	0	0	0
Total Infiltration (mm/yr)	294	241	0	0	0	0	0	133
Run-Off Pervious Areas (mm/yr)	241	294	0	0	0	0	0	134
Run-Off Impervious Areas (mm/yr)	0	0	862	862	862	862	862	431
Total Run-Off (mm/yr)	241	294	862	862	862	862	862	565
Total Outputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0
Inputs (Volumes)	-							
Precipitation (m ³ /yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Run-On (m ³ /yr)	0	0	0	0	0	0	0	0
Other Inputs (m ³ /yr)	0	0	0	0	0	0	0	0
Total Inputs (m ³ /yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Outputs (Volumes)	110,141	124,040	20,200	11,001	20,202	10,002	101,000	400,401
Precipitation Surplus (m ³ /yr)	59.485	62.017	16,207	61.665	23,361	13,226	81,464	317.424
Net Surplus (m ³ /yr)	59,485	62,017	16,207	61,665	23,361	13,226	81,464	317,424
Evapotranspiration (m ³ /yr)	60,263	62,017	4,052	15,416	5,840	3,306	20,366	172,072
	,		,	,	,	3,306	,	,
Infiltration (m ³ /yr)	32,716	27,908	0	0	0	-	0	60,624
Surplus Infiltration (m ³ /yr)	0	0	0	0	0	0	0	0
Total Infiltration (m ³ /yr)	32,716	27,908	0	0	0	0	0	60,624
Run-Off Pervious Areas (m ³ /yr)	26,768	34,109	0	0	0	0	0	60,877
Run-Off Impervious Areas (m ³ /yr)	0	0	16,207	61,665	23,361	13,226	81,464	195,923
Total Run-Off (m ³ /yr)	26,768	34,109	16,207	61,665	23,361	13,226	81,464	256,800
Total Outputs (m ³ /yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0

Table C: Post-Development (with mitigation)

Catchment Designation	Forest	Landscaped Grass	Driveway	Roads	Wetland	SWM Pond	Rooftop	Total
Area (m²)	111,186	115,920	18,810	71,570	27,114	15,350	94,550	454,500
Pervious Area (m²)	111,186	115,920	0	0	0	0	0	227,106
Impervious Area (m²)	0	0	18,810	71,570	27,114	15,350	94,550	227,394
Infiltration Factors					•			•
Topography Infiltration Factor	0.2	0.2	0	0	0	0	0	
Soil Infiltration Factor	0.15	0.15	0	0	0	0	0	
Land Cover Infiltration Factor	0.2	0.1	0	0	0	0	0	
Infiltration Factor	0.55	0.45	0	0	0	0	0	
Run-Off Coefficient	0.45	0.55	1	1	1	1	1	
Run-Off From Impervious Surfaces	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Inputs (Per Unit Area)								
Precipitation (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Rainfall (mm/yr)	742	742	742	742	742	742	742	742
Run-On (mm/yr)	0	0	0	0	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0	0	0	0	0
Total Inputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Outputs (Per Unit Area)								
Precipitation Surplus (mm/yr)	535	535	862	862	862	862	862	698
Net Surplus (mm/yr)	535	535	862	862	862	862	862	698
Evapotranspiration (mm/yr)	542	542	215	215	215	215	215	379
Infiltration (mm/yr)	294	241	0	0	0	0	0	133
Surplus Infiltration (mm/yr)	0	0	0	0	0	0	297	62
Total Infiltration (mm/yr)	294	241	0	0	0	0	297	195
Run-Off Pervious Areas (mm/yr)	241	294	0	0	0	0	0	134
Run-Off Impervious Areas (mm/yr)	0	0	862	862	862	862	565	369
Total Run-Off (mm/yr)	241	294	862	862	862	862	565	503
Total Outputs (mm/yr)	1,077	1,077	1,077	1,077	1,077	1,077	1,077	1,077
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0
Inputs (Volumes)	1			1	T		1	
Precipitation (m ³ /yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Run-On (m³/yr)	0	0	0	0	0	0	0	0
Other Inputs (m ³ /yr)	0	0	0	0	0	0	0	0
Total Inputs (m³/yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Outputs (Volumes)		• •						· · ·
Precipitation Surplus (m ³ /yr)	59,485	62.017	16,207	61.665	23,361	13,226	81,464	317.424
Net Surplus (m ³ /yr)	59,485	62.017	16,207	61,665	23,361	13,226	81,464	317,424
Evapotranspiration (m^3/yr)	60,263	62,829	4.052	15,416	5,840	3,306	20,366	172,072
Infiltration (m ³ /yr)	32,716	27,908	0	0	0	0	0	60.624
Surplus Infiltration (m ³ /yr)	0	0	0	0	0	0	28,062	28,062
Total Infiltration (m ³ /vr)	32.716	27.908	0	0	0	0	28,062	88,687
Run-Off Pervious Areas (m ³ /yr)		1	0	0	0	0	0	
	26,768	34,109			-	-	-	60,877
Run-Off Impervious Areas (m ³ /yr)	0	0	16,207	61,665	23,361	13,226	53,402	167,860
Total Run-Off (m ³ /yr)	26,768	34,109	16,207	61,665	23,361	13,226	53,402	228,738
Total Outputs (m³/yr)	119,747	124,846	20,258	77,081	29,202	16,532	101,830	489,497
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0

Table D: Water Balance Summary 1	Table											
Site												
Characteristic	Pre-	Post-	Post- elopment Change (Pre to Post) Inputs (Volume)		Post-Development	Change (Pre to Post with Mitigation)						
Characteristic	Development	Development			with Mitigation							
	400.407	400.407		I (400.407		00/					
Precipitation (m ³ /yr)	489,497	489,497	0	0%	489,497	0	0%					
Run-On (m ³ /yr)	0	0	0	NA	0	0	NA					
Other Inputs (m ³ /yr)	0	0	0	NA	0	0	NA					
Total Inputs (m ³ /yr)	489,497	489,497	0	0%	489,497	0	0%					
			Outputs (Vo	lume)								
Precipitation Surplus (m ³ /yr)	252,829	317,424	64,595	26%	317,424	64,595	26%					
Net Surplus (m3/yr)	252,829	317,424	64,595	26%	317,424	64,595	26%					
Evapotranspiration (m ³ /yr)	236,667	172,072	-64,595	-27%	172,072	-64,595	-27%					
Infiltration (m ³ /yr)	108,625	60,624	-48,001	-44%	60,624	-48,001	-44%					
Rooftop Infiltration (m ³ /yr)	0	0	0	NA	28,062	28,062	NA					
Total Infiltration (m ³ /yr)	108,625	60,624	-48,001	-44%	88,687	-19,938	-18%					
Run-Off Pervious Areas (m ³ /yr)	118,689	60,877	-57,812	-49%	60,877	-57,812	-49%					
Run-Off Impervious Areas (m ³ /yr)	25,515	195,923	170,407	668%	167,860	142,345	558%					
Total Run-Off (m ³ /yr)	144,204	256,800	112,596	78%	228,738	84,533	59%					
Total Outputs (m ³ /yr)	489,497	489,497	0	0%	489,497	0	0%					

APPENDIX E

Borehole / Monitoring Well Details & Ground Water Elevations

Monitoring Well Details & Ground Water Levels

Monitoring			Ground Elevation	Stickup	Reference Elevation	Top of Screen	Total Depth	Ground	Ground Water Level (mbtop)		Ground Water Level (mbgs)			Ground Water Elevation (masl)		
Well		Northing		(m)	(masl)	(mbgs)	(mbgs)	13-Apr-21	11-Nov-21	17-Nov-21	13-Apr-21	11-Nov-21	17-Nov-21	13-Apr-21	11-Nov-21	17-Nov-21
BH-3	626945	4949948	221.06	0.79	221.85	2.77	5.77	1.57	1.60	1.48	0.78	0.81	0.69	220.28	220.25	220.37
BH-6	626907	4949096	220.99	0.82	221.81	2.39	5.39	1.15	1.10	0.95	0.33	0.28	0.13	220.66	220.71	220.86
BH-7	627095	4949329	219.83	0.79	220.62	1.02	4.02	1.36	1.24	1.09	0.57	0.45	0.30	219.26	219.38	219.53
BH-9	626905	4949700	221.28	0.73	222.01	2.65	4.15	1.40	1.55	1.45	0.67	0.82	0.72	220.61	220.46	220.56
TP-1	626666	4949572	226.30	1.41	227.71	0.13	1.63			1.53			0.12			226.18
TP-2	626715	4949177	224.80	1.47	226.27	1.50	3.00			2.53			1.06			223.74
TP-3	627123	4949623	219.48	1.04	220.52	0.60	2.10			1.20			0.16			219.32
TP-4	626764	4949826	225.20	1.30	226.50	1.40	2.90			2.82			1.52			223.68
TP-5	626883	4949436	221.98	1.30	223.28	1.43	2.93			1.73			0.43			221.55

Environmental Assessments & Approvals

Project Name/ Project Client	Menoke Beach Phase 3	Project Address	3651 Menoke Beach Road and 8743 Highway 11, Township of Severn, ON	Date	Tuesday, November 09, 2021
Test Pit Number	TP-1	Contractor	Moris Shelswell Excavating	Elevation	NA
Equipment	Backhoe Excavator	Test Pit Size	1m x 3m	Datum	Ground Surface
Temperature	10°C	Weather	Cloudy	Sample Type	Soil

De	pth		Sa	mples				
From (m)	To (m)	Soil description	No.	Depth (mbgs)	Screening Parameters	Remarks / Chemical Analysis		
0.00	0.35	Topsoil : Black to brown silty sand, loose, poorly s moist.	sorted,	-	-	-		
0.35	1.10	<u>Sandy Silt:</u> Brown to grey, trace gravel, loose to compact, poorly sorted, moist.		0.4	-	sample for T-Time		
1.10	2.50	Clavey Silt Till: Brown to grey, trace gravel, firm poorly sorted, wet to saturated	ı, -	-	-	-		
		Test Pit Terminated at 2.5 mbgs						
	Comments		Water	Conditions	in Test Pit			
Standpipe	Standpipe installed in test pit prior to backfilling.							
Total Dep	ter level (ml pth (mbtoc) (m) = 1.41	= 3.04	✓ Wet upon c					
Stick up				J	JOB No.	21-098		
				TEST	PIT No.	TP-1		

 FIELD STAFF
 Alan Turner

TP-1 an Turner

Environmental Assessments & Approvals

Project Name/ Project Client	Menoke Beach Phase 3	Project Address	3651 Menoke Beach Road and 8743 Highway 11, Township of Severn, ON	Date	Tuesday, November 09, 2021
Test Pit Number	TP-2	Contractor	Moris Shelswell Excavating	Elevation	NA
Equipment	Backhoe Excavator	Test Pit Size	1.3m x 2.4m	Datum	Ground Surface
Temperature	10°C	Weather	Cloudy	Sample Type	Soil

De	pth		Sa	mples		
From (m)	To (m)	Soil description	No.	Depth (mbgs)	Screening Parameters	Remarks / Chemical Analysis
0.00	0.28	<u>Topsoil</u> : Black to brown silty sand, trace gravel, loo poorly sorted, moist.	se, _	-	-	-
0.28	1.60 Silty Sand: Brown, trace gravel, loose to compare poorly sorted, moist.		1	1.1	-	sample for T-Time
1.60	60 3.30 Clavey Silt: Grey, firm to stiff, poorly sorted, n saturated		to _	-	-	Ground water seepage observed at 3.2mbgs
		Test Pit Terminated at 3.3 mbgs				
Commen	Comments		Water	Conditions	in Test Pit	
Standpip	Standpipe installed in test pit prior to backfilling.					
Total De	tter level (ml pth (mbtoc) (m) = 1.47	- 1 17	✓ Wet upon completion □ Dry upon completion			
	, ,,	·····			JOB No.	21-098
			TEST	PIT No.	TP-2.	

TEST PIT No. FIELD STAFF Alan Turner

TP-2.

Environmental Assessments & Approvals

Project Name/ Project Client	Menoke Beach Phase 3	Project Address	3651 Menoke Beach Road and 8743 Highway 11, Township of Severn, ON	Date	Tuesday, November 09, 2021
Test Pit Number	TP-3	Contractor	Moris Shelswell Excavating	Elevation	NA
Equipment	Backhoe Excavator	Test Pit Size	2m x 4m	Datum	Ground Surface
Temperature	10°C	Weather	Cloudy	Sample Type	Soil

De	pth			San	nples				
From (m)	To (m)	Soil description	N	0.	Depth (mbgs)	Screening Parameters	Remarks / Chemical Analysis		
0.00	0.30	<u>Topsoil</u> : Black to brown silty sand, trace gravel, poorly sorted, moist.	loose,	-	-	-	-		
0.30	2.00	Silty Sand: Brown to grey, trace gravel, loose to compact, poorly sorted, moist to wet.		1	0.8	-	ground water seepage observed at 0.8 & 2.0 mbgs Sample for T-time		
		Test Pit Terminated at 2.0 mbgs							
	Comments		Wa	ater (Conditions	in Test Pit			
Standpipe	Standpipe installed in test pit prior to backfilling.								
Total Dep	ter level (mb pth (mbtoc) = $(m) = 1.04$	btoc) = 1.20 = 3.14 2 inch PVC with 1.5 m screen	✓ Wet upo						
Shek up	meetab (m) = 1.04 2 men 1 ve with 1.5 m sereen				J	JOB No.	21-098		
					TEST	PIT No.	TP-3		

FIELD STAFF Alan Turner

TP-3 an Turner

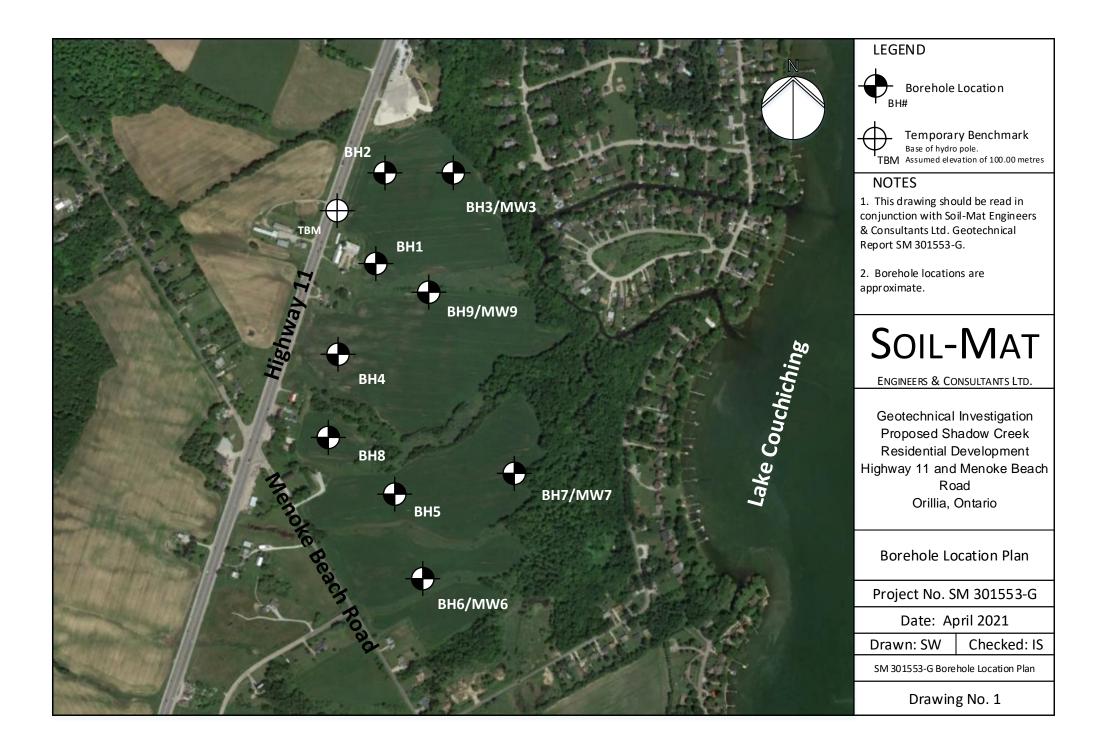
Environmental Assessments & Approvals

Project Name/ Project Client	Menoke Beach Phase 3	Project Address	3651 Menoke Beach Road and 8743 Highway 11, Township of Severn, ON	Date	Tuesday, November 09, 2021
Test Pit Number	TP-4	Contractor	Moris Shelswell Excavating	Elevation	NA
Equipment	Backhoe Excavator	Test Pit Size	1m x 3.5m	Datum	Ground Surface
Temperature	10°C	Weather	Cloudy	Sample Type	Soil

De	pth		s	amples		
From (m)	To (m)	Soil description	No.	Depth (mbgs)	Screening Parameters	Remarks / Chemical Analysis
0.00	0.35	<u>Topsoil</u> : Black to brown silty sand, trace gravel, le poorly sorted, moist.	oose, -	-	-	-
0.35	2.90	<u>Sandy Silt Till:</u> Brown to grey, trace gravel, loose to compact, moist. Clay seams noted at 1.3 to 1.8mbgs		0.7	-	sample for T-Time
		Test Pit Terminated at 2.9 mbgs				
	Comments		Wate	r Conditions	in Test Pit	
Standpipe	e installed in	test pit prior to backfilling.				
Total Dep	ter level (mb oth (mbtoc) (m) = 1.3	= 4.2	☐ Wet upon ✓ Dry upon of			
Such ap (JOB No.	21-098
				TEST	PIT No.	TP-4

FIELD STAFF Alan Turner

TP-4 an Turner


Environmental Assessments & Approvals

Project Name/ Project Client	Menoke Beach Phase 3	Project Address	3651 Menoke Beach Road and 8743 Highway 11, Township of Severn, ON	Date	Wednesday, November 10, 2021
Test Pit Number	TP-5	Contractor	Moris Shelswell Excavating	Elevation	NA
Equipment	Backhoe Excavator	Test Pit Size	1.3m x 3m	Datum	Ground Surface
Temperature	4°C	Weather	Partly sunny	Sample Type	Soil

De	pth			Sar	nples		
From (m)	To (m)	Soil description	I	No.	Depth (mbgs)	Screening Parameters	Remarks / Chemical Analysis
0.00	0.28	<u>Topsoil</u> : Black to brown silty sand, trace gravel, poorly sorted, moist.	, loose,	-	-	-	-
0.28	0.90	Sandy Silt Till: Brown to grey, trace gravel, loo compact, moist.	ose to	1	0.4	-	sample for T-Time
0.90	2.90	<u>Clavey Silt:</u> Brown to grey, stiff, stratified, mois saturated. Clay seams noted.	st to				Ground water seepage noted at 2 & 2.9mbgs
		Test Pit Terminated at 2.9 mbgs					
	Comments		И	Vater (Conditions	in Test Pit	
Standpipe	Standpipe installed in test pit prior to backfilling.						
Total Dep	ter level (mb oth (mbtoc) $(m) = 1.3$	= 4.23	☑ Wet up				
Suck-up	tick-up (m) = 1.3 2 inch PVC with 1.5 m screen					IOB No.	21-098
					TEST	PIT No.	TP-5

 FIELD STAFF
 Alan Turner

TP-5 in Turner

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949733 Client: LIV Communities

E: 626783

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft m	100.81		Ground Surface									
		****	Topsoil Approximately 150 millimetres of topsoil.		SS	1	3457	9				
3 4 5	99.30		Silt Brown, trace sand and gravel, with some clay, firm to hard.		SS	2	3215	3				
6 7 7	98.50		Cobbles and gravel		SS	3	5 5 4 45	9				
8 9 10			Transition to grey		SS	4	5 9 11 16 wet spoon	20				
11 12					SS	5	40 17 13 25	30				
13 4 14 4	96.40											
15 16 17 17			End of Borehole Practical auger and spoon refusal on assumed bedrock		SS	6	50/2"	100				
10 19 20 6			NOTES:									
$ \begin{array}{c} ft \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$			1. Borehole was advanced using solid stem auger equipment on April 8, 2021 to practical auger and spoon refusal on assumed bedrock at a depth of 4.4 metres.									
25 26 27 27 28 28			2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
29 <u>9</u> 30 9			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
31 32 33 34 35 36 37 37 38 39 37 38 39 31 12 32 32 32 32 33 32 32 32 32 33 33 34 0												
37 38 39 40 40												

Drill Method: Solid Stem Augers Drill Date: April 8, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949897 Client: LIV Communities

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

E: 626787

							SAM	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft m	98.08		Ground Surface									
	97.78		Topsoil Approximately 300 millimetres of topsoil.		SS	1	2111	2				
3 1 4 1 5 1			Silt Greyish brown, trace sand and gravel,		SS	2	5 7 7 4 moist spoon	14				
6 7 7	95.80		with some clay, firm to hard.		SS	3	1 1 1 16 wet spoon	2				
8			End of Borehole		SS	4	50/2" wet spoon	100				
9 10 11			Practical auger and spoon refusal on assumed bedrock				wet spoon					
11 12 13 13			NOTES:									
14 15 16 17 17 17			1. Borehole was advanced using solid stem auger equipment on April 8, 2021 to practical auger and spoon refusal on assumed bedrock at a depth of 2.3 metres.									
18 19 20 20 6			2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
20 8 27 28 28 29												
30 31 32 33 33 34 34 34												
34 34 35 36 11												
37 38												
39 12 40 12												

Drill Method: Solid Stem Augers Drill Date: April 8, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949948 Client: LIV Communities

E: 626945

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft m	95.58		Ground Surface									
0 1 2 3 3 4 5 5 6 6 1 1 5 8 1 1 1 1 2 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	95.33		Topsoil Approximately 250 millimetres of topsoil.		ss	1	2155	6		-		
3 1 4 1 5 1			Silt Greyish brown, trace sand and gravel,		ss	2	4 3 3 5 moist spoon	6				
6 2 7 2			with some clay, traces of black staining, firm to hard.		ss	3	2 1 1 0 moist spoon	2				
8 9 10 3 3	92.60		01014/014		ss	4	2 2 3 2 moist spoon	5]		
11 12			Clayey Silt/Silt Greyish brown, trace sand, soft to firm.		ss	5	2 2 1 3 moist spoon	3				
13 4 14 4 15 4	91.50		Transition to grey							T		
13 14 14 15 16 17 18 19 20 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21					SS	6	3 3 5 6 moist spoon	8		<1.0		
20 21 22	88.90	#			SS	7	3 2 3 3 moist spoon	5		<1.0		
23 7 24			End of Borehole NOTES:									
25 8 26 8 27 8			1. Borehole was advanced using solid stem auger equipment on April 8, 2021 to termination at a depth of 6.7 metres.									
29 30 31 32			2. Borehole was recorded as open until 3.7 metres and 'wet' upon completion and backfilled as per Ontario Regulation 903.									
33 34 35			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
33 34 35 36 37 37 38 39 39 40 40			4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.									
40旱 1												

Drill Method: Solid Stem Augers Drill Date: April 8, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949593 Client: LIV Communities

E: 626704

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft m	100.91		Ground Surface									
		****	Topsoil Approximately 100 millimetres of topsoil.		SS	1	2245	6				
3 1 4 5			Silt Greyish brown, trace sand and gravel, with some clay, traces of black		SS	2	2 3 3 4 moist spoon	6				
6 2 7 2			staining, firm to hard.		SS	3	5 9 10 12 moist spoon	19				
9 10 3					SS	4	9 14 20 28 moist spoon	34				X
11 12					SS	5	18 18 21 26 moist spoon	39				
13 <u>4</u> 14 <u>15</u>	96 10				99	6	7 50/3"	100				
$ \begin{array}{c} \text{ft} & \textbf{m}_{0} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22$	96.10		End of Borehole Practical auger and spoon refusal on assumed bedrock NOTES: 1. Borehole was advanced using solid stem auger equipment on April 8, 2021 to termination at a depth of 4.8 metres. 2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903. 3. Soil samples will be discarded after 3 months unless otherwise directed by our client.		SS	6	7 50/3" moist spoon	100				

Drill Method: Solid Stem Augers Drill Date: April 8, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: Ian Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949250 Client: LIV Communities

E: 626858

						SAMF	PLE					e Content
Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	10 20 Standard Pe blows/	/% 30 4 netration 300mm 60 8
95.66	3	Ground Surface										
95.4		Topsoil Approximately 250 millimetres of \topsoil.		SS	1	1235	5					Ţ
1		Silt Greyish brown, trace sand and gravel,		SS	2	0 0 0 1 moist spoon	0					
93.90 2)	with some clay, traces of black \staining, firm. Increased clay content		SS	3	2 1 1 3 moist spoon	2		<1.0		•	
3		noreased only content		SS	4	2 1 2 1 moist spoon	3		<1.0			
5				SS	5	2 1 2 3 moist spoon	3		<1.0			
4 91.60 91.10		Transition to grey										/
0 93.90 1 93.90 2 3 3 91.60 91.10 91.10 5 6 7 8 9 86.60		High clay content		SS	6	3 1 3 3 moist spoon	4		<1.0		•	
6												
7				SS	7	2 5 2 2 moist spoon	7		<1.0		• •	
8												
9 86.60		End of Borehole Practical auger refusal on assumed bedrock										
10		NOTES:										
11		1. Borehole was advanced using solid ster metres.	n auger	equipr	nent o	n April 8, 2021	to pr	actical	auger	refus	al at a depth o	of 9.1
		2. Borehole was recorded as open and 'dry	/' upon c	omple	tion a	nd backfilled a	s per	Ontario	o Regu	ulation	n 903.	
12		3. Soil samples will be discarded after 3 m	onths ur	nless o	therwi	se directed by	our c	lient.				

Drill Date: April 8, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Field Logged by: SW Checked by: IS Sheet: 1 of 1

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949096 Client: LIV Communities

E: 626907

End Description g <									SAMF	PLE				Moisture Content
1 Topsoli 2 Approximately 150 millimetres of topsoli. 3 92.60 2 Sit 3 90.90 1 SS 6 2 SS 4 2 SS 5 3 90.90 1 Transition to grey 1 SS 6 2 SS 7 4 S2150/4* 2 Sopon refusal on assumed bedrock NOTES: 1. Berehole was recorded as open until 4.3 metres and Vet upon completion and b				Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	Standard Penetration Test • blows/300mm •
1 Topsoli 2 Approximately 150 millimetres of topsoli. 3 92.60 2 Sit 3 90.90 1 SS 6 2 SS 4 2 SS 5 3 90.90 1 Transition to grey 1 SS 6 2 SS 7 4 S2150/4* 2 Sopon refusal on assumed bedrock NOTES: 1. Berehole was recorded as open until 4.3 metres and Vet upon completion and b	ft r	n												
31 backfilled as per Ontario Regulation 903. 32 33 33 10 34 3. Soil samples will be discarded after 3 months unless otherwise directed by our client. 34 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.				****	Approximately 150 millimetres of		ss	1	2357	8				
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	3 4 5	• 1	92.60		Greyish brown, trace sand and gravel,			2	2 1 2 3 moist spoon	3				
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	6 7 8	2			\staining, firm to very stiff.			3		4				
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	9 10	3	90.90				SS	4		3		<1.0		
31 backfilled as per Ontario Regulation 903. 32 33 33 10 34 3. Soil samples will be discarded after 3 months unless otherwise directed by our client. 34 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	11 12				Transition to grey		SS	5		8				
31 backfilled as per Ontario Regulation 903. 32 33 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	14 15	4					· ·							
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	16 17	5					ss	6		5				
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	10 19 20	6												
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	21		87.40				SS	7		29				
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	23 23 24	7												
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	25 <u>+</u> 26-				NOTES:									
31 backfilled as per Ontario Regulation 903. 32 33 10 33 10 34 35 35 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	27 28 29	0			auger equipment on April 8, 2021 to									
33 10 3. Soil samples will be discarded after 3 months unless otherwise directed by our client. 34 4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.	30 31 31	9			metres and 'wet' upon completion and									
35 4. A monitoring well was installed at this 36 1 36 1 37 6 1 1000000000000000000000000000000000000	33 34	10			months unless otherwise directed by our client.									
	35 36	• 11			location upon completion and equipped with a data logger to monitor long-term groundwater									
	39	12												

Drill Method: Solid Stem Augers Drill Date: April 9, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949329 Client: LIV Communities

E: 627095

								SAM	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data		Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	w% A 10 20 30 40 Standard Penetration Test blows/300mm 20 40 60 80
ft m	93.27		Ground Surface										
		****	Topsoil Approximately 150 millimetres of			SS	1	2246	6				
3 <u>1</u> 4 <u>1</u>			\topsoil. / Silt Greyish brown, trace sand and gravel,			SS	2	1111	2				
5 6 7 7			with some clay, traces of black staining, firm to very stiff.			SS	3	1222	4		<1.0		
8						SS	4	1133	4		<1.0		
10 3 11 3 12 4	89.90		Transition to grey			SS	5	2 3 4 6 wet spoon	7		<1.0		
12 <u>-</u> 13 <u>-</u> 4 14 <u>-</u>								·					
15 16 17 5						SS	6	2 3 2 4 wet spoon	5				
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$								not opcon					
20 ⁶ 21			NOTES:			SS	7	1 0 2 3 wet spoon	2				
22 <u>+</u>						DC	8	wet spoon	4]		•
23 <u>↓</u> / 24 <u>↓</u> /			1. Borehole was advanced using solid stem auger equipment on April 8, 2021 to			DC	8		3		-		
25			termination at a depth of 6.7 metres. A dynamic cone was then driven to a depth of			DC DC	9 10		5		+		
26 <u>8</u>			approximately 11.0 metres.		Į	DC	11		6		1		•
28			2. Borehole was recorded as open until 4.0 metres and 'wet' upon completion and			DC	12		8				
29重。			backfilled as per Ontario Regulation 903.		ŀ	DC DC	13 14		12 23		-		
30			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.		ľ	DC	15		12		1		
31 32			 A monitoring well was installed at this 		[DC	16		16]		
33 10			location upon completion and equipped with a			DC DC	17 18		14 13		-		
33 10 34 1 35 1			data logger to monitor long-term groundwater fluctuations.			DC	19		18		1		
36 11	82.30			-		DC	20		28		-		
36 11 37 11 38 1			End of Borehole Dynamic cone refusal on assumed bedrock										
39 <u> </u>													
											·	·	

Drill Method: Solid Stem Augers Drill Date: April 9, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

Borehole Location: See Drawing No. 1

Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949384 Client: LIV Communities

E: 626701

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft_m 0	99.28		Ground Surface									
1			Topsoil Approximately 200 millimetres of topsoil.		SS	1	1235	5				
3 4 5	98.20		Silt Greyish brown, trace sand and gravel, with some clay, hard to firm.		SS	2	5 8 11 15	19				
6 7 2	97.00		Transition to grey		SS	3	15 23 27 17 moist spoon	50				
8 9 10 3			Increased clay content		SS	4	2 1 1 2 wet spoon	2		<1.0		
3 6 7 8 9 10 11 12 13 14					SS	5	2 1 3 2 wet spoon	4		<1.0		
13 4 14 4 15 4												
14 15 16 17 18					SS	6	7 5 5 7 wet spoon	10		<1.0		
19 19 20 21 21	92.80											
22			End of Borehole									
23 7 24			Practical auger refusal on assumed bedrock									
25 <u>-</u> 26			NOTES:									
19 19 19 19 19 19 19 19 19 19 19 19 19 1			1. Borehole was advanced using solid stem auger equipment on April 9, 2021 to practical auger refusal at a depth of 6.5 metres.									
31 32 33 33 34 34 35			2. Borehole was recorded as open and 'wet' at a depth of 2.7 metres upon completion and backfilled as per Ontario Regulation 903.									
35 36 37 37 38 39 39			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
40 12												

Drill Method: Solid Stem Augers Drill Date: April 9, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling

Soil-Mat Engineers & Consultants Ltd.

130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca

Project No: SM 301553-G

Project Manager: lan Shaw, P. Eng.

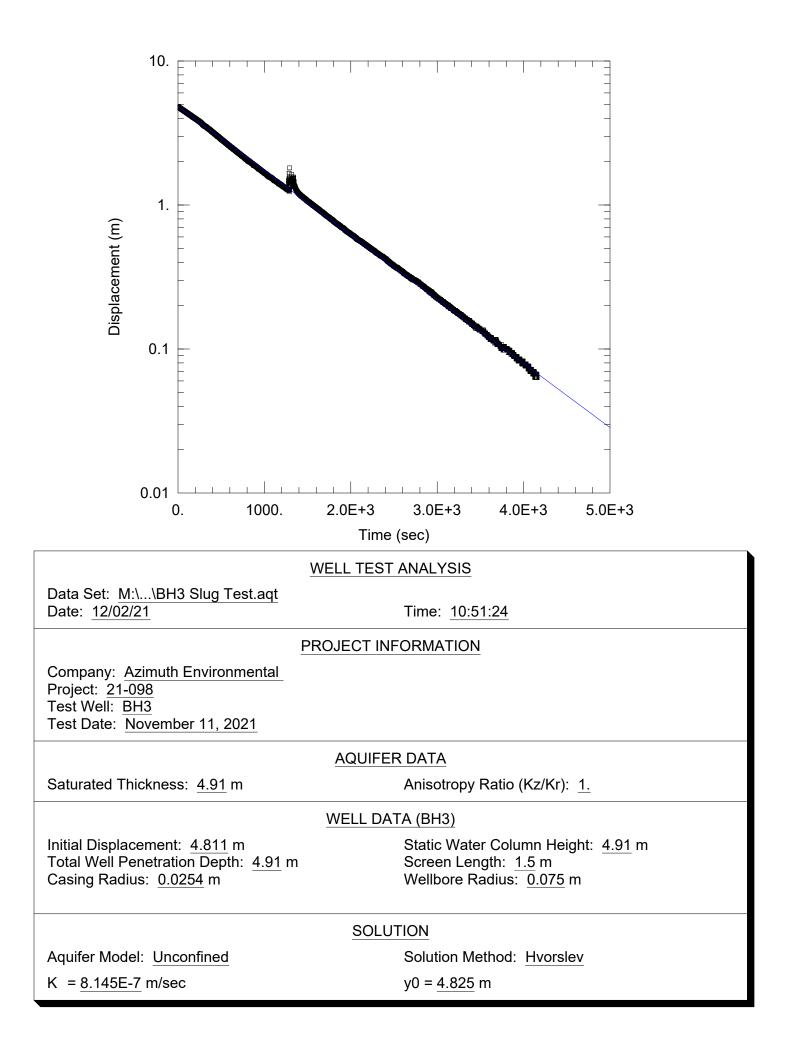
Borehole Location: See Drawing No. 1

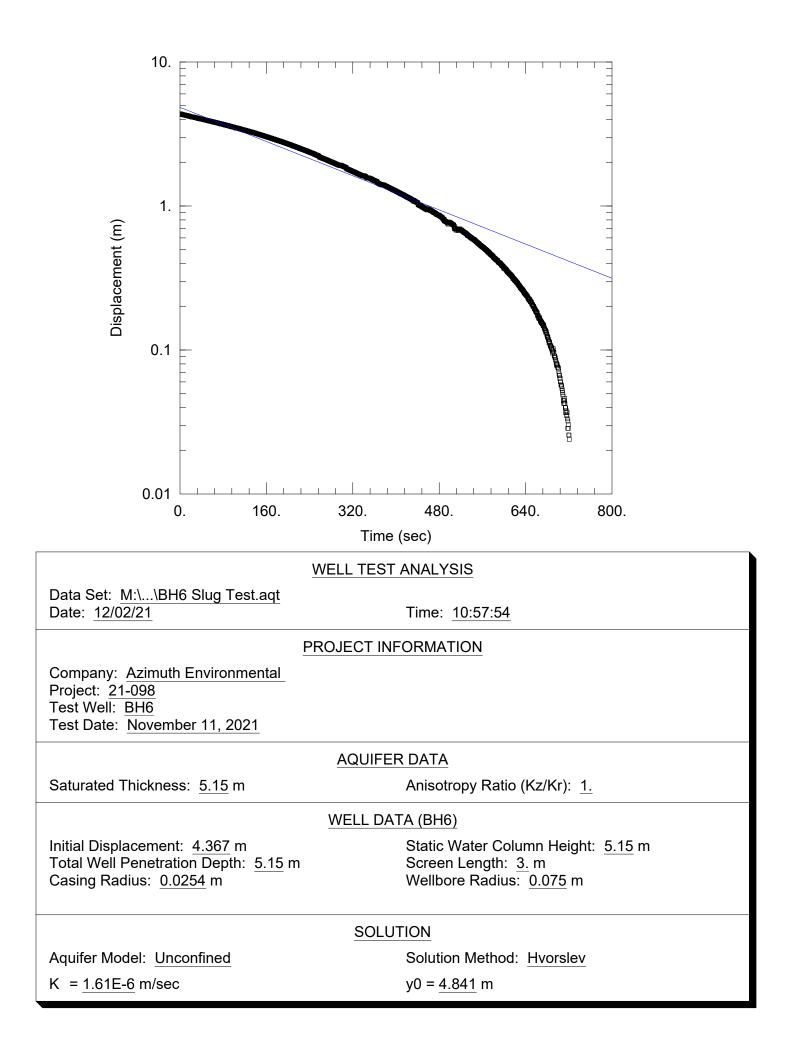
Project: Proposed Residential Development Location: Highway 11 and Menoke Beach Road UTM Coordinates - N: 4949700 Client: LIV Communities

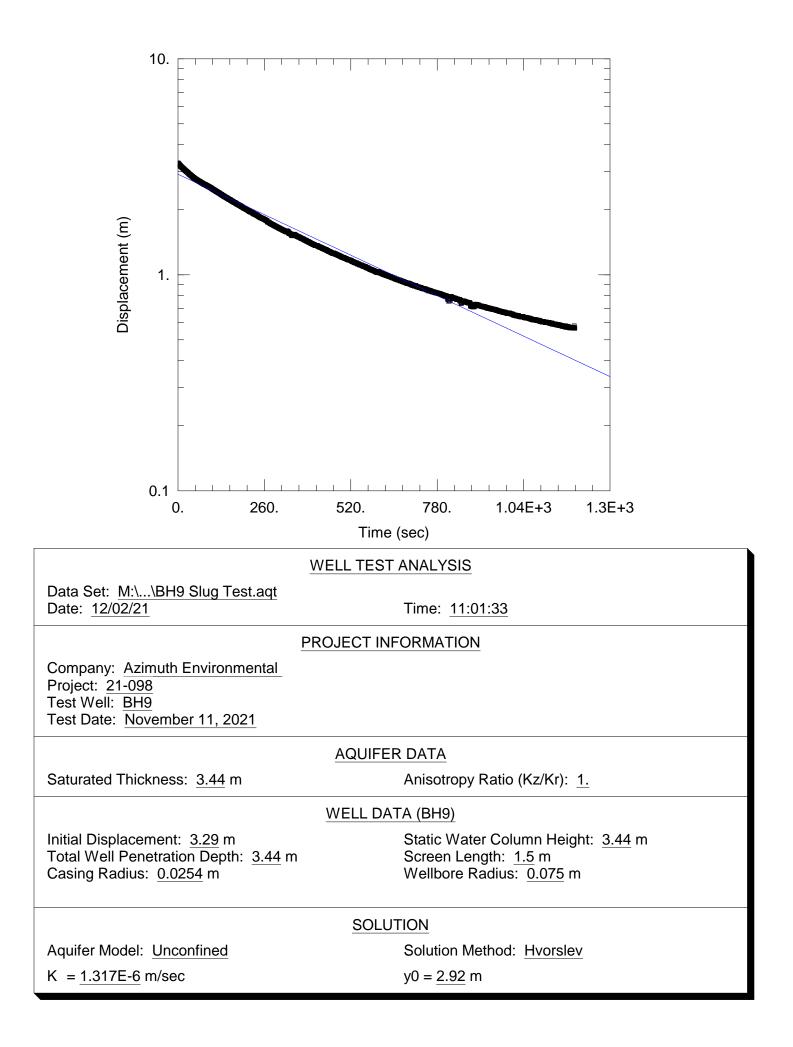
E: 626905

							SAM	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	▲ w% ▲ 10 20 30 40 Standard Penetration Test ● blows/300mm ● 20 40 60 80
ft m	96.07		Ground Surface									
		<u>***</u> *	Topsoil Approximately 200 millimetres of topsoil.		ss	1	2367	9				
3 1 4 1 5 1			Silt Greyish brown, trace sand and gravel, with some clay, firm to stiff.		SS	2	2334 wet spoon	6				
6 7 2 8	93.90		Transition to grey		ss	3	4 6 6 5 wet spoon	12				
9 10 10 3	93.20		Increased clay content		SS	4	3 4 6 6 wet spoon	10				
11 12					SS	5	4 3 3 6 wet spoon	6				
	91.80				<u>.</u>							
15 16 17 5			End of Borehole Practical auger and spoon refusal on assumed bedrock									
18 19			NOTES:									
20 - 6 21 - 6 22			1. Borehole was advanced using solid stem auger equipment on April 9, 2021 to termination at a depth of 4.3 metres.									
$ \begin{array}{c} ft \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$			2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
26 27 27 28			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
29 <u> </u>			4. A monitoring well was installed at this location upon completion and equipped with a data logger to monitor long-term groundwater fluctuations.									
31 32 33 34 35												
36 11 37 1 38 1												
39 12 40 12												

Drill Method: Solid Stem Augers Drill Date: April 9, 2021 Hole Size: 150 millimetres Drilling Contractor: Walker Drilling


Soil-Mat Engineers & Consultants Ltd.


130 Lancing Drive, Hamilton, ON L8W 3A1 T: 905.318.7440 F: 905.318.7455 E: info@soil-mat.ca



APPENDIX F

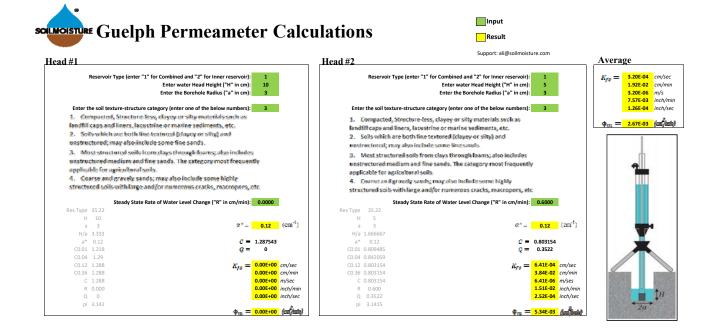
Slug Testing Results

APPENDIX G

Guelph Permeameter Testing Data

Investigator:	Alan Turner & Spencer Yerbury
Date:	09-Nov-21
Location:	Menoke Beach
TP ID:	TP-1
Depth of Hole:	20 cm
Radius:	3 cm
Reserviors used during test:	Combined
(Combined or Inner)	
Reservior constant used:	35.39
Ground Surface Elevation:	226.30 masl

Guelph Pereameter Infiltration Test Results


	Water	Level in Well:	5 cm	
Time	Δt	Water level in	Δh	Rate of Change
t	(min)	Reservoir	(cm)	$\Delta h / \Delta t$
(min)		h (cm)		(cm/ min)
0		10.0		
0.5	0.5	10.0	0.0	0.000
1	0.5	10.0	0.0	0.000
2	1	10.0	0.0	0.000
3	1	10.0	0.0	0.000
8	5	10.0	0.0	0.000
	onsecutive readings (R ₁):	0.000		

Steady rate for 3 consecutive readings (**R**₁):

Water Level in Well: 5 cm

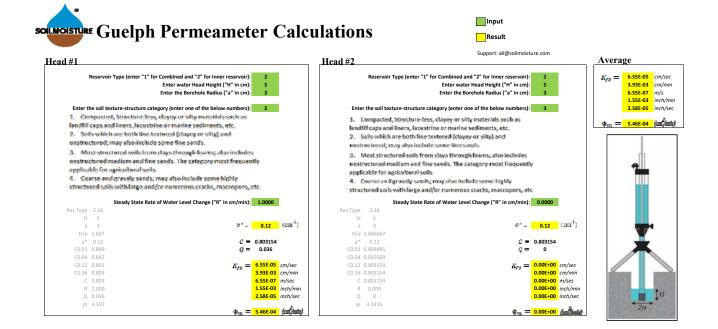
Time	Δt	Water level in	Δh	Rate of Change
t	(min)	Reservoir	(cm)	$\Delta h/\Delta t$
(min)		h (cm)		(cm/ min)
0		2		
0.5	0.5	2	0.0	0.00
1	0.5	2.0	0.0	0.00
1.5	0.5	2.3	0.3	0.60
2	0.5	2.3	0.0	0.00
3	1	2.3	0.0	0.00
5	2	2.3	0.0	0.00
	Ste	eady rate for 3 c	onsecutive readings (R ₂):	0.600

Steady rate for 3 consecutive readings (\mathbf{R}_2): 0.600

Calculation formulas related to shape factor (C). Where H_2 is the first water head height (cm), H_2 is the second water head height (cm), d_1 is borehole radius (cm) and a^+ is microscopic capilary length factor which is decided according to the out texture-structure category. For one-head method, only c_1 needs to be excluded while for two-head method, c_2 are accluded (Zang et al. 1996).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cmi/s), K_{fg} is Soil saturated hydraulic conductivity (cmi/s), Φ_m is Soil matrix flux potential (cmi/s), a^{α} is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) , H_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

Soil Texture-Structure Category	a*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{1/a}}{2.102 + 0.118(H_{1/a})}\right)^{0.655}$ $C_{2} = \left(\frac{H_{2/a}}{2.102 + 0.118(H_{2/a})}\right)^{0.655}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091 (^{H_1}/a)}\right)^{0.663} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091 (^{H_2}/a)}\right)^{0.663} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/_a}{2.074 + 0.093(^{H_1}/_a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_a}{2.074 + 0.093(^{H_2}/_a)}\right)^{0.754} \end{split}$


One Head, Combined Reservoir	$Q_1 = \tilde{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{3}}{\pi(2H_{1}H_{2}(H_{2}-H_{1})+a^{2}(H_{1}C_{2}-H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2}-H_{1})+a^{2}(H_{1}C_{2}-H_{2}C_{1}))}$ $K_{ff} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2}+a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2}-H_{1})+a^{2}(H_{1}C_{2}-H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \tilde{R}_1 \times 2.16$ $Q_2 = \tilde{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \big(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\big)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$

Investigator:	Alan Turner & Spencer Yerbury
Date:	09-Nov-21
Location:	Menoke Beach
TP ID:	TP-2
Depth of Hole:	22 cm
Radius:	3 cm
Reserviors used during test:	Inner
(Combined or Inner)	
Reservior constant used:	2.14
Ground Surface Elevation:	224.80 masl

Guelph Pereameter Infiltration Test Results

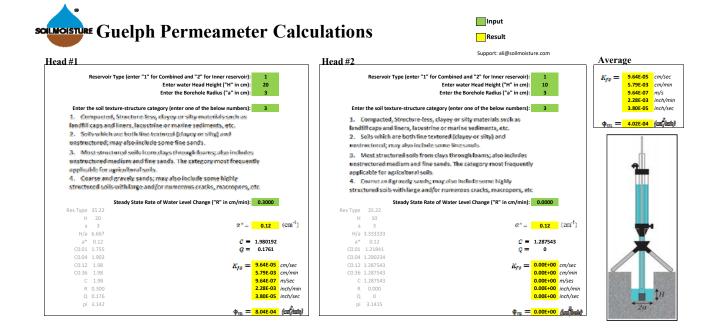
Water Level in Well: 5 cm

Time	Δt	Water level in	Δh	Rate of Change
t	(min)	Reservoir	(cm)	$\Delta h / \Delta t$
(min)		h (cm)		(cm/ min)
0.0		24.0		
1.0	1.00	26.1	2.1	2.100
2.0	1.00	27.0	0.9	0.900
3.0	1.00	28.1	1.1	1.100
4.0	1.00	28.9	0.8	0.800
5.0	1.00	29.9	1.0	1.000
6.0	1.00	30.9	1.0	1.000
7.0	1.00	31.9	1.0	1.000
8.0	1.00	32.9	1.0	1.000
9.0	1.00	33.8	0.9	0.900
10.0	1.00	34.6	0.8	0.800
	Ste	eady rate for 3 c	onsecutive readings (R ₁):	1.000

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), a_1 is borehole radius (cm) and a^+ is microscopic capilary length factor which is decided according to the vol texture structure category. For one-head method, only c_1 areas to be calculated while for two-head method, c_2 and c_2 areas (Calculated Cange et al. 1996).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{F_2} is Soll saturated hydraulic conductivity (cm/s), Φ_m is Soll matrix flux potential (cm/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borchoet andius (cm), H_2 is the first head of water established in borehole (cm) and Cis Shape factor (from Table 2).

Soil Texture-Structure Category	a*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$\begin{split} C_1 &= \left(\frac{H_{1/a}}{2.102 + 0.118(H_{1/a})}\right)^{0.655} \\ C_2 &= \left(\frac{H_{2/a}}{2.102 + 0.118(H_{2/a})}\right)^{0.655} \end{split}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_{1/a}}{1.992 + 0.091(H_{1/a})}\right)^{0.683} \\ C_2 &= \left(\frac{H_{2/a}}{1.992 + 0.091(H_{2/a})}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} \mathcal{C}_{1} &= \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754} \\ \mathcal{C}_{2} &= \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} \mathcal{C}_{1} &= \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754} \\ \mathcal{C}_{2} &= \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754} \end{split}$


One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_2 C_1}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ G_2 &= \frac{H_1 C_2}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ K_{ff} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2 C_2) C_1}{2\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \end{aligned}$
Two Head, Inner Reservoir	$Q_1 = \tilde{R}_1 \times 2.16$ $Q_2 = \tilde{R}_2 \times 2.16$	$\begin{split} G_{4} &= \frac{(2H_{1}^{2}+a^{2}C_{1})C_{2}}{2\pi \Big(2H_{1}H_{2}(H_{2}-H_{1})+a^{2}(H_{1}C_{2}-H_{2}C_{1})\Big)} \\ \Phi_{m} &= G_{3}Q_{1}-G_{4}Q_{2} \end{split}$

Investigator:	Alan Turner & Spencer Yerbury
Date:	09-Nov-21
Location:	Menoke Beach
TP ID:	TP-4
Depth of Hole:	28 cm
Radius:	3 cm
Reserviors used during test:	Combined
(Combined or Inner)	
Reservior constant used:	35.39
Ground Surface Elevation:	225.20 masl

Guelph Pereameter Infiltration Test Results

Water Level in Well: 20 cm

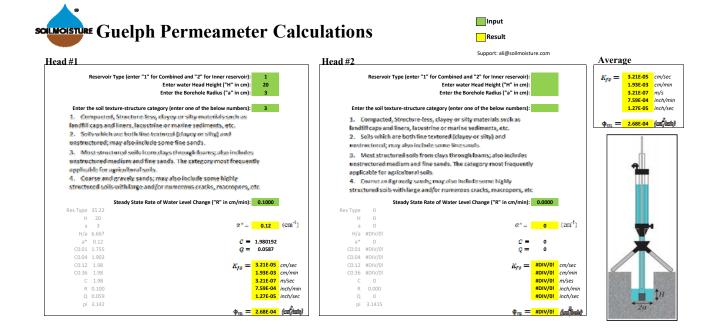
Time	Δt	Water level in	Δh	Rate of Change
t	(min)	Reservoir	(cm)	$\Delta h / \Delta t$
(min)		h (cm)		(cm/ min)
0		25.0		
1	1	25.8	0.8	0.800
2	1	26.1	0.3	0.300
3	1	26.6	0.5	0.500
4	1	27.4	0.8	0.800
5	1	28.0	0.6	0.600
6	1	28.6	0.6	0.600
7	1	29.3	0.7	0.700
8	1	29.5	0.2	0.200
9	1	29.9	0.4	0.400
10	1	30.2	0.3	0.300
15	5	32.0	1.8	0.360
20	5	33.2	1.2	0.240
25	5	34.6	1.4	0.280
	Ste	eady rate for 3 c	onsecutive readings (\mathbf{R}_1) :	0.300

Calculation formulas related to shape factor (C). Where H_i is the farst water head height (cm), H_i is the second water head height (cm), d_i is borehole addas (cm) and a^* is microscopic capilary length factor which is decided according to the oal value structure category. For one-head method, only c_i needs to be calculated while for two-head method, c_i and c_i calculated (Zang et al. 1998).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), R_{x_F} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²s), a^{-1} is Macroscopic capillary length parameter (from Table 2), a is Boreheel endias (cm), R_1 is the first head of vater established in borehole (cm), R_2 is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

Soil Texture-Structure Category	a*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{1/a}}{2.102 + 0.118(H_{1/a})}\right)^{0.655}$ $C_{2} = \left(\frac{H_{2/a}}{2.102 + 0.118(H_{2/a})}\right)^{0.655}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/\alpha}}{1.992 + 0.091(H_{1/\alpha})}\right)^{0.663}$ $C_{2} = \left(\frac{H_{2/\alpha}}{1.992 + 0.091(H_{2/\alpha})}\right)^{0.663}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_{1/\alpha}}{2.074 + 0.093 (H_{1/\alpha})}\right)^{0.754} \\ C_2 &= \left(\frac{H_{2/\alpha}}{2.074 + 0.093 (H_{2/\alpha})}\right)^{0.754} \end{split}$

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^2}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}c_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{2}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{ff} = G_{2}Q_{2} - G_{3}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \tilde{R}_1 \times 2.16$ $Q_2 = \tilde{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \big(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\big)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$


Investigator:	Alan Turner & Spencer Yerbury
Date:	09-Nov-21
Location:	Menoke Beach
TP ID:	TP-5
Depth of Hole:	28 cm
Radius:	3 cm
Reserviors used during test:	Combined
(Combined or Inner)	
Reservior constant used:	35.39
Ground Surface Elevation:	221.98 masl

Guelph Pereameter Infiltration Test Results

Water Level in Well: 20 cm

Time	Δt	Water level in	Δh	Rate of Change
t	(min)	Reservoir	(cm)	$\Delta h / \Delta t$
(min)		h (cm)		(cm/min)
0		10.0		
1	1	14.3	4.3	4.300
2	1	14.5	0.2	0.200
3	1	14.7	0.2	0.200
4	1	14.9	0.2	0.200
5	1	15.0	0.1	0.100
10	5	15.9	0.9	0.180
15	5	16.4	0.5	0.100
20	5	17.0	0.6	0.120
	Sta	andy rate for 3 a	onsecutive readings (P .):	0.100

Steady rate for 3 consecutive readings (\mathbf{R}_1) : 0.100

Calculation formulas related to shape factor (C). Where H_i is the first water head height $(cm)_i$, H_i is the second water head height $(cm)_i$, d_i is borehole radius (cm) and a^+ is microscopic capilary length factor which is decided according to the soil return trustwate category. For one-head method, only c_i needs to be calculated while for two-head method, c_i and c_i are calculated C_{ABR} or a_i .

Soil Texture-Structure Category	a*(cm-1)	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{1/a}}{2.102 + 0.118(H_{1/a})}\right)^{0.655}$ $C_{2} = \left(\frac{H_{2/a}}{2.102 + 0.118(H_{2/a})}\right)^{0.655}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/\alpha}}{1.992 + 0.091(H_{1/\alpha})}\right)^{0.663}$ $C_{2} = \left(\frac{H_{2/\alpha}}{1.992 + 0.091(H_{2/\alpha})}\right)^{0.663}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{F_2} is Soll saturated hydraulic conductivity (cm/s), Φ_m is Soll matrix flux potential (cm/s), a^* is Macroscopic capillary length parameter (from Tsible 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and C is Shape factor (from Tsible 2).

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^2}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{ff} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \tilde{R}_1 \times 2.16$ $Q_2 = \tilde{R}_2 \times 2.16$	$\begin{split} G_{6} &= \frac{(2H_{1}^{2}+a^{2}C_{1})C_{2}}{2\pi \Big(2H_{1}H_{2}(H_{2}-H_{1})+a^{2}(H_{1}C_{2}-H_{2}C_{1})\Big)} \\ \Phi_{m} &= G_{3}Q_{1}-G_{4}Q_{2} \end{split}$

November 24, 2021

Azimuth Environmental Consulting Inc. 642 Welham Road Barrie, Ontario L4N 9A1

Attn: Alan Turner

RE: Ref. No 21-098 T-Time Analyses

Dear Mr. Turner

GEI Consultants (GEI) was provided with five (5) soil samples on November 10, 2021 to conduct grain size analyses to determine the percolation rates of the tested soils (T-Time analysis).

The delivered samples were identified as follows.

- Ref. No. 21-098, TP 1, 0.4 m
- Ref. No. 21-098, TP 2, 0.7 m
- Ref. No. 21-098, TP 3, 0.8 m
- Ref. No. 21-098, TP 4, 0.7 m
- Ref. No. 21-098, TP 5, 0.4 m

Five grain size distribution curves were developed by testing the above referenced soil samples in accordance with applicable Ontario Laboratory Standards in reference to ASTM D6913 (sieve analysis) and ASTM D7928 (sedimentation / hydrometer analysis). The result of the laboratory test and graphical representation of the grain size analyses are enclosed.

Determination of percolation rate are based on the "*Ministry of Municipal Affairs and Housing* (*MMAH*) Supplementary Guidelines SB-6, Percolation Time and Soil Descriptions, September 14, 2012". Based on this document, a summary of the result and the estimated percolation rate of the soil is as follows:

Client ID	GEI Sample ID	Soil Description (MIT)	USCS Soil Classification	Estimated Percolation Rate or " <i>T-Time</i> " (mins/cm)	Estimated Infiltration Rate (mm/hr)
2795	TP 1, 0.4 m	SILT, Some Sand, Some Clay	M.L.	50 mins/cm	12 mm/hour

Client ID	GEI Sample ID	Soil Description (MIT)	USCS Soil Classification	Estimated Percolation Rate or " <i>T-Time</i> " (mins/cm)	Estimated Infiltration Rate (mm/hr)
2796	TP 2, 0.7 m	SANDY SILT, Trace Clay	S.M.	40 mins/cm	15 mm/hour
2797	TP 3, 0.8 m	SILT, Some Sand, Trace Clay	M.L.	50 mins/cm	12 mm/hour
2798	TP 4, 0.7 m	CLAYEY SILT, Trace Sand	M.L.	>50 mins/cm	<12 mm/hour
2799	TP 5, 0.4 m	SILT, Trace Clay, Trace Sand	M.L.	50 mins/cm	12 mm/hour

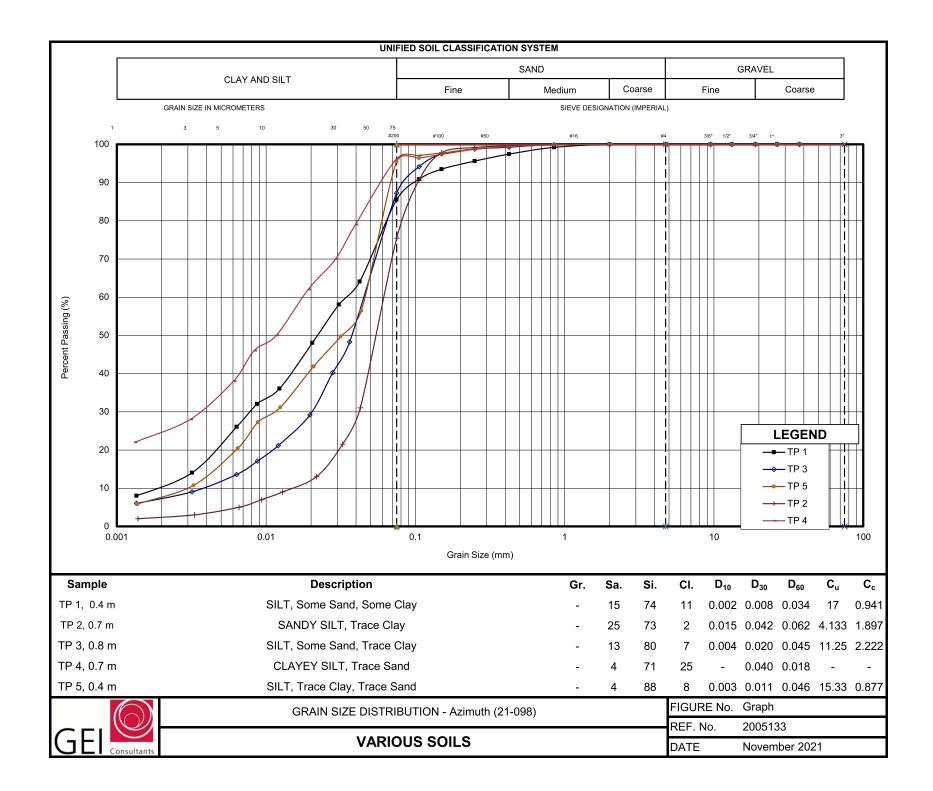
It is noted that percolation time not only varies based on the grain size distribution but is also influenced by other soil characteristics such as the density of the soil, the structure of the soil, the percentage/mineralogy of clay, the plasticity of the soil, the organic content of the soil, and the groundwater table level which are not expressly calculated as part of a grain size analysis.

No field investigation was conducted by GEI in conjunction with the above testing and did not witness the depth or location in which these samples were obtained. GEI is providing the percolation rates as factual information, to be used in design by a qualified professional with due regard to the limitations as indicated above.

We trust this information is sufficient for your present purposes. Should you have any questions concerning the above, or can be of any further assistance, please do not hesitate to contact the undersigned.

Yours truly, **GEI Consultants**

Alexander Winkelmann, P.Eng. Geotechnical & Earth Sciences Manager (705) 229-4298 awinkelmann@geiconsultants.com


<u>Enclosures (1)</u> Grain Size Analysis (T-Time)

ENCLOSURE 1

Grain Size Analysis (T-Time)

