

HYDROGEOLOGICAL SITE ASSESSMENT SIMCOE COUNTY AFFORDABLE HOUSING FACILITY 125 SIMCOE ROAD BRADFORD, WEST GWILLIMBURY, ONTARIO

for

THE CORPORATION OF THE COUNTY OF SIMCOE

PETO MacCALLUM LTD. 165 CARTWRIGHT AVENUE TORONTO, ONTARIO M6A 1V5 Phone: (416) 785-5110 Fax: (416) 785-5120 Email: toronto@petomaccallum.com

Distribution:

 cc: The Corporation of the County of Simcoe (Electronic Copy)
 cc: PML Toronto
 cc: PML Barrie Report: 3

PML Ref.: 21BF049 April 8, 2022



# TABLE OF CONTENTS

| 1. | INTF | RODUCTION AND OBJECTIVES1                                                                                                                                           |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 1.1  | Introduction1                                                                                                                                                       |
|    | 1.2  | Previous Investigations2                                                                                                                                            |
|    | 1.3  | Construction Dewatering Water Taking Permitting2                                                                                                                    |
|    | 1.4  | Objectives and Scope of Work2                                                                                                                                       |
| 2. | BAC  | KGROUND REVIEW4                                                                                                                                                     |
|    | 2.1  | Site Physiographic, Geologic and Hydrogeologic Settings4                                                                                                            |
|    | 2.2  | Site Vulnerability                                                                                                                                                  |
|    | 2.3  | MECP Water Well Records Review and Water Well Survey5                                                                                                               |
|    |      | <ul><li>2.3.1 MECP Water Well Review</li></ul>                                                                                                                      |
| 3. | FIEL | D WORK AND LABORATORY ANALYSES6                                                                                                                                     |
|    | 3.1  | Borehole Drilling and Monitoring Well Installation6                                                                                                                 |
|    | 3.2  | Purging and Ground Water Level Monitoring7                                                                                                                          |
|    | 3.3  | Borehole Permeability Testing8                                                                                                                                      |
|    | 3.4  | Soil Particle Size Distribution Analyses and Hydraulic Conductivity Estimate9                                                                                       |
|    | 3.5  | Water Sampling9                                                                                                                                                     |
| 4. | SUⅣ  | IMARIZED SUBSURFACE CONDITIONS10                                                                                                                                    |
|    | 4.1  | Stratigraphy.         11           4.1.1         Topsoil Fill         11           4.1.2         Fill         11           4.1.3         Sandy Silt Till         11 |
|    | 4.2  | Ground Water Conditions                                                                                                                                             |
|    | 4.3  | Estimated Hydraulic Conductivity and Ground Water Flow Velocities13                                                                                                 |
|    | 4.4  | Ground Water Sample Chemical Test Results13                                                                                                                         |
|    | 4.5  | Infiltration15                                                                                                                                                      |
|    |      | 4.5.1       Introduction                                                                                                                                            |



| 5. | 5. WATER BALANCE, RECHARGE AND BASEFLOW |                                                                  |    |  |  |  |  |  |
|----|-----------------------------------------|------------------------------------------------------------------|----|--|--|--|--|--|
|    | 5.1                                     | Introduction1                                                    | 7  |  |  |  |  |  |
|    | 5.2                                     | Pre-Development Water Balance1                                   | 8  |  |  |  |  |  |
|    | 5.3                                     | Post-Development Water Balance1                                  | 9  |  |  |  |  |  |
|    | 5.4                                     | Conclusion1                                                      | 9  |  |  |  |  |  |
| 6. | CON                                     | STRUCTION DEWATERING REQUIREMENTS1                               | 9  |  |  |  |  |  |
|    | 6.1                                     | Introduction1                                                    | 9  |  |  |  |  |  |
|    | 6.2                                     | Hydrogeological Conceptual Site Models2                          | 21 |  |  |  |  |  |
|    | 6.3                                     | Construction Dewatering Discharge Rates2                         | 22 |  |  |  |  |  |
| 7. | CON                                     | STRUCTION DEWATERING IMPACT ASSESSMENT AND MONITORING PLAN2      | 23 |  |  |  |  |  |
|    | 7.1                                     | Settlement2                                                      | 24 |  |  |  |  |  |
|    | 7.2                                     | Potential Impact on Other Ground Water Users and Water Features2 | 24 |  |  |  |  |  |
|    | 7.3                                     | Discharge Water Quality and Quantity2                            | 25 |  |  |  |  |  |
|    | 7.4                                     | Construction Dewatering Monitoring Program and Treatment Plan2   | 25 |  |  |  |  |  |
| 8. | POT                                     | ENTIAL LONG-TERM IMPACTS2                                        | 26 |  |  |  |  |  |
| 9. | CONCLUDING REMARKS AND RECOMMENDATIONS  |                                                                  |    |  |  |  |  |  |



## **ATTACHMENTS:**

- Table 1 Ground Water Level Readings in Monitoring Wells
- Table 2 Estimated Hydraulic Conductivity (K) Values from Soil Sample Grain Size Distribution and Borehole Permeability Test Results
- Table 3 Summarized Calculations of Estimated Dewatering Discharge Rate and Zone of Influence
- Table 4 Summarized Construction Dewatering Monitoring and Mitigation Plan
- Figure GS-1 Particle Size Distribution Charts
- Drawing 1 Borehole Location Plan
- Drawing 2 Hydrostatic Ground Water Level Contour Plan
- Drawing 3 Hydrogeological Profile A-A'
- Drawing 4 Hydrogeological Profile B-B'
- List of Borehole Log Abbreviations
- Log of Borehole / Monitoring Wells 1 to 20
- Appendix A Site and Vicinity Maps
- Appendix B Ministry of the Environment, Conservation and Parks Water Well Records Summary
- Appendix C Summarized Water Well Survey Responses
- Appendix D Borehole Permeability Testing Plots
- Appendix E Ground Water Sample Laboratory Results
- Appendix F Water Balance
- Appendix G Statement of Limitations



April 8, 2022

PML Ref.: 21BF049

Mr. Jesse Marchand The Corporation of the County Simcoe 1110 Highway 26, Midhurst, Ontario L9X 1N6

Dear Mr. Marchand

Hydrogeological Site Assessment Proposed Simcoe County Affordable Housing Facility 125 Simcoe Road Bradford, West Gwillimbury, Ontario

## 1. INTRODUCTION AND OBJECTIVES

## 1.1 Introduction

Peto MacCallum Ltd. (PML) was retained by The Corporation of the County of Simcoe to conduct a Hydrogeological Site Assessment (HSA) for the proposed Simcoe County Affordable Housing Facility in Bradford, West Gwillimbury, Ontario. The building and parking lot are to be constructed on the southern portion of 125 Simcoe Road, which is located on the northeast corner of the intersection of Simcoe Road and the recently constructed Marshview Boulevard (hereinafter referred to as the site, see Key Plan on Drawing 1 and Figure A-1 in Appendix A). Legally, the site is in Part of Block Y (East of Simcoe Street) Registered plan 457, Town of Bradford West Gwillimbury, County of Simcoe.

It is understood that an approximately 1,700 m<sup>2</sup> building is to be constructed and no basement is to be included. Buried services are anticipated. A site plan design drawing (Sheet A1.1) by MCL Architects was reviewed for this assessment; however, foundation and buried service details were not available.



## 1.2 <u>Previous Investigations</u>

Prior to this hydrogeological investigation, the following investigations for the site were conducted by PML:

- Geotechnical Investigation, Simcoe County Affordable Housing Facility, 125 Simcoe Road, Bradford, West Gwillimbury, Ontario (PML 21BF049, Report 1 (Revised), January 12, 2022).
- Phase One Environmental Site Assessment, Proposed Simcoe County Affordable Housing Facility, 125 Simcoe Road, Bradford, West Gwillimbury, Ontario (PML 21BF049, Report 2, January 28, 2022).

The reports above were reviewed in preparation for the current investigation.

## 1.3 <u>Construction Dewatering Water Taking Permitting</u>

Construction dewatering, like other water takings in Ontario, is governed by the Ontario Water Resources Act (OWRA) and the Water Taking and Transfer Regulation 387/04, a regulation under the OWRA. In accordance with these regulatory requirements, if the dewatering discharge during construction is expected to be greater than 50,000 L/d and less than 400,000 L/d, and meets the requirements of Ontario Regulation 63/16, the water taking can be registered with the Ministry of Environment, Conservation and Park's (MECP's) Environmental Activity and Sector Registry (EASR). If the conditions of EASR registration are <u>not met</u> and the dewatering discharge is expected to be greater than 50,000 L/d, or if the dewatering discharge is expected to be greater than 400,000 L/d, an application for a Permit-To-Take-Water (PTTW) must be filed with the MECP. Note that the 400,000 L/d threshold is during normal operations (i.e. extreme weather events are not included).

## 1.4 Objectives and Scope of Work

The objective of this investigation was to carry out a hydrogeological site assessment to provide observations, assessment findings and recommendations in support of the proposed work at the site and potential permitting for construction dewatering activities. The report has been prepared in accordance with the Ontario Water Resources Act (OWRA), Ontario Regulation 387/04 (Water



Taking and Transfer) and is to be used in accordance with our Statement of Limitations, Appendix G.

Based on the project requirements, as well as the standard practice guidelines, the HSA involved the following tasks:

- 1. Review available data including Ministry of the Environment, Conservation and Parks (MECP) well records, published geological maps and other data to determine the hydrostratigraphy, hydrogeological conditions, and site vulnerability.
- 2. Attend the site to visually examine the terrain on and in the vicinity of the site.
- 3. Utilize the monitoring wells installed as part of geotechnical investigation to perform hydraulic response testing in the monitoring wells to determine soil permeability. Particle size distribution analyses conducted on soil samples retrieved from the boreholes will also be used to estimate hydraulic conductivity.
- 4. Submit one ground water sample for chemical analysis to assess the ground water chemistry for potential dewatering discharge.
- 5. Measure ground water levels in order to describe the subsurface ground water conditions and depth to and direction of shallow ground water flow.
- 6. Conduct private well survey in the vicinity of the site.
- 7. Develop a hydrogeological conceptual site model of the site and complete a hydrogeological analysis to provide estimates of the potential magnitude of dewatering and zone of influence.
- 8. Assess the potential impacts of the development on natural ecological features and functions that are supported by ground water resources.
- 9. Prepare a preliminary pre- and post-construction water balance.
- 10. Prepare a Hydrogeological Report including field and laboratory data, stratigraphy and ground water conditions, potential dewatering rates, type of water taking approval required, and potential impacts of the dewatering.
- 11. Assist with applying for water taking approval (EASR or PTTW). MECP permit fees are not included.

The comments and recommendations provided in this report are based on the site conditions at the time of the investigation, and are applicable only to the proposed project as described in the



report. Any changes in the project, including invert depths and layout will require review by PML to assess the validity of the report, and may require modified recommendations, additional investigation and/or analysis.

## 2. BACKGROUND REVIEW

## 2.1 <u>Site Physiographic, Geologic and Hydrogeologic Settings</u>

The site is a vacant irregularly shaped property which has a total area of approximately 1.56 ha. A mixture of residential, community, and agricultural properties are located in the vicinity of the site. To the north are the Bradford Curling Club, Community Centre and sports fields, followed primarily by residential properties. To the east is Marshview Boulevard, followed by agricultural properties. To the south is Marshview Boulevard, followed by residential properties, and to the west is Simcoe Road, followed by residential properties. See the aerial photograph of the site and vicinity included in Figure A-1 in Appendix A.

According to Chapman and Putnam (Physiography of Southern Ontario, Ministry of Natural Resources, 1984), the site is located in the physiographic region known as the Schomberg Clay Plains, characterized by clay plains. The prominent physiographic landform in the area is clay plains. The OGSEarth map of Surficial Geology of Southern Ontario (OGS Survey, 2003) indicates that the surficial geology at the site consists of sand and gravel, with minor silt and clay. The bedrock underlying the site is limestone of the Lindsay Formation (Paleozoic Geology of Southern Ontario, OGS, OGSEarth, 2007). The bedrock surface is expected to be at about 120 to 160 m depth according to the map, Bedrock Topography Series Alliston Area.

According to the elevations of the boreholes, the ground surface elevations slopes down from about El. 224 close to Simcoe Road, to about El. 221 on the east side of the proposed parking lot. In the greater vicinity of the site, the topography slopes easterly towards the Holland River, see Figure A-2 in Appendix A.

The site is located within the West Holland Subwatershed of the Lake Simcoe Region



Conservation Area (LSRCA) Watershed. The Holland River flows northerly about 700 m southeast of the site. The site is within LSRCA-regulated limits, see Figure A-3 in Appendix A.

## 2.2 <u>Site Vulnerability</u>

It was noted in the Phase One ESA that historically the site had been used for agricultural purposes, followed by industrial use for box and crate manufacturing. According to the MECP's Source Protection Information Atlas, the site is within the Lake Simcoe and Couchching / Black River Source Protection Area. The site is not within a Wellhead Protection Area (WHPA), Intake Protection Zone (IPZ), Issue Contributing Area, Significant Ground Water Recharge Area (SGRA) or an area of Highly Vulnerable Aquifers, see Figure A-4 in Appendix A. The site area is not an area of high average annual recharge, although an area of significant recharge is located to the east, see Figure A-5 in Appendix A. According to the Ministry of Natural Resources and Forestry, there are no evaluated or unevaluated wetlands close to the site, see Figure A-1 in Appendix A.

The site is not located in an area under development control as defined by the Niagara Escarpment Planning and Development Act, or in the Oak Ridges Moraine Conservation Area as defined by the Oak Ridges Moraine Conservation Plan.

## 2.3 MECP Water Well Records Review and Water Well Survey

## 2.3.1 MECP Water Well Review

The MECP Water Well Records database was searched for water well records in the vicinity of the site (an approximately 1200 m by 1200 m area in UTM coordinates centred on the site) and a summary of the well record information is included in Appendix B. Fifty-seven (57) well records were found. The dominant stratigraphy was clay. Bedrock was encountered between depths of 50 and 112 m below ground surface (bgs), however was typically around 100 m. Static ground water levels at shallow wells (less than 18 m deep) close to the site were in the range of about 1 to 9 m bgs (based on thee wells). The water supply wells were found to have been drilled to depths of 6.5 to 107 m below ground surface (bgs).



Fifty-seven (57) well records were found. Of these, eleven (11) were found to be for municipal or domestic water supply. Of the records without a stated well use, investigation into the individual records found them to be abandonment or test holes (except the top three in the list, which had no recorded information, and thus are expected to be test holes as well).

As stated in Section 2.2, the site is not in a well head protection area (WHPA). The nearest well municipal water supply wells are about 2 km east of the site along Highway 11. The WHPA of the well is depicted on the Figure A-4 attached in Appendix A.

## 2.3.2 <u>Water Well Assessment/Survey</u>

A door-to-door private well survey was conducted on March 9, 2022. Nine properties where current water supply well use was suspected were surveyed. See Table C-1 in Appendix C for a list of the properties surveyed. Based on the survey, it is expected that only two of the surveyed properties, 221 and 303 Morris Road, have water supply wells, see Table C-2 in Appendix C. The properties are about 290 m and 470 m southeast of the site, respectively. Further discussion is available in Section 7.2.

## 3. FIELD WORK AND LABORATORY ANALYSES

## 3.1 Borehole Drilling and Monitoring Well Installation

Borehole drilling and monitoring well installation were part of the geotechnical investigation (see Section 1.2). The fieldwork for the geotechnical investigation was conducted from October 26 to 29, 2021. The geotechnical investigation program comprised twenty (20) boreholes (BH1 to BH20) drilled to depths ranging from 2.0 to 5.0 m. For the borehole locations see Drawing 1.

The number of boreholes and their locations were selected by the Corporation of the County of Simcoe and established in the field and surveyed by PML using a Sokkia GCX3 GNSS Receiver. The elevations provided in this report should not be used or relied upon for any other purposes.



The boreholes were advanced using a Geoprobe track mounted drill rig, fitted with continuous flight solid stem augers, and equipped with an automatic hammer, supplied and operated by a specialist drilling contractor. The work was carried out under full-time supervision of a PML engineering staff member who directed the drilling and sampling operations, documented the soil stratigraphy, monitored ground water conditions and processed the recovered samples.

Representative samples of the overburden were recovered at frequent depth intervals using a conventional split-spoon sampler during drilling. Standard Penetration Tests (SPT) were conducted simultaneously with the sampling operation to assess the strength characteristics of the substrata. The ground water conditions at the borehole locations were assessed during drilling by visual examination of the soil, the sampler and the drill rods as the samples were retrieved and when appropriate by measurement of the water level in the open borehole. Upon completion of drilling, the boreholes without a monitoring well were decommissioned in accordance with O. Reg. 903/90, as amended.

Monitoring wells were installed in eight (8) of the boreholes to allow for water level measurements and potential hydrogeological instrumentation and water sampling. The monitoring wells comprised 50 mm diameter pipe, slotted screens, filter sand packing, bentonite seals and protective casing.

All of the recovered samples were returned to PML's laboratory for detailed visual examination, classification and routine moisture content determinations. The laboratory testing also included six (6) particle size distribution analyses on samples of the major subgrade soil type encountered.

It is recommended that the wells be kept for monitoring purposes throughout the construction period and then decommissioned in accordance with Ontario Regulation (O. Reg.) 903 once they are no longer needed.

## 3.2 Purging and Ground Water Level Monitoring

The monitoring wells were purged, and after stabilization, the ground water levels were recorded using a Solinst electric water meter tape. Ground water level readings were measured on four (4)



occasions between Nov 2021 and March 2022. The results of the ground water level monitoring are listed on Table 1 and are discussed in Section 4.2.

## 3.3 Borehole Permeability Testing

To estimate the hydraulic conductivity of the overburden deposits, borehole permeability testing was conducted using slug tests in the monitoring wells of boreholes 1, 5, 7 and 20.

In the test, a volume of water (the 'slug') was rapidly removed from, or added to, the monitoring well, and periodic water level measurements were recorded manually using a Solinst flat tape water level meter and with an electronic transducer (a Solinst Levelogger) as the water level recovered to the hydrostatic level inside the well (a rising or falling head test).

Using the Hvorslev method (Hvorslev, 1951), the data was plotted on a semi-logarithmic scale to estimate the basic time lag  $T_0$ , which, combined with the geometric configuration of the well screen, resulted in an estimation of hydraulic conductivity (K-value) for the soils in the vicinity of the well screen. The plots of normalized head versus elapsed time and the estimation of the basic time lags ( $T_0$  values) are included in Appendix D.  $T_0$  was estimated by fitting an exponential trend line to the data typically near the end of the recovery period, as recommended by Butler (1997) to overcome the ambiguity of double straight-line effects or concave results, and calculating  $T_0$  from the inverse of the slope of the fit line. A plot exhibiting concave-upward curvature reflects compressibility of the formation indicating that a storage effect may exist.

The K-values (in cm/s) were estimated using the following equation:

$$K = \frac{r^2}{2LT_0} \ln\!\left(\frac{L}{R}\right)$$

where:

K = hydraulic conductivity (cm/s)L = the length of the screen (cm)

R = the radius of the borehole (cm)

r = the radius of the well casing (cm)

 $T_0$  = the basic time lag in seconds (-1/slope of line fitted to data, see Appendix D).



Slug tests conducted in monitoring wells with partially submerged well screens are influenced by sand pack drainage and re-saturation. Under this condition, the above procedure was modified using the method outlined by Binkhorst and Robbins (1998) in which an 'effective' well casing radius, re, based on the specific yield of the sand pack, replaces the well casing radius, r. The specific yield of the sand pack was taken to be 0.25.

## 3.4 Soil Particle Size Distribution Analyses and Hydraulic Conductivity Estimate

Six (6) soil samples obtained from the boreholes were submitted to the PML laboratories for particle size distribution analyses. The particle size distribution curves of these soil samples are shown on Figure GS-1.

In addition to in-situ testing (Section 3.3), the hydraulic conductivity (K) value of selected soil samples was estimated using the grain size distribution and an empirical formula as described below.

The K value of the soil samples were estimated using the following expression (Puckett et. al. 1985) in which the percentage of clay was taken from the particle size distribution charts (Figure GS-1):

$$K = 4.36 \times 10^{-3} \times e \left( -0.1975 \times \% \right)$$

where:

- K = hydraulic conductivity (cm/s).
- %clay = percentage of the soil sample finer than 0.002 mm by weight.

The results of field permeability tests as well as the estimated K-values from particle size distribution test results are listed on Table 2.

## 3.5 <u>Water Sampling</u>

In order to determine the management options for the potential discharge of ground water, a ground water sample was collected from the monitoring well of Borehole 7 on March 9, 2022. The ground water sample was collected using a Waterra Ecobailer. The sample obtained was immediately placed in bottles supplied by SGS Canada Inc. (SGS) and stored at low



temperatures. The ground water sample collected was delivered to SGS Canada Inc for chemical analyses. SGS is accredited by The Standards Council of Canada (SCC) and The Canadian Association for Laboratory Accreditation (CALA).

To assess the baseline ground water quality with respect to future disposal options during potential construction dewatering the ground water sample was analyzed for the following parameters:

- The West Gwillimbury Sewer-Use Bylaw for Sanitary Water,
- The West Gwillimbury Sewer-Use Bylaw for Storm Water,
- A suite of metals (for Provincial Water Quality Objectives, PWQO).

The Chain-of-Custody Record and the laboratory reports are included in Appendix E, and the results are discussed in Section 4.4.

## 4. SUMMARIZED SUBSURFACE CONDITIONS

The findings of the boreholes drilled and monitoring wells installed as part of the geotechnical investigation are described in detail below. Reference is made to the appended Log of Borehole Sheets, tables, figures, and drawings for details of the field work, including inferred stratigraphy, soil classifications, Standard Penetration Test (SPT) N values, ground water observations and laboratory test results. The borehole locations are depicted in Drawing 1 and hydrogeological findings are depicted in the profiles, see Drawings 3 and 4.

Our summarized findings and interpretation of the site subsurface conditions are presented below. Due to the soil sampling procedures and limited sample size, the depth / elevation demarcations on the borehole logs must be viewed as "transitional" zones between layers, and cannot be construed as exact geologic boundaries between layers.



## 4.1 <u>Stratigraphy</u>

#### 4.1.1 Topsoil Fill

A 150 to 400 mm thick topsoil fill layer was contacted at the ground surface in all boreholes except for BH3 where no topsoil was present. The topsoil generally consisted of dark brown sand with organics and was judged to be moist.

## 4.1.2 <u>Fill</u>

A layer of fill was encountered at the ground surface in all the boreholes and it was fully penetrated at depths of 0.7 to 4.0 m at BH1 and BH3 to BH20. The fill layer extended to the borehole termination depth of 2.0 m below grade in BH2. The fill generally comprised very loose to very dense sand to silty sand soils based on SPT "N" values between 1 blow and refusal per 0.3 m penetration of the split spoon sampler. Occasional cobbles and boulders were contacted throughout the fill in BH3 and BH4. The fill soil was judged to be moist with moisture content levels ranging from 9 to 29%.

## 4.1.3 Sandy Silt Till

Below the fill, sandy silt till was contacted to the borehole termination depths of 3.4 to 5.0 m below grade in all the boreholes, except BH2 where the borehole was terminated in the fill. The upper zone of the till layer, to depths in the range of 1.2 to 2.7 m was generally compact based on SPT "N" values between 11 and 25 blows per 0.3 m penetration of the split spoon sampler. The surface of the till was locally loose at BH6 with an N value of 9. Below 1.2 to 2.7 m the till deposit was dense to very dense with N values in the range of 30 to greater than 50. Based on a review of nearby subsurface information, these dense to very dense soil conditions are expected to continue below the depths investigated. Probable cobbles and/or boulders were occasionally contacted throughout this deposit in BH5, BH7 to BH11 and BH13 to BH20. The sandy silt till was judged to be moist to wet with in-situ moisture content determinations typically ranging from 5.3 to 18%.



Figure GS-1 attached, presents the results of six particle-size distribution analyses conducted on typical samples of the sandy silt till deposit contacted in the boreholes. The results indicate 2 to 12% gravel, 27 to 41% sand and 48 to 67% silt and clay, with the predominant fraction being silt sized particles.

## 4.2 Ground Water Conditions

The ground water conditions at the site are represented by the ground water level observations made during drilling, upon drilling completion and the ground water levels recorded in the monitoring wells.

## Observations During and Upon Completion of Drilling

In general, ground water was contacted during drilling in the fill soils at BH4 and in the native sandy silt till deposit in BH1, BH6, BH7, BH9 to BH17, BH19, and BH20 in the range of 1.4 to 4.6 m bgs. After completion of drilling, free water was observed at BH1, BH4, BH6, BH7, BH9 to BH17, BH19, and BH20 in the range of 1.1 to 4.6 m bgs. Caving of the soil in the boreholes was observed in BH4, BH6, BH11, BH15, BH17, BH19 at 1.1 to 4.3 m bgs.

## Hydrostatic Ground Water Level Measurements

Ground water level readings have been measured on four (4) occasions from November 24, 2021 to March 9, 2022. The hydrostatic ground water levels are summarized in Table 1. Over the monitoring period, ground water depths vary from 0.5 m (at BH14 and BH20) to 3.3 m (at BH 5), and ground water elevations vary from 220.0 (at BH16 and BH20) to 222.9 (at BH 8). In the vicinity of the proposed apartment building, ground water level elevations ranged from 220.9 to 222.9.

Based on the readings from March 9, 2022, ground water flow directions are expected to be generally southerly or southeasterly, see the Ground Water Contour Plan in Drawing 2.



Ground water levels at the site are subject to seasonal fluctuations due to weather patterns and variations in precipitation and climate, as well as the water level of the Nith River.

## Aquifer and Recharge Findings

The extensive sandy fill and underlying sandy silt deposits encountered at the boreholes indicate the presence of a low permeable aquifer. It is expected that infiltration and recharge through this soil would not be at a high rate, but not completely impeded. The MECP's Source Protection Information Atlas estimates significant recharge rates close to the site.

## 4.3 Estimated Hydraulic Conductivity and Ground Water Flow Velocities

The hydraulic conductivity K-values of the soils encountered surrounding the monitoring well screens at boreholes 1, 5, 7 and 20 were estimated using in-situ permeability test data (slug tests) as described in Section 3.3. Hydraulic conductivity was also estimated using grain size distribution test results as described in Section 3.4. The results are listed on Table 2.

The estimated hydraulic conductivity at the wells, screened in sandy silt till, were 6 x  $10^{-7}$  to 4 x  $10^{-5}$  cm/s based on the slug tests. The estimated hydraulic conductivity of the sandy silt till ranged from 2 x  $10^{-4}$  to 5 x  $10^{-4}$  cm/s based on grain size distribution.

Based on the estimated ground water contour map and measured hydraulic conductivities, hydraulic gradients were found to generally be in the range of 0.04 to 0.06 and ground water flow velocities range from  $2 \times 10^{-10}$  to  $2 \times 10^{-7}$  m/s, generally to the south or south east.

## 4.4 Ground Water Sample Chemical Test Results

The chemical analyses carried out by SGS on a non-filtered ground water sample from monitoring well BH7 in accordance with the chain-of-custody record and the protocols described above (Section 3.5), are included in the laboratory report in Appendix E.

To provide an assessment of how the dewatering discharge water may compare to expected regulatory compliance criteria for discharge to a sanitary sewer or storm sewer, or to a



watercourse, the water quality was compared to the West Gwillimbury sewer-use bylaw criteria for sanitary and storm sewer discharge and metals for comparison to PWQO for discharge to a watercourse.

The non-filtered ground water sample was analyzed and the results complied with the criteria above with the exception of the elevated parameters listed in Table A (discharge to watercourse), and Table B (discharge to storm or sanitary sewer) below:

# TABLE A ELEVATED GROUND WATER SAMPLE CONCENTRATIONS FOR WATERCOURSE RECEIVERS

| PARAMETER              | WATER SAMPLE<br>CONCENTRATION (mg/L)<br>BH 7 | CONCENTRATION LIMIT<br>(mg/L) |  |  |
|------------------------|----------------------------------------------|-------------------------------|--|--|
|                        |                                              | PWQO                          |  |  |
| Copper                 | 0.0021                                       | 0.001                         |  |  |
| Iron                   | 0.628                                        | 0.3                           |  |  |
| Phosphorous            | 0.079                                        | 0.01                          |  |  |
|                        |                                              | MECP                          |  |  |
| Total Suspended Solids | 226                                          | 25                            |  |  |

Note: 4AAP-Phenolics were measured at the laboratory detection limit, which is higher than the PWQO limit.



# TABLE BELEVATED GROUND WATER SAMPLE CONCENTRATIONSFOR SEWER DISPOSAL

| PARAMETER              | WATER SAMPLE CONCENTRATION (mg/L) | CONCENTRATION<br>LIMIT |          |  |  |
|------------------------|-----------------------------------|------------------------|----------|--|--|
|                        | BH 7                              | (n                     | ng/L)    |  |  |
|                        |                                   | STORM                  | SANITARY |  |  |
| Total Suspended Solids | 226                               | 15                     | 350      |  |  |

The unfiltered ground water sample findings indicate that the discharge water, if untreated, is expected to be:

- Compliant with the West Gwillimbury sewer-use bylaw for discharge to a sanitary sewer.
- Compliant with the West Gwillimbury sewer-use bylaw for discharge to a storm sewer with the exception of total suspended solids (TSS) as listed in Table B.
- Compliant with the PWQO for discharge to a watercourse with the exception of copper, iron, phosphorous and total suspended solids as listed in Table A, above.

The concentrations of many of these parameters will be reduced by treatment with a sedimentation tank and/or filtration bags prior to discharge. Further treatment may be required for the discharge water to meet PWQO needed for discharge to a watercourse. Ground water discharge quality is part of the compliance monitoring plan, see Section 7.4.

## 4.5 Infiltration

## 4.5.1 Introduction

Due to wetting and drying cycles of soils, water flow occurs in two zones: the aeration (capillary fringe) zone, and below it, the saturated zone, where the demarcation between the two zones is usually referred to as the ground water phreatic surface or water table. The movement of water in



the aeration zone is infiltration and is governed by negative capillary suction (less than atmospheric pressure) whereas the water flow in the saturated zone is percolation and is controlled by positive hydrostatic pressure (or head).

## 4.5.2 Test Results

As a preliminary assessment of infiltration at the site, the findings from the grain size distribution assessment of soil samples and borehole permeability testing conducted in the boreholes and corresponding percolation T-value and infiltration rate are summarized in Table C, below.

# TABLE C

| BOREHOLE    | SOIL TYPE<br>(SAMPLE DEPTH, m BGS) | K <sub>fs</sub> <sup>(1)</sup><br>(cm/s)            | PERC. TIME<br>T-VALUE <sup>(4)</sup><br>(mins/cm) | INFILTRATION<br>RATE <sup>(4)</sup><br>(mm/hr) |
|-------------|------------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------|
| 5           | Sandy Silt Till<br>(1.5 to 1.9 m)  | 2 x10 <sup>-4 (2)</sup>                             | 11                                                | 56                                             |
| 9           | Sandy Silt Till<br>(1.5 to 1.9 m)  | 3 x10 <sup>-4 (2)</sup>                             | 10                                                | 62                                             |
| 19          | Sandy Silt Till<br>(1.5 to 1.9 m)  | 5 x10 <sup>-4 (2)</sup>                             | 8                                                 | 71                                             |
| 1, 5, 7, 20 | Sandy Silt Till<br>(3.0 to 4.5m)   | 6 x 10 <sup>-7</sup> to<br>4 x 10 <sup>-5 (3)</sup> | 16 to 50                                          | 12 to 38                                       |

## SUMMARIZED K VALUE, "T" VALUE, AND INFILTRATION RATE

Notes:

- 1. Field saturated hydraulic conductivity, K<sub>fs.</sub>
- 2. K<sub>fs</sub> determined from assessment of soil sample.
- 3. K<sub>fs</sub> determined from borehole permeability tests.
- 4. T-value and Infiltration rate based on K<sub>fs</sub> according to TRCA Stormwater Management Criteria.

#### 4.5.3 Discussion

The near-surface soils at the boreholes were typically sand to sandy silt fill, underlain by sandy silt till encountered to the termination depths of the boreholes (about 5.0 m below ground surface). For this preliminary infiltration assessment, near-surface soil samples were selected that were



taken from a depth of 1.5 to 1.9 m bgs, and the results of the borehole permeability testing, which includes soils screened between 3.0 and 4.5 m bgs were also included. As can be seen in Table C, percolation times ranged from 8 to 11 min/cm based on the soil samples, and 16 to 50 min/cm based on the permeability testing, with corresponding infiltration rates of 56 to 71 mm/hr and 12 to 38 mm/hr. It should be noted that the infiltration rates based on the soil samples may be somewhat overestimated; according to the Ontario Building Code (2003) the typical rate for silt and very fine sands is 12 to 30 mm/hr. Since the minimum guideline value recommended for infiltration gallery design in "Stormwater Management and Planning Design Manual", by MOECC, dated 2003, is 15 mm/hr, the soil at this location would be deemed acceptable. However, please note that some measured ground water levels were shallow (namely at boreholes 8, 9, 14 and 20), and the bottom of any proposed infiltration facilities must be at least 1.0 m above the ground water level.

For final design of infiltration facilities, if any, it is recommended that in-situ percolation testing be conducted in the specific locations and depths required.

## 5. WATER BALANCE, RECHARGE AND BASEFLOW

## 5.1 Introduction

The precipitation of the hydrologic cycle partitions into runoff, evapotranspiration and infiltration. The portion of the infiltration that reaches the ground water table is considered the "ground water recharge" and the portion of the ground water flow to wetlands, ponds, and creeks is considered the "baseflow". The main purpose of the water balance (or budget) analysis is to estimate the current infiltration rates to the subsurface to allow comparison with the estimated rates expected after development of the site (which change primarily due to the increase in hard-surfaced area).

The amount of infiltration in an area to be developed is largely dependent not only on precipitation rates, but upon the infiltration capacity of the area and the nature of the proposed development. For example, areas underlain by fine-grained silt and clayey soils and dense till materials, having naturally low infiltration capacity, will likely experience relatively little reduction in infiltration as a result of hard surfacing by a development compared to more permeable soils which may become partially covered with impermeable surfaces.



The method for calculating the infiltration rate involves the use of a site-specific climate water budget and applying it to the area proposed for development. For this assessment, the monthly total precipitation and average temperature, averaged from the years 1981 to 2010, were obtained from the Government of Canada's Canadian Climate Normals website for a nearby weather station (King Smoke Tree). Infiltration factors were estimated using the conservative infiltration factors of the former Ministry of Environment and Energy (MOEE) "Hydrogeological Technical Information, Requirements for Land Development Application" (dated April 1995). The infiltration factors provided are based on a hydrologic analysis of the peak runoff for stormwater management purposes. This provides a worst-case scenario with respect to runoff and is conservative in estimating the amount of ground infiltration.

For pervious surfaces, Thornthwaite monthly water balance software by McCabe and Markstrom (2007, USGS) was used to estimate the monthly and total yearly evapotranspiration, water surplus, and runoff. The total surplus water is that which is available after accounting for losses to evapotranspiration and soil moisture storage recovery each month. The model also includes snow accumulation and melting, and direct runoff. The program input are shown in Table F-1, and model output are shown in Table F-2 in Appendix F.

Model output was incorporated into a water balance in the manner outlined in "Conservation Authority Guidelines for Hydrogeological Assessments", dated June 2013. In the method, the infiltration is calculated by applying the cumulative infiltration factors to the available surplus water.

As a preliminary assessment, the following provides a high-level assessment of pre-development and post-development infiltration and runoff rates.

#### 5.2 Pre-Development Water Balance

Based on the calculations presented in Table F-2 in Appendix F, the yearly surplus water is typically about 190 mm in the project area. The area of the site was assumed to be entirely cultivated. The amount of infiltration at the site is estimated by applying the cumulative infiltration factors to the available surplus water, as shown in Table F-3 in Appendix F. Thus, based on the cumulative



infiltration factor, the infiltration at the existing site is estimated to be about  $0.6 \times 190 \text{ mm/year} = 114 \text{ mm/year}$ . Based on the estimated grassed area at the site, the pre-development infiltration rate is estimated at about 1,047 m<sup>3</sup>/year and the runoff is estimated at 1,928 m<sup>3</sup>/year. This infiltration contributes to pre-development ground water recharge and stream baseflow.

## 5.3 Post-Development Water Balance

Post-development, the area of cultivation, pavement and buildings were assumed as presented in Table F-4 in Appendix F. For the pervious surfaces, the amount of infiltration at the site is estimated by applying the cumulative infiltration factors to the available surplus water, as above. However, for the impervious surfaces, there is no infiltration. On the impervious surfaces, runoff is 80% of precipitation, while 20% is lost to evapotranspiration. Based on the estimated proposed pervious and impervious surface areas at the site, the post-development infiltration rate is estimated at about 475 m<sup>3</sup>/year and the runoff is estimated at 4,319 m<sup>3</sup>/year.

## 5.4 Conclusion

Comparing the infiltration rates estimated above results in a deficit of ground water infiltration due to the development changes of 572 m<sup>3</sup>/year. Runoff is estimated to increase by 2,391 m<sup>3</sup>/year. A ground water infiltration deficit reflects a decrease in contribution to ground water recharge and to baseflow. Low impact development (LID) features may be incorporated at the site to compensate for the infiltration deficit, however consideration must be made to the infiltration rate and potentially high ground water level.

## 6. CONSTRUCTION DEWATERING REQUIREMENTS

## 6.1 Introduction

Typically, construction dewatering is required where the proposed excavation will be deeper than the ground water strike level and/or hydrostatic ground water level. The objective is to maintain dry working conditions and a stable excavation bottom and slopes. The magnitude of construction dewatering will depend on the proposed dimensions and depth of the excavations, shoring used, if any, and the site and surrounding ground water conditions (ground water levels, ground water



sources, and hydraulic conductivities). It is prudent to note that ground water control and construction dewatering requirements should be re-evaluated if the design footprint or invert depths are altered from that assumed herein.

Final grading plans and proposed design founding levels for the proposed building were not provided at the time of this report. Once the design details for the proposed development are finalized, the recommendations in this report should be revisited to confirm that they remain applicable.

It is understood that the proposed four (4) storey apartment building is to not have a basement. The following is based on the geotechnical assessment (PML Ref: 21BF049, Report: 1): It is feasible that the building will be constructed using standard construction practices using conventional shallow foundations. The existing in-place fill is not considered suitable to support building foundations or any settlement sensitive structures and will require removal. It is assumed that conventional strip or spread footings are to be at a typical depth of about 1.5 m below finished grade levels, however, footings at these depths will not fully penetrate the existing fill material in all areas and will need to be extended deeper to reach competent native undisturbed soil. Considering the level of competent native soil, the minimum recommended founding elevation for the building was 219.6.

It is expected that site servicing for the development will extend to typical depths in the range of about 2 to 3 m, however, localized subexcavation of unsuitable fill materials may be necessary.

See Drawings 1 to 4 for details.



## 6.2 <u>Hydrogeological Conceptual Site Models</u>

Since the building is "L" shaped, for ease of assessment the footprint of the excavation will be separated into a west and east part, where the west part extends to the southern extent, and the east part is the remainder of the footprint to the east. The servicing assessment assumes a typical trench for sewer or watermain installation, in the parking lot area. Thus, the construction features included in the assessment of potential dewatering are listed below:

- i) Building Excavation (West Part)
- ii) Building Excavation (East Part)
- iii) Servicing (Typical)

For the assessment, a simplified hydrogeological conceptual site model (HCSM) was developed based on the field and laboratory data compiled to date, and assumed excavation depths and dimensions based on the geotechnical assessment and design drawings.

It is assumed for modelling purposes that the hydrostatic ground water level is at the maximum measured over the monitoring period, an elevation of 222.9 (depth 0.7 m) recorded at borehole 8 for the building, and 222.3 (depth 0.7 m) for the site servicing (which is assumed to be predominantly in the parking area). It is assumed that the ground water level is to be lowered at least 0.5 m below the lowest excavation level to maintain dry working conditions.

Building footprint dimensions take into account sloped excavation sides. Buried sewer servicing is assumed to be dewatered in lengths of 30 m.

Seepage is expected to primarily occur through the sandy silt till. The model hydraulic conductivity was estimated from the maximum measured slug test value ( $4 \times 10^{-7}$  m/s).

The relevant assumptions for the HCSM are summarized in Table 3, attached, and are expected to provide a reasonable worst-case estimation of the magnitude of dewatering.



## 6.3 <u>Construction Dewatering Discharge Rates</u>

The construction dewatering discharge rates are estimated for the proposed construction activities based on the above-noted HCSMs and associated assumptions described below. The relevant assumptions, calculations, and results are summarized on Table 3.

The estimated dewatering discharge rate (with a factor of safety (FOS) of 1.5 applied) and the distance (zone) of influence for each feature are summarized on Table D, below.

| DISCHARGE RATES AND ZONES OF INFLUENCE |                 |                                                  |                                        |  |  |  |  |  |  |
|----------------------------------------|-----------------|--------------------------------------------------|----------------------------------------|--|--|--|--|--|--|
| DEWATERING ACTIVITY                    | DRAWDOWN<br>(m) | DEWATERING<br>ZONE OF<br>INFLUENCE<br>(DZOI) (m) | DISCHARGE RATE<br>(FOS = 1.5)<br>(L/d) |  |  |  |  |  |  |
| Building Excavation (West Part)        | 3.8             | 8                                                | 10,200                                 |  |  |  |  |  |  |
| Building Excavation (East Part)        | 3.8             | 8                                                | 8,200                                  |  |  |  |  |  |  |
| Servicing (Typical)                    | 4.8             | 5                                                | 8,200                                  |  |  |  |  |  |  |

# TABLE D

#### APPROXIMATE CONSTRUCTION DEWATERING DISCHARGE RATES AND ZONES OF INFLUENCE

The "dewatering zone of influence" (or DZOI) is the maximum radius of the cone-shaped profile of the temporary lowered ground water level if no barriers are used during construction dewatering.

With regards to the above assessment, please note the following:

Assuming the west and east footprints of the building are excavated simultaneously, the construction dewatering discharge rates are expected to be about 18,400 L/d and 8,200 L/d for typical installation of servicing, thus, according to O. Reg. 387/04 (see Section 1.3), the water taking is not expected to require to be registered on the Environmental Activity and Sector Registry (EASR) or have a Permit to Water (PTTW) since the anticipated rate is not greater than 50,000 L/d.



- The construction dewatering rates are estimated based on features or 'zones' selected for the hydrogeological assessment based on estimated dewatering footprints and depths; the dewatering contractor's dewatering footprints may differ, thus resulting in different dewatering rates.
- The discharge rates and DZOIs are conservatively estimated and have a factor of safety applied to minimize the risk of not being prepared for unanticipated soil or ground water conditions that may require higher pump rates or cause greater dewatering impacts.
- The discharge rates are estimated under steady state conditions. Pumping rates prior to steady state are often increased by the dewatering contractor to achieve the desired drawdown in the shortest period of time but must remain below the 50,000 L/d limit.
- Due to inherent uncertainties in estimation, there is a potential for the dewatering discharge rate to exceed 50,000 L/d, thus necessitating an EASR registration. Daily dewatering volumes will need to be closely monitored and dewatering activities staged to ensure that discharge rates remain below the 50,000 L/d threshold.
- Lower discharge rates are expected during drier periods.
- Surface water, which is to be prevented from entering the excavation area, is not included directly, but should be accounted for by the factor of safety.

## 7. CONSTRUCTION DEWATERING IMPACT ASSESSMENT AND MONITORING PLAN

Within the construction dewatering zone of influence, impacts such as ground subsidence and reduction in ground water flow to ground water users and watercourses may potentially exist. The impact assessment and the associated monitoring plan are included below.



## 7.1 <u>Settlement</u>

Ground settlement (soil compression) may be caused by the increase in effective stresses due to the lowering of the ground water level and subsequent reduction (or elimination) of pore water pressure. This settlement can cause damage to buildings and structures close to the dewatering. Typically, subsidence due to dewatering is most likely to occur where the estimated drawdown is significant, structures are located close to the excavation and within the DZOI, and soils within the drawdown depths are compressible. Expected settlement will decrease with distance from the dewatering.

Since the estimated dewatering zone of influence is relatively short at 8 m for the building, and 5 m for a typical servicing trench, it is not expected that settlement will be a significant concern.

Settlement caused by pumping and removing fines (silt and fine sand particles) should be considered. This type of settlement is less common for wellpoints, deep wells, or ejectors, but prevalent for sump pumps. For all pumping methods, it is imperative that the filter packs are sufficiently designed and installed and the discharge is monitored for fines content that may indicate soil erosion.

## 7.2 Potential Impact on Other Ground Water Users and Water Features

No operating water well is located within the estimated construction dewatering zone of influence which is quite short at 8 m for the building and 5 m for a typical servicing trench. Furthermore, pump rates are expected to be quite low, and dewatering efforts are confined to the shallow ground water system. For these reasons, no water wells are expected to be impacted by the construction dewatering.

Similar to the reasoning above, since no watercourses or waterbodies are located within the dewatering zone of influence and pump rates are expected to be quite low, no impacts are expected on them directly, and the impact on ground water flow to these features is expected to be negligible.



## 7.3 Discharge Water Quality and Quantity

#### Ground Water Quality

As discussed in Section 4.4 of the report, the unfiltered ground water sample was compliant with discharge to a sanitary sewer, a storm sewer with the exception of total suspended solids, and compliant with the PWQO for discharge to a watercourse with the exception of copper, iron, phosphorous, and total suspended solids. Therefore, to mitigate impact on the receiving sewer or water feature, it is recommended that the discharge water be treated to remove sediment (total suspended solids) by filtration and/or by using a sedimentation tank at minimum. It is expected that further treatment may be required for the discharge water to meet PWQO needed for discharge to a watercourse. A monitoring plan is described in Section 7.4.

#### Ground Water Quantity

The estimated construction dewatering pump rate is relatively low, and below the threshold of 50,000 L/d required for a water taking permit with the MECP. Nevertheless, the total daily ground water volume pumped should be metered or measured using a flow measuring device, and a record of the water taking should be maintained by the water-taker. This record will include the dates and duration of water takings, and the total measured volume of water pumped per day for each day that water is taken and will be updated and reported to the Client periodically. Records should be kept up to date and available at or near the site of the water taking in the event of inspection by a Provincial Officer.

#### 7.4 Construction Dewatering Monitoring Program and Treatment Plan

Since no water taking permit is necessary, the MECP is not responsible for discharge water quality compliance. Water quality criteria, if any, will be mandated by the local conservation authority if discharge is to storm sewer or watercourse, and/or municipality if to storm sewer or sanitary sewer.

The monitoring plan for discharge to a storm sewer or watercourse is outlined on Table 4. Due to the relatively low impact of the construction dewatering, the plan is primarily concerned with



discharge water quality. The monitoring will be implemented both during a trial dewatering, if conducted, and during construction. The trial dewatering may be conducted for a short period of time once the dewatering and sediment control facilities (filtration bags, decantation tanks, sedimentation ponds, or the like) are installed to obtain a representative water sample from the outflow of the sediment control facility (the "discharge") for chemical analysis. The results of this water quality analysis will provide guidance in the selection of discharge treatment requirements during construction dewatering.

## 8. POTENTIAL LONG-TERM IMPACTS

Short term impacts, namely those due to ground water control during construction (construction dewatering), were outlined in Section 7, above. Potential long-term impacts of the development are discussed herein.

As discussed in Section 5.0, the water balance indicates that the development of the site may result in a loss of infiltration of about 572 m<sup>3</sup>/year, and an increase in runoff of about 2,391 m<sup>3</sup>/year. The loss of infiltration may lead to a decrease in baseflow to nearby watercourses/waterbodies, potentially locally lower the ground water levels, and potentially alter the direction of ground water flow. Increased runoff may lead to a reduction in water quality of water entering watercourses, waterbodies or the soil.

However, due to the high fines content of the existing soils encountered beneath the site, the property was not a significant source of recharge prior to development. In addition, the construction of LID measures may help alleviate these impacts.

## 9. CONCLUDING REMARKS AND RECOMMENDATIONS

For the proposed construction works, the salient assessment findings are outlined as follows:

• The typical stratigraphy underlying the site consists of surficial topsoil or topsoil fill, underlain by sand to silty sand fill, underlain by a native sandy silt till deposit which extended to the termination depth of the majority of the boreholes.



- Hydrostatic ground water level readings have been measured on four (4) occasions from November 24, 2021 to March 9, 2022. Over the monitoring period, ground water depths ranged from 0.5 m to 3.3 m, and ground water elevations ranged from 220.0 to 222.9. The hydrostatic ground water levels are summarized in Table 1. See Section 4.2 for details.
- The estimated hydraulic conductivity of the sandy silt till ranged from 6 x 10<sup>-7</sup> to 4 x 10<sup>-5</sup> cm/s based on slug tests and ranged from 2 x 10<sup>-4</sup> to 5 x 10<sup>-4</sup> cm/s based on grain size distribution. Ground water flow velocities range from 2 x 10<sup>-10</sup> to 2 x 10<sup>-7</sup> m/s, generally to the south or southeast. See Section 4.3 for details.
- An unfiltered ground water sample collected at the site complied with the criteria corresponding to discharge to a West Gwillimbury sanitary sewer, and West Gwillimbury storm sewer, with the exception of total suspended solids. The ground water sample complied with the criteria corresponding to discharge to watercourse (PWQO) with the exception of copper, iron, phosphorous and total suspended solids. See Section 4.4 for details.
- Infiltration rates of the existing soil encountered at the site are estimated in the range of 12 to 71 mm/hr. See Section 4.5 for details.
- A water balance considering pre- and post-development conditions estimated a deficit of ground water infiltration of 572 m<sup>3</sup>/year and an increase in runoff of 2,391 m<sup>3</sup>/year. See Section 5 for details.
- Excavation for the building and servicing is expected to be in sandy silt, with worst-case ground water draw down estimates of about 3.8 m and 4.8 m, respectively. An assessment of the potential construction dewatering rates indicates that ground water control is not expected to be excessive; the total dewatering rate for the building excavation was about 20,000 L/d, and for typical buried services was about 8,000 L/d (per 30 m length of trench). Dewatering zones of influence were estimated at 8 m for the building and 5 m for the servicing. See Section 6.
- Assuming the conditions assumed in this report, the construction dewatering rates are not anticipated to exceed 50,000 L/d and thus are not anticipated to require water taking permitting.



As described in the Section 7, the impact of the construction dewatering (the drawdown of the local ground water table) is expected to be insignificant. Since the dewatering zones of influence are expected to be less than 8 m for the building and 5 m for the servicing, settlement is expected to be negligible, and no private or public water wells or wetlands are expected to be impacted. A construction dewatering monitoring plan is included for discharge water quality compliance, if required by the conservation authority.

We recommend the following:

- Although not mandatory, ground water level uncertainties due to seasonal variability and other factors may be diminished by having the ground water levels monitored for a longer period of time.
- If infiltration facilities are proposed, it is recommended that in-situ percolation testing be conducted in the specific locations and depths required for the final design.
- If final development design details differ from that assumed herein, some assessments should be re-assessed to confirm that the findings and conclusions remain valid.
- Since the construction dewatering rates are less than 50,000 L/d, water taking permitting is not required by the MECP. However, if construction dewatering discharge water is to be directed to a watercourse, the Lake Simcoe Region Conservation Authority should be notified.
- It is recommended that all steps be taken to minimize the dewatering and/or sump pump rates. For example, since the ground water levels may vary, it is best to schedule excavation for periods of low ground water level. Also, excavation footprints and depths should be no more than is needed, and surface water intrusion minimized.
- To reduce the erosion of fines around the sump pumps or wellpoints, it is imperative that the filter packs are sufficiently designed and installed and the discharge is monitored for fines content.
- At minimum, it is recommended that construction dewatering discharge water should be treated using a sedimentation tank and/or filtration. A discharge water quality monitoring plan is included, if required.



 Due to inherent uncertainties in estimation, there is a potential for the dewatering discharge rate to exceed 50,000 L/d, thus necessitating an EASR registration. Daily dewatering volumes will need to be closely monitored and dewatering activities staged to ensure that discharge rates remain below the 50,000 L/d threshold.

We trust you will find this report complete within our terms of reference. Should you have any questions, please do not hesitate to contact this office.

Sincerely

Peto MacCallum Ltd.



Andrew Cooke, PhD, P.Eng. Manager and Senior Engineer Geoenvironmental and Hydrogeological Services



Shamsul A. Tarafder, MSc., PhD, P.Geo Associate and Senior Geoscientist Geoenvironmental and Hydrogeological Services



## TABLE 1

| BOREHOLE (BH)<br>/ MONITORING | GROUND<br>SURFACE        | MID-SCREEN<br>ELEVATION <sup>(2)</sup> | HYDR           | OSTATIC GROUND V<br>(DEPTI |                  | ATION          |  |
|-------------------------------|--------------------------|----------------------------------------|----------------|----------------------------|------------------|----------------|--|
| WELL (MW) No. <sup>(1)</sup>  | ELEVATION <sup>(2)</sup> | (DEPH, m)                              | NOV. 24, 2021  | DEC. 17, 2021              | FEB. 11, 2022    | MAR. 9, 2022   |  |
| 1                             | 224.13                   | 220.2<br>(3.9)                         | 222.5<br>(1.6) | 222.6<br>(1.5)             | 221.99<br>(2.14) | 222.3<br>(1.8) |  |
| 5                             | 224.15                   | 220.3<br>(3.9)                         | 221.1<br>(3.1) | 221.4<br>(2.8)             | 220.93<br>(3.22) | 220.9<br>(3.3) |  |
| 7                             | 223.35                   | 219.5<br>(3.9)                         | 221.6<br>(1.8) | 221.6<br>(1.8)             | 221.07<br>(2.28) | 221.4<br>(2.0) |  |
| 8                             | 223.62                   | 219.7<br>(3.9)                         | 222.9<br>(0.7) | 222.1<br>(1.5)             | 221.33<br>(2.29) | 221.6<br>(2.0) |  |
| 9                             | 222.98                   | 219.1<br>(3.9)                         | 222.0<br>(1.0) | 222.3<br>(0.7)             | 221.58<br>(1.40) | 222.2<br>(0.8) |  |
| 14                            | 222.41                   | 218.5<br>(3.9)                         | 221.7<br>(0.7) | 221.9<br>(0.5)             | 221.17<br>(1.24) | 221.7<br>(0.7) |  |
| 16                            | 221.58                   | 217.7<br>(3.9)                         | 220.3<br>(1.3) | 220.4<br>(1.2)             | 219.98<br>(1.60) | 220.0<br>(1.6) |  |
| 20                            | 220.82                   | 216.9<br>(3.9)                         | 220.2<br>(0.6) | 220.3<br>(0.5)             | 219.96<br>(0.86) | 220.0<br>(0.8) |  |

## GROUND WATER LEVEL READINGS IN MONITORING WELLS

#### Notes:

(1) See Drawing 1 for approximate borehole locations and Log of Borehole sheets for details of monitoring well installation.

(2) Ground surface elevations at the monitoring well locations were surveyed by PML and are geodetic.

(3) Water levels measured using a Solinst flat tape water level reader.



# TABLE 2

## ESTIMATED HYDRAULIC CONDUCTIVITY (K) VALUES FROM SOIL SAMPLE GRAIN SIZE DISTRIBUTION AND BOREHOLE PERMEABILITY TEST RESULTS

| BOREHOLE (BH) /<br>MONITORING<br>WELL (MW) No. <sup>(1)</sup> | RING ELEVATION DEPTH) OR SOIL TYPE AT MW        |                                        | % CLAY <sup>(2)</sup> | ESTIMATED K-VALUES FROM<br>GRAIN SIZE DISTRIBUTION<br>TEST RESULTS <sup>(3)</sup><br>(cm/sec) | ESTIMATED K-VALUES<br>FROM BOREHOLE<br>PERMEABILITY TESTS <sup>(4)</sup><br>(cm/sec) |
|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1                                                             | 1 220.2 Sandy Silt Till                         |                                        | -                     | -                                                                                             | 2 x 10 <sup>-5</sup>                                                                 |
| 5                                                             | Sandy Silt Till<br>(SS3, 1.5 to 1.9 m)          |                                        | 16                    | 2 x 10 <sup>-4</sup> (P)                                                                      | -                                                                                    |
| 5                                                             | 220.3<br>(3.9)                                  | Sandy Silt Till<br>(SS6, 4.6 to 5.0 m) | 13                    | 3 x 10 <sup>-4</sup> (P)                                                                      | 6 x 10 <sup>-7</sup>                                                                 |
| 7                                                             | 7 219.5<br>(3.9) Sandy Silt Till                |                                        | -                     | -                                                                                             | 4 x 10 <sup>-5</sup>                                                                 |
| 0                                                             |                                                 | Sandy Silt Till<br>(SS3, 1.5 to 1.9 m) | 13                    | 3 x 10 <sup>-4</sup> (P)                                                                      | -                                                                                    |
| 9                                                             | 9 No MW                                         | Sandy Silt Till<br>(SS5, 3.1 to 3.5 m) | 11                    | 5 x 10 <sup>-4</sup> (P)                                                                      | -                                                                                    |
| 19                                                            | 19 No MW Sandy Silt Till<br>(SS3, 1.5 to 1.9 m) |                                        | 11                    | 5 x 10 <sup>-4</sup> (P)                                                                      | -                                                                                    |
| 20                                                            | 20 216.9<br>(3.9) Sandy Silt Till               |                                        | -                     | -                                                                                             | 1 x 10 <sup>-5</sup>                                                                 |

#### Notes:

(1) Log of Borehole Sheets for soil sample description.

(2) % Clay is percentage of the total soil sample finer than 0.002 mm by weight.

(3) K-value determination using grain size distribution method by Vukovic and Soro (1992) (V) or Puckett (1985) (P).

(4) K-value estimated using Hvorslev's Method.



# **TABLE 3**

## SUMMARIZED CALCULATIONS OF ESTIMATED CONSTRUCTION DISCHARGE RATES AND ZONES OF INFLUENCE

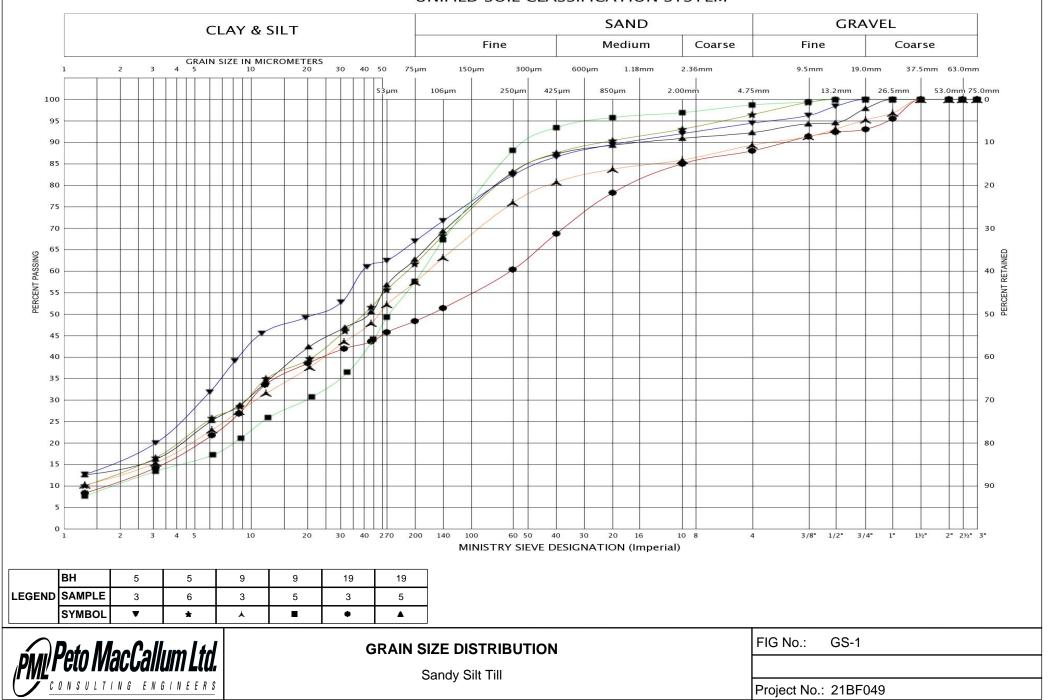
| ACTIVITY /<br>FEATURE              | PROPOSED<br>EXCAVATION<br>ELEVATION<br>(mASL)<br>(1) | CLOSEST<br>MONITORING<br>WELLS OR<br>BOREHOLES<br>(2) | GROUND<br>WATER<br>STRIKE<br>ELEVATION<br>(mASL)<br>(3) | MODEL<br>GROUND<br>WATER<br>LEVEL<br>ELEVATION<br>(mASL)<br>(4) | LOWERED<br>GROUND<br>WATER<br>LEVEL<br>ELEVATION<br>(mASL)<br>(5) | AVERAGE<br>DRAW-<br>DOWN<br>REQUIRED<br>S₀ (m)<br>(6) | SOIL TYPE<br>(7)   | ASSUMED<br>DIMENSIONS<br>OF<br>DEWATERED<br>AREA (m)<br>(8) | K<br>(m/s)           | EQUIVALENT<br>RADIUS, re<br>(m)<br>(9) | ESTIMATED<br>DISTANCE<br>OF<br>INFLUENCE<br>R <sub>0</sub> or L <sub>0</sub> (m)<br>(10) | ESTIMATED<br>DEWATERING<br>DISCHARGE<br>RATE, Q<br>(FOS =1.5)<br>(L/day)<br>(11) |
|------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|--------------------|-------------------------------------------------------------|----------------------|----------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Building Excavation<br>(West Part) | 219.6                                                | BH3,4,5,7,8                                           | 221.6                                                   | 222.9 (BH8)                                                     | 219.1                                                             | 3.8                                                   | Sandy Silt<br>Till | 55 x 26                                                     | 4 x 10 <sup>-7</sup> | 21                                     | 8                                                                                        | 10,200                                                                           |
| Building Excavation<br>(East Part) | 219.6                                                | BH5,7,8,11                                            | 221.6                                                   | 222.9 (BH8)                                                     | 219.1                                                             | 3.8                                                   | Sandy Silt<br>Till | 34 x 25                                                     | 4 x 10 <sup>-7</sup> | 16                                     | 8                                                                                        | 8,200                                                                            |
| Servicing (Typical)                | 218.0                                                | BH6,9,10,12-20                                        | 220.9                                                   | 222.3 (BH9)                                                     | 217.5                                                             | 4.8                                                   | Sandy Silt<br>Till | Trench<br>Length = 30                                       | 4 x 10 <sup>-7</sup> | -                                      | 5                                                                                        | 8,200                                                                            |

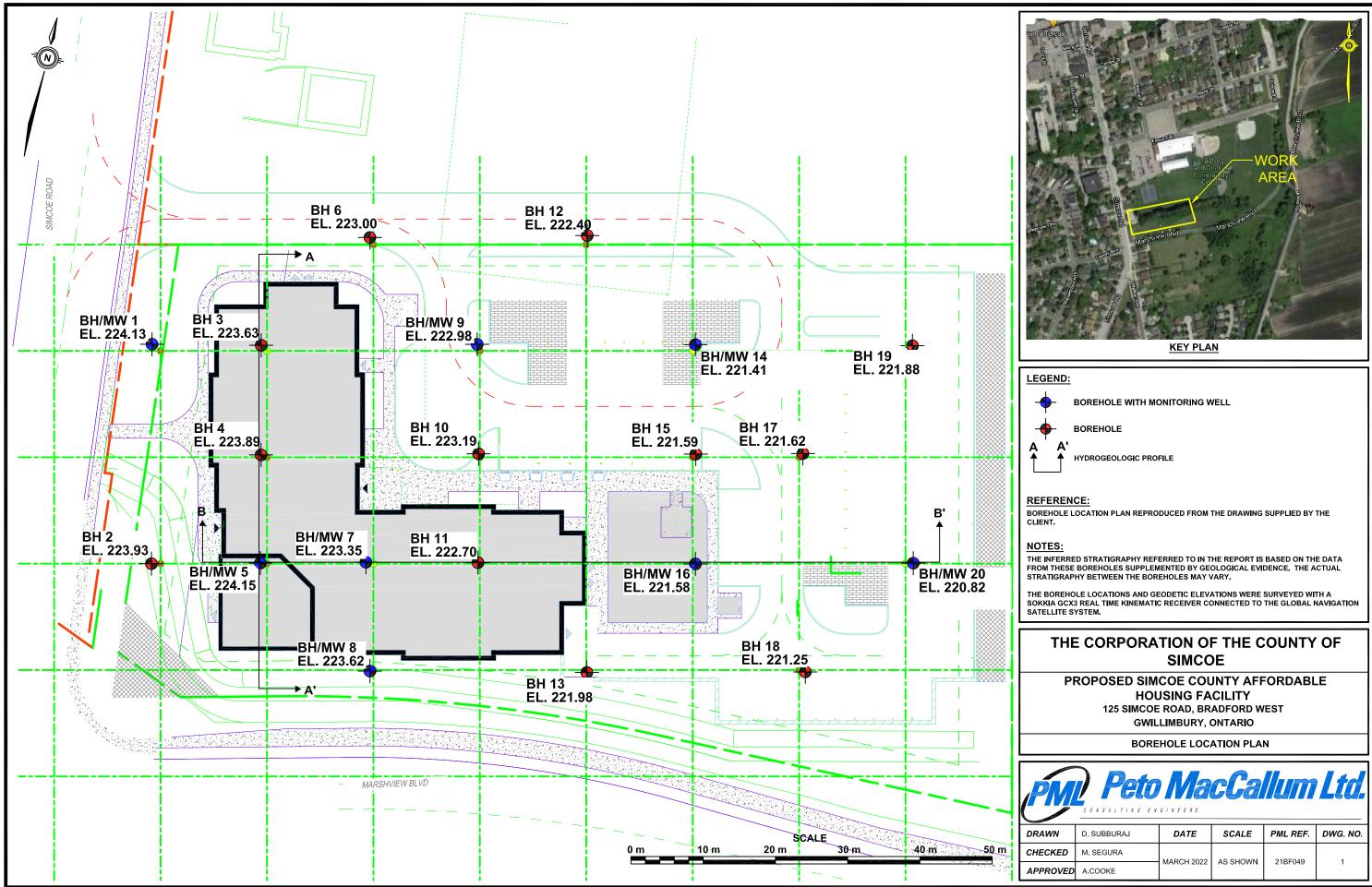
Notes:

- (1) Based on site drawings. Includes 0.3 m for bedding.
- (2) See Drawing 1 for approximate borehole locations.
- (3) Model value based on highest reported or interpreted depth to ground water strike.
- (4) Model value based on highest measured hydrostatic ground water level.
- (5) Ground water level lowered during construction dewatering is assumed to be 0.5 m below the general excavation level.
- (6) Difference between the hydrostatic ground water level measured in the monitoring wells and the lowered ground water level elevation.
- (7) See Log of Borehole Sheets for soil description.
- (8) A maximum length of dewatering of 30 m is assumed for trenches.
- (9) Equivalent radius,  $r_e$  is the radius that approximates a rectangular or square system area.  $r_e = \sqrt{(a \ge b / \pi)}$ . Not applied to trenches. (10)  $R_0 = 3000S_0 K^{1/2}$  or  $L_0 = 1750 S_0 K^{1/2}$ ,  $R_0$  in m,  $L_0$  in m,  $S_0$  in m and K in m/s.
- (11) Estimated dewatering rate from Dupuit-based formulas (Powers et al, 2007), with a factor of safety (FOS) multiplier.

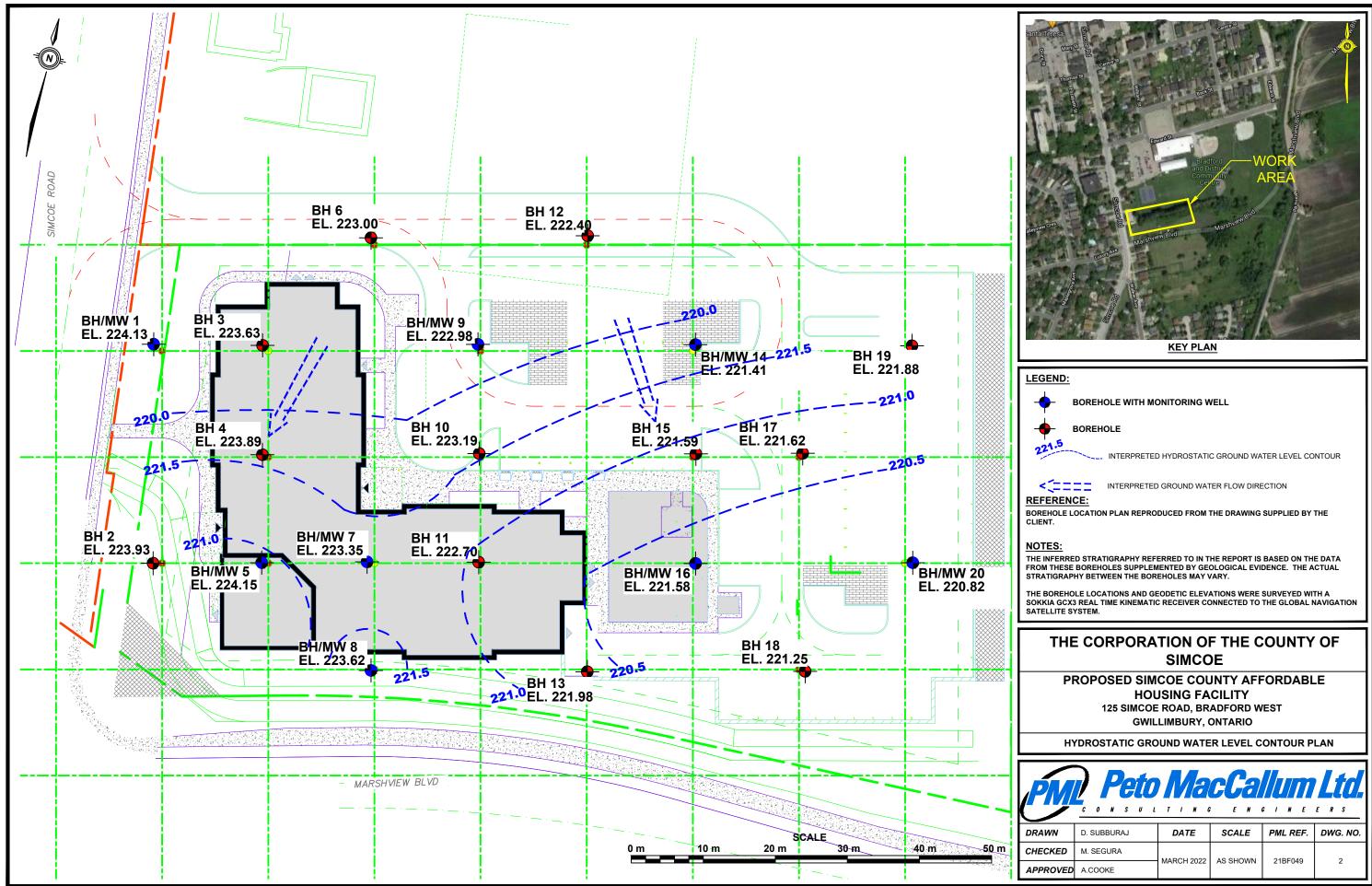
Table 3, Page 1 of 1




# TABLE 4

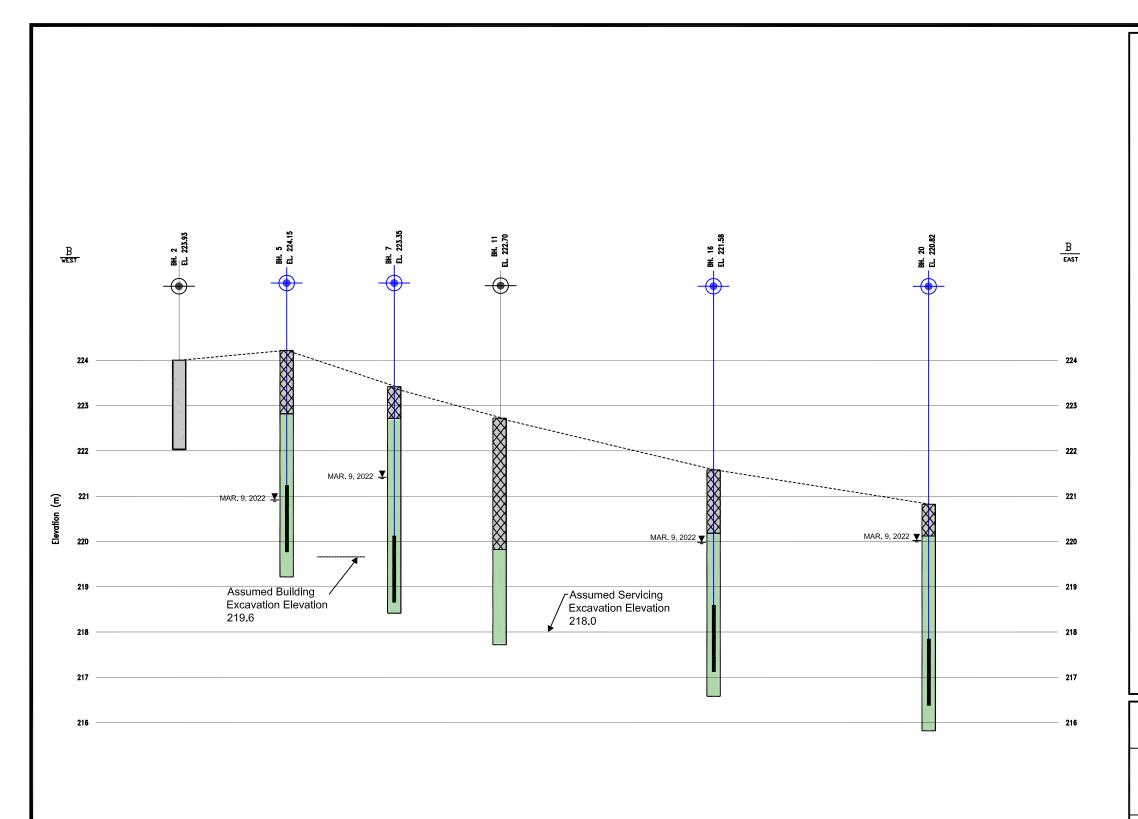

# SUMMARIZED CONSTRUCTION DEWATERING MONITORING AND MITIGATION PLAN

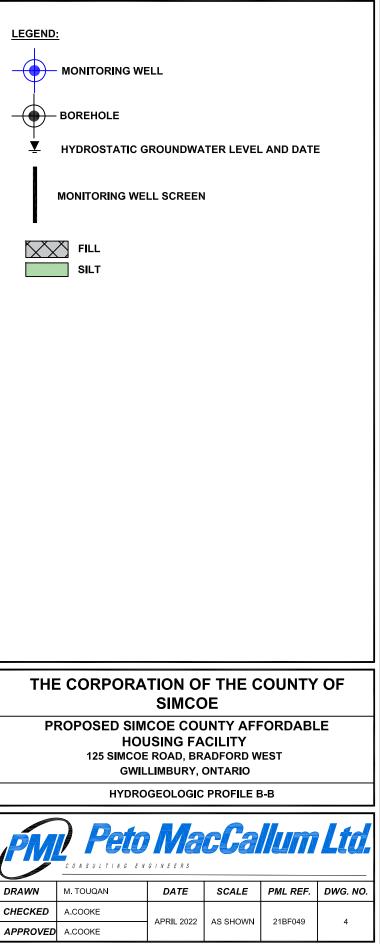
| PERIOD                        | TYPE OF<br>MONITORING      | MONITORING<br>LOCATION             | PARAMETERS                                                                                                                                                                                                                                             | MONITORING<br>FREQUENCY                                                                                                                                      | TRIGGER FOR MITIGATION                                                                                                                                                          | MITIGATION MEASURES / COMMENTS                                                                                                                                                                                       |
|-------------------------------|----------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial / Initial<br>Dewatering | Water Quality <sup>1</sup> | Treated<br>dewatering<br>discharge | A suite of metals for<br>PWQO. E-coli,<br>nitrate, nitrite,<br>phosphorus. West<br>Gwillimbury storm<br>sewer bylaw<br>parameters (if via<br>storm sewer).<br>Water clarity by<br>observation, visual or<br>olfactory evidence of<br>petroleum impact. | Once during trial dewatering                                                                                                                                 | Water quality exceeds West<br>Gwillimbury sewer-use bylaw<br>criteria (for storm) or PWQO.<br>Apparent loss of clarity, visual or<br>olfactory evidence of petroleum<br>impact. | Qualified person to review results and<br>advise if treatment is adequate or if<br>additional measures are required.                                                                                                 |
| During<br>Dewatering          | Water Quality <sup>1</sup> | Treated<br>dewatering<br>discharge | A suite of metals for<br>PWQO. E-coli,<br>nitrate, nitrite,<br>phosphorus. West<br>Gwillimbury storm<br>sewer bylaw<br>parameters (if via<br>storm sewer).<br>Water clarity by<br>observation, visual or<br>olfactory evidence of<br>petroleum impact. | Once every week,<br>then every two<br>weeks after three<br>consecutive<br>compliant samples.<br>Return to once a<br>week for new<br>dewatering<br>locations. | Water quality exceeds West<br>Gwillimbury sewer-use bylaw<br>criteria (for storm) or PWQO.<br>Apparent loss of clarity, visual or<br>olfactory evidence of petroleum<br>impact  | Re-sample. Change treatment method<br>(much preferred) and/or dispose discharge<br>water to sanitary sewer or collect and send<br>off-site (last resort)<br>QP to modify parameter list if evidence of<br>petroleum. |


1 It is recommended that, at minimum, the discharge water is treated using a sediment control facility such as a decantation tank or filtration bags









|        |             |            | <b>cCa</b> | lum      | Ltd.     |
|--------|-------------|------------|------------|----------|----------|
| 4WN    | D. SUBBURAJ | DATE       | SCALE      | PML REF. | DWG. NO. |
| ECKED  | M. SEGURA   | MARCH 2022 | AS SHOWN   | 21BF049  | 1        |
| PROVED | A.COOKE     | MARCH 2022 | AS SHOWN   | 2101049  | 1        |



BH. 5 EL. 224.15 3 223.63 8 223.62 8 4 223.89 А А **2**23 SOUTH NORTH 품급 폭덕 품 급 훔금 ᅗᅳ 224.5 224.5 224.0 224.0  $\bigotimes$ 223.5 223.5 223.0 MAR. 9, 2022 223.0 222.5 222.5 **⊻**MAR. 9, 2022 222.0 222.0 Ē **⊻** MAR. 9, 2022 vation 221.5 221.5 Ele 221.0 221.0 220.5 220.5 220.0 220.0 219.5 219.5 219.0 219.0 Assumed Servicing 218.5 218.5 Assumed Excavation Elevation Building 218.0 Excavation 218.0 218.0 Elevation 219.6









## PENETRATION RESISTANCE

Standard Penetration Resistance N: - The number of blows required to advance a standard split spoon sampler 0.3 m into the subsoil. Driven by means of a 63.5 kg hammer falling freely a distance of 0.76 m.

Dynamic Penetration Resistance: - The number of blows required to advance a 51 mm, 60 degree cone, fitted to the end of drill rods, 0.3 m into the subsoil. The driving energy being 475 J per blow.

### **DESCRIPTION OF SOIL**

The consistency of cohesive soils and the relative density or denseness of cohesionless soils are described in the following terms:

| <u>CONSISTE</u> | <u>NCY</u> <u>N (blows/0.3 m)</u> | <u>c (kPa)</u> | DENSENESS  | <u>N (blows/0.3 m)</u> |
|-----------------|-----------------------------------|----------------|------------|------------------------|
| Very Soft       | 0 - 2                             | 0 - 12         | Very Loose | 0 - 4                  |
| Soft            | 2 - 4                             | 12 - 25        | Loose      | 4 - 10                 |
| Firm            | 4 - 8                             | 25 - 50        | Compact    | 10 - 30                |
| Stiff           | 8 - 15                            | 50 - 100       | Dense      | 30 - 50                |
| Very Stiff      | 15 - 30                           | 100 - 200      | Very Dense | > 50                   |
| Hard            | > 30                              | > 200          |            |                        |
| WTPL            | Wetter Than Plastic Limit         |                |            |                        |
| APL             | About Plastic Limit               |                |            |                        |
| DTPL            | Drier Than Plastic Limit          |                |            |                        |

ΤW

ΤP

### **TYPE OF SAMPLE**

| SS | Split Spoon   |
|----|---------------|
| WS | Washed Sample |

- Scraper Bucket Sample SB

Thinwall Open **Thinwall Piston** 

- OS **Oesterberg Sample**
- AS Auger Sample
- FS Foil Sample RC **Rock Core**
- Chunk Sample ST Slotted Tube Sample
  - PH Sample Advanced Hydraulically
  - Sample Advanced Manually PM

## SOIL TESTS

CS

| Qu  | Unconfined Compression          | LV | Laboratory Vane |
|-----|---------------------------------|----|-----------------|
| Q   | Undrained Triaxial              | FV | Field Vane      |
| Qcu | Consolidated Undrained Triaxial | С  | Consolidation   |
| Qd  | Drained Triaxial                |    |                 |

| LOCA                      | JECT Proposed Simcoe County Affordat<br>ATION 125 Simcoe Road, Bradford, Onat<br>ING METHOD Continuous Flight Solid Ste | rio          |        | Facilit | у                 |                 |                                      | BORI                                          | NG DA                                                      | <b>TE</b> Oc                           | tober 2    | 29,202         | 1        | E | PML RE<br>ENGINE<br>FECHNI | ER            | 21BF<br>GW<br>FF | 049                                                                                |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|--------|---------|-------------------|-----------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------------------------------|------------|----------------|----------|---|----------------------------|---------------|------------------|------------------------------------------------------------------------------------|
| DEPTH<br>ELEV<br>(metres) | SOIL PROFILE<br>DESCRIPTION<br>SURFACE ELEVATION 224.13                                                                 | STRAT PLOT   | NUMBER | SAM     | PLES<br>N. ^YFNES | ELEVATION SCALE | +FIEL<br>▲POC<br>5<br>DYNAN<br>STANE | D VANE<br>KET PE<br>0 10<br>IIC CON<br>ARD PE | ENGTH<br>ATOF<br>NETRO<br>0 15<br>IE PENE<br>ENETRA<br>0 6 | RVANE<br>METER<br>50 20<br>ETRATION TI | <b>0</b> Q | W <sub>P</sub> | CC       |   | W_                         | M/ NIT WEIGHT |                  | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SIZ<br>DISTRIBUTIO<br>GR SA S |
| 0.23<br>223.90            | TOPSOIL: Dark brown sand, trace gravel, trace organics, moist                                                           | Ř            | 1      | SS      | 3                 | 224             | •                                    |                                               |                                                            |                                        |            |                | <b>b</b> |   | -                          |               |                  | Stick-up casing<br>Concrete                                                        |
|                           | FILL: Very loose to loose, dark brown to<br>brown sand to sandy silt fill, trace gravel,<br>trace organics, moist       | $\bigotimes$ | 2      | SS      | 5                 | 223             | •                                    |                                               |                                                            |                                        |            |                | o        |   |                            |               |                  | Bentonite seal                                                                     |
| 2.1                       |                                                                                                                         | $\bigotimes$ | × 3    | SS      | 9                 |                 |                                      |                                               |                                                            |                                        |            |                | o        |   |                            |               |                  | Denionite seal                                                                     |
| 2.1<br>222.0              | SANDY SILT TILL: Very dense, brown<br>sandy silt till, trace gravel, trace to some<br>clay, moist                       |              | 4      | SS      | 56                | 222             |                                      |                                               |                                                            |                                        |            |                | 0        |   |                            |               |                  | First water strike a<br>2.3 m                                                      |
|                           |                                                                                                                         |              | 5      | SS      | 68/290 mm         | 221             |                                      |                                               |                                                            |                                        | *          | • •            |          |   |                            |               |                  |                                                                                    |
| <u>4.0</u><br>220.1       | becoming grey, wet                                                                                                      | 0            |        |         |                   | 220             |                                      |                                               |                                                            |                                        |            |                |          |   |                            |               |                  | 50 mm slotted pip<br>Filter sand                                                   |
| <u>4.9</u><br>219.2       | BOREHOLE TERMINATED AT 4.86 m                                                                                           |              | 6      | SS      | 50/140 mm         |                 |                                      |                                               |                                                            |                                        | >>         |                | <b>b</b> |   |                            |               | Upon<br>Water    | completion of auge<br>at 4.5 m                                                     |
|                           |                                                                                                                         |              |        |         |                   |                 |                                      |                                               |                                                            |                                        |            |                |          |   |                            |               | 2021-<br>2021-   | 11-24 1.6 2<br>12-17 1.5 2                                                         |

| LOC                     | JECT Proposed Simcoe County Afforda<br>ATION 125 Simcoe Road, Bradford, Ona<br>RING METHOD Continuous Flight Solid St              | trio       | 0      |          |                   |                 | SHEA                                 | BORING                                                                           |                                                   |                             | 28,202         | 21   | E                                    | PML RE<br>ENGINE<br>TECHNI | ER                | 21BF049<br>GW<br>FF                                                               |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|-------------------|-----------------|--------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------|------|--------------------------------------|----------------------------|-------------------|-----------------------------------------------------------------------------------|
| DEPTH<br>ELEV<br>metres | )                                                                                                                                  | STRAT PLOT | NUMBER | SAM      | LES<br>"N" VALUES | ELEVATION SCALE | +FIEL<br>APOC<br>5<br>DYNAN<br>STANE | R STRENG<br>D VANE (A)<br>KET PENET<br>0 100<br>MIC CONE PI<br>ARD PENET<br>0 40 | ORVANE<br>ROMETEF<br>150 2<br>NETRATI<br>RATION T | O Qu<br>R <b>O</b> Q<br>200 | W <sub>P</sub> | ATER | ATURAL<br>DISTURE<br>NTENT<br>W<br>O | WL                         | UNIT WEIGH        | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SI<br>DISTRIBUTIO<br>GR SA S |
| <u>0.30</u><br>223.63   | SURFACE ELEVATION 223.93<br>TOPSOIL: Dark brown sand, trace<br>gravel, trace organics, moist<br>FILL: Compact, dark brown to brown | -          | 1      | SS       | 15                |                 | /                                    |                                                                                  |                                                   |                             |                | >    | , 30                                 | 40                         | kN/m <sup>3</sup> | GR SA S                                                                           |
|                         | sand to sandy silt fill, some gravel, trace clay, trace organics, moist                                                            |            | 2      | SS<br>SS | 6                 | 223             |                                      |                                                                                  |                                                   |                             |                | 0    |                                      |                            |                   |                                                                                   |
|                         | BOREHOLE TERMINATED AT 2.0 m                                                                                                       |            |        |          |                   |                 |                                      |                                                                                  |                                                   |                             |                |      |                                      |                            |                   | Upon completion of auge<br>No water<br>No cave                                    |

| 1 | LOCA                    | Proposed Simcoe County Affordab           ATION         125 Simcoe Road, Bradford, Onatr           NG METHOD         Continuous Flight Solid Ste        | io           | Ū      | Facilit | у          |           |       | BORING                            | DATE ( | October 2 | 29,20         | 21 |                 | PML<br>ENG<br>TEC | INEE          |                   | 21BF049<br>GW<br>FF                                               |
|---|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|---------|------------|-----------|-------|-----------------------------------|--------|-----------|---------------|----|-----------------|-------------------|---------------|-------------------|-------------------------------------------------------------------|
|   |                         | SOIL PROFILE                                                                                                                                            | т            |        | SAM     | PLES       | SCALE     | +FIEL | R STRENC<br>D VANE Δ<br>KET PENET | TORVAN | E O Qu    | PLAS<br>LIMIT |    | ATURA<br>DISTUF |                   | QUID<br>LIMIT | IGHT              | GROUND WATER                                                      |
| E | EPTH<br>ELEV<br>netres) |                                                                                                                                                         | STRAT PLOT   | NUMBER | ТҮРЕ    | "N" VALUES | ELEVATION | 5     | 0 100<br>IIC CONE P<br>ARD PENE   | 150    | 200       |               |    |                 | ENT (%            | , í           |                   | OBSERVATIONS<br>AND REMARKS<br>GRAIN SI<br>DISTRIBUTIC<br>GR SA S |
|   |                         | SURFACE ELEVATION 223.63<br>FILL: Compact, brown sand to silt fill,<br>some gravel, probable cobbles and<br>boulders, trace clay, trace organics, moist | $\bigotimes$ | 1      | SS      |            | 223       |       |                                   |        |           |               |    |                 |                   | -             | kN/m <sup>3</sup> | GRAA                                                              |
|   |                         |                                                                                                                                                         | $\bigotimes$ | 2      | SS      | 13         |           | •     |                                   |        |           |               | 0  |                 |                   |               |                   |                                                                   |
|   | 2.1                     | SANDY SILT TILL: Dense, brown sandy                                                                                                                     |              | 3      | SS      | 6          | 222       |       |                                   |        |           |               |    | 0               |                   |               |                   |                                                                   |
|   | 2.9                     | silt till, some gravel, trace to some clay,<br>moist<br>becoming grey, trace gravel                                                                     |              | 4      | SS      | 50         | 221       |       |                                   |        |           |               | 0  |                 |                   |               |                   |                                                                   |
|   | 20.1                    | becoming groy, adde graver                                                                                                                              | 0            | 5      | SS      | 99/290 mm  | 220       |       |                                   |        | *         | • •           |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            | 219       |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   | <u>5.0</u><br>218.6     | BOREHOLE TERMINATED AT 5.0 m                                                                                                                            |              | 6      | SS      | 98/295 mm  | 219       |       |                                   |        | >>        | • •           |    |                 |                   |               |                   | Upon completion of auge<br>No water                               |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   | No cave                                                           |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |
|   |                         |                                                                                                                                                         |              |        |         |            |           |       |                                   |        |           |               |    |                 |                   |               |                   |                                                                   |

| LOC                     | JECT Proposed Simcoe County Affordate<br>ATION 125 Simcoe Road, Bradford, Onatr<br>ING METHOD Continuous Flight Solid Ster          | rio          |        |          |                 | 1               | <b>BORI</b><br>SHEAR STR                                         |                                               | (kPa)                                                       | 29,2021 |       | PML REI<br>ENGINEI<br>TECHNIC | ER                | 21BF049<br>GW<br>FF                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------|-----------------|-----------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------|-------|-------------------------------|-------------------|-----------------------------------------------------------------------------------|
| DEPTH<br>ELEV<br>metres |                                                                                                                                     | STRAT PLOT   | NUMBER | SAMI     | PLES<br>RATINES | ELEVATION SCALE | +FIELD VANE<br>APOCKET PE<br>50 11<br>DYNAMIC CON<br>STANDARD PE | E ATOR<br>NETROM<br>0 15<br>IE PENE<br>ENETRA | VANE O QU<br>METER O Q<br>0 200<br>TRATION ×<br>TION TEST ● | WATER   |       | WL<br>NT (%)                  | UNIT WEIGH        | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SL<br>DISTRIBUTIO<br>GR SA S |
|                         | SURFACE ELEVATION 223.89<br>TOPSOIL: Dark brown sand, some<br>gravel, trace organics, moist<br>FILL: Very loose to very dense, dark | Ĩ            | 1      | SS       | 18              |                 | 20 4                                                             | 0 60                                          | 0 80                                                        | 0       | 20 30 | 40                            | kN/m <sup>3</sup> | GR SA S                                                                           |
|                         | brown sand to silty sand fill, some gravel,<br>probable cobbles and boulders, moist                                                 | $\bigotimes$ | 2      | SS       | 16              | 223             | /                                                                |                                               |                                                             | 0       |       |                               | -                 |                                                                                   |
|                         |                                                                                                                                     | $\bigotimes$ | 3      | SS       | 2               | 222             |                                                                  |                                               |                                                             | 0       |       |                               | -                 | First water strike at 0.0 m                                                       |
|                         |                                                                                                                                     | $\bigotimes$ | 4      | SS<br>SS | 1               | 221             |                                                                  |                                               |                                                             | 0       |       |                               | -                 | First water strike at 2.3 m                                                       |
| <u>4.0</u><br>219.9     | SANDY SILT TILL: Dense, brown sandy                                                                                                 |              | 5      | 33       | 04              | 220             |                                                                  |                                               | ~                                                           |         |       |                               | -                 |                                                                                   |
| <u>5.0</u>              | silt till, trace gravel, trace to some clay,<br>wet<br>BOREHOLE TERMINATED AT 5.0 m                                                 |              | 6      | SS       | 31              | 219             | •                                                                |                                               |                                                             | 0       |       |                               | -                 | Upon completion of auge                                                           |
|                         |                                                                                                                                     |              |        |          |                 |                 |                                                                  |                                               |                                                             |         |       |                               |                   |                                                                                   |

| LOC                   | JECT Proposed Simcoe County Affordat<br>ATION 125 Simcoe Road, Bradford, Onat<br>ING METHOD Continuous Flight Solid Ste      | rio        |        | Facilit | у               |                 |                                                                 |                      | TE Octobe                                                              | r 29,2         | 021 | E                                         | ML RE<br>NGINE<br>ECHNI                    | ER                | 21BF049<br>GW<br>FF                                                                                            |                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------|-----------------|-----------------|-----------------------------------------------------------------|----------------------|------------------------------------------------------------------------|----------------|-----|-------------------------------------------|--------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| EPTH<br>LEV<br>ietres | DESCRIPTION                                                                                                                  | STRAT PLOT | NUMBER | SAM     | PLES            | ELEVATION SCALE | SHEAR STR<br>+FIELD VANE<br>50 11<br>DYNAMIC CON<br>STANDARD PE | ATOF<br>NETRC<br>0 1 | RVANE         O 0           METER         O 0           50         200 | ₩ <sub>P</sub> |     | ATURAL<br>DISTURE<br>ONTENT<br>W<br>ONTEN | Liquie<br>Limit<br>w <sub>L</sub><br>T (%) | UNIT WEIGHT       | GROUND WA<br>OBSERVATI<br>AND REMAI                                                                            | ONS<br>RKS            |
| 0.30                  | SURFACE ELEVATION 224.15<br>TOPSOIL: Dark brown sand, some                                                                   | ~~~`       |        | SS      |                 | 교<br>224        |                                                                 |                      | 0 80                                                                   |                | -   | 20 30                                     | 40                                         | kN/m <sup>3</sup> | Stick-up cas                                                                                                   | SA S                  |
| 23.85                 | gravel, trace organics, moist<br>FILL: Compact to very dense, dark<br>brown sand fill, some gravel, trace<br>organics, moist |            | 2      | SS      | 17<br>50/130 mm |                 |                                                                 |                      |                                                                        |                | 0   |                                           |                                            |                   | Concrete                                                                                                       |                       |
| <u>1.4</u><br>22.8    | SANDY SILT TILL: Compact to very                                                                                             |            |        |         |                 | 223             |                                                                 |                      |                                                                        |                | 0   |                                           |                                            |                   | Bentonite se                                                                                                   | al                    |
|                       | dense, brown sandy silt till, trace gravel,<br>some clay, probable cobbles and<br>boulders, moist                            |            | 3      | SS      | 22              | 222             |                                                                 |                      |                                                                        |                | •   |                                           |                                            |                   | 6                                                                                                              | , 27, 6               |
| <u>2.</u> 9_          |                                                                                                                              | · · · ·    | 4      | SS      | 37              |                 |                                                                 |                      |                                                                        |                | 0   |                                           |                                            |                   |                                                                                                                |                       |
| 21.3                  | becoming grey                                                                                                                |            | 5      | SS      | 47/120 mm       | 221             |                                                                 |                      |                                                                        | »• (           | >   |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              | ,<br>,     |        |         |                 | 220             |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   | 50 mm slotte                                                                                                   | ed pip                |
| 5.0                   |                                                                                                                              | · • •      | 6      | SS      | 35              | -               | •                                                               |                      |                                                                        |                | 0   |                                           |                                            |                   | ··□·                                                                                                           | 34, 6                 |
|                       | BOREHOLE TERMINATED AT 5.0 m                                                                                                 |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   | Upon completion of<br>No water<br>No cave                                                                      | -                     |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   | Water Level Readin           Date         Dep           2021-11-24         3.           2021-12-17         2.4 | t <u>h Ele</u><br>1 2 |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                | 5                     |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |
|                       |                                                                                                                              |            |        |         |                 |                 |                                                                 |                      |                                                                        |                |     |                                           |                                            |                   |                                                                                                                |                       |

| LOC                    | JECT Proposed Simcoe County Affordab<br>ATION 125 Simcoe Road, Bradford, Onatr<br>ING METHOD Continuous Flight Solid Ste | io         |        | Facility | ý          |           |   |                   | ATE October                                   | 26,202          | 21                 | E                           | ML REI<br>NGINE<br>ECHNI | ER                | 21BF049<br>GW<br>FF                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|------------|-----------|---|-------------------|-----------------------------------------------|-----------------|--------------------|-----------------------------|--------------------------|-------------------|----------------------------------------|
|                        | SOIL PROFILE                                                                                                             | от         | r      | SAM      |            | I SCALE   |   | NE ∆TO<br>PENETRO | RVANE OQU                                     | I PLAS<br>LIMIT | TIC N/<br>MC<br>CC | ATURAL<br>DISTURE<br>DNTENT | LIQUIE<br>LIMIT          | EIGHT             | GROUND WATER<br>OBSERVATIONS           |
| EPTH<br>ELEV<br>netres | )                                                                                                                        | STRAT PLOT | NUMBER | ТҮРЕ     | "N" VALUES | ELEVATION |   | DNE PEN<br>PENETR | 50 200<br>ETRATION ×<br>ATION TEST •<br>60 80 |                 | ATER               | w<br>O<br>CONTEN<br>0 30    |                          |                   | AND REMARKS<br>GRAIN SI<br>DISTRIBUTIO |
| 0.30<br>22.70<br>0.70  | FILL: Dark brown sand fill, trace silt, trace                                                                            | XX<br>XX   | 1      | SS       | 4          |           | • | 40                |                                               |                 | 0 2                |                             |                          | kN/m <sup>3</sup> | GR SA S                                |
| 22.30                  |                                                                                                                          |            | 2      | SS       | 9          | 222       |   |                   |                                               |                 | 0                  |                             |                          | _                 |                                        |
|                        | gravel, trace to some day, moist                                                                                         |            | 3      | SS       | 12         | 221       | ł |                   |                                               |                 | 0                  |                             |                          |                   |                                        |
| 2.9                    |                                                                                                                          | •••••      | 4      | SS       | 20         | -         |   |                   |                                               |                 | o                  |                             |                          |                   |                                        |
| 220.1                  | becoming dense                                                                                                           | 0          | 5      | SS       | 28         | 220       | • |                   |                                               | ,               | 0                  |                             |                          |                   | First water strike<br>3.2 m            |
|                        |                                                                                                                          |            |        |          |            | 219       |   |                   |                                               | -               |                    |                             |                          |                   |                                        |
| 5.0                    | BOREHOLE TERMINATED AT 5.0 m                                                                                             | 0.0        | 6      | SS       | 43         | 218       |   | •                 |                                               | 0               |                    |                             |                          |                   | Upon completion of auge                |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   | Water at 3.7 m<br>Cave at 4.3 m        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |
|                        |                                                                                                                          |            |        |          |            |           |   |                   |                                               |                 |                    |                             |                          |                   |                                        |

| LOC                      | JECT Proposed Simcoe County Afforda<br>ATION 125 Simcoe Road, Bradford, Ona<br>ING METHOD Continuous Flight Solid S    | itrio      |        | Facilit     | у    |                 |                    | BORI   | NG DA                | TE October 2                   | 26,202         | 21   | E                                  | ML REI<br>NGINE<br>ECHNI | ER                | 21BF049<br>GW<br>FF                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------|--------|-------------|------|-----------------|--------------------|--------|----------------------|--------------------------------|----------------|------|------------------------------------|--------------------------|-------------------|----------------------------------------------------------------------------------|
| DEPTH<br>ELEV<br>(metres | DESCRIPTION                                                                                                            | STRAT PLOT | NUMBER | SAM<br>JAPE | PLES | ELEVATION SCALE | +FIEL<br>▲POC<br>5 | KET PE | ATOF<br>NETRO<br>0 1 | RVANE O Qu<br>METER <b>O</b> Q | W <sub>P</sub> | C0   | TURAL<br>STURE<br>NTENT<br>W<br>-0 |                          | UNIT WEIGHT       | GROUND WATE<br>OBSERVATION<br>AND REMARKS<br>GRAIN S                             |
| 0.20                     | SURFACE ELEVATION 223.35<br>TOPSOIL: Dark brown sand, trace                                                            | LS<br>S    |        |             | £    | E               |                    | 0 4    |                      | 0 80                           |                | 0 20 |                                    | 40                       | kN/m <sup>3</sup> | DISTRIBUTI                                                                       |
|                          | organics, moist<br>FILL: Dark brown sand fill, trace gravel,                                                           | -          | 1      | SS          | 8    | 223             | •                  |        |                      |                                |                | 0    |                                    | _                        |                   | Concrete                                                                         |
| 222.65                   | SANDY SILT TILL: Compact, brown<br>sandy silt till, some gravel, trace to some<br>clay, probable cobbles and boulders, |            | 2      | SS          | 20   | 222             | }                  |        |                      |                                |                | o    |                                    |                          |                   | Bentonite seal                                                                   |
| 2.1                      | moist                                                                                                                  |            | . 3    | SS          | 25   |                 |                    |        |                      |                                | c              |      |                                    |                          |                   |                                                                                  |
| <u>2.</u> 1_<br>221.3    | becoming grey, very dense to dense                                                                                     |            | 4      | SS          | 55   | 221             |                    |        | •                    |                                | 0              |      |                                    |                          |                   |                                                                                  |
|                          |                                                                                                                        |            | 5      | SS          | 57   | 220             |                    |        |                      |                                | 0              |      |                                    |                          |                   |                                                                                  |
|                          |                                                                                                                        |            |        |             |      | 219             |                    |        |                      |                                |                |      |                                    |                          |                   | 50 mm slotted pi                                                                 |
| 5.0                      |                                                                                                                        | · · · · ·  | 6      | SS          | 45   | 213             |                    |        |                      |                                | c              |      |                                    |                          |                   |                                                                                  |
|                          |                                                                                                                        |            |        |             |      |                 |                    |        |                      |                                |                |      |                                    |                          |                   | Water Level Readings:<br><u>Date Depth E</u><br>2021-11-24 1.8<br>2021-12-17 1.8 |

| LOC                       | JECT Proposed Simcoe County Afforda<br>ATION 125 Simcoe Road, Bradford, Ona<br>ING METHOD Continuous Flight Solid St | trio       |        | Facilit | у    |                 | BC                                                            | RING DA                     | ATE Octo                      | ber 2 | 26,202         | 1        | EN                                    | IL REI<br>IGINEI<br>CHNIC                | ER                | 21BF049<br>GW<br>FF                                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|------------|--------|---------|------|-----------------|---------------------------------------------------------------|-----------------------------|-------------------------------|-------|----------------|----------|---------------------------------------|------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>ELEV<br>(metres) | SOIL PROFILE                                                                                                         | STRAT PLOT | NUMBER | SAM     | PLES | ELEVATION SCALE | SHEAR S<br>+FIELD V/<br>POCKET<br>50<br>UYNAMIC (<br>STANDARE | ANE ∆TO<br>PENETRO<br>100 1 | RVANE (<br>DMETER (<br>50 200 |       | ₩ <sub>P</sub> |          | URAL<br>STURE<br>ITENT<br>W<br>OMTENT | LIQUID<br>LIMIT<br>w <sub>L</sub><br>(%) | UNIT WEIGHT       | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SIZ<br>DISTRIBUTIO                                              |
|                           | SURFACE ELEVATION 223.62<br>TOPSOIL: Dark brown sand trace gravel                                                    |            |        |         |      |                 | 20                                                            |                             | 60 80                         |       | 1(             |          | 30                                    | 40                                       | kN/m <sup>3</sup> | GR SA S                                                                                                              |
|                           | trace organics, moist<br>FILL: Dark brown sand fill, trace gravel,<br>trace organics, moist                          |            | × 1    | SS      | 13   | -223            |                                                               |                             |                               |       | c              | <b>,</b> |                                       |                                          |                   | Concrete                                                                                                             |
| 222.92                    | SANDY SILT TILL: Compact, brown<br>sandy silt till, some gravel, trace to some                                       |            | 2      | SS      | 20   |                 |                                                               |                             |                               |       |                | 0        |                                       |                                          |                   | Bentonite seal                                                                                                       |
|                           | clay, probable cobbles and boulders, moist                                                                           |            | . 3    | SS      | 20   | 222             |                                                               |                             |                               |       |                | 0        |                                       |                                          |                   | Dentonite seal                                                                                                       |
| <u>2.</u> 1<br>221.5      | becoming very dense                                                                                                  |            |        |         |      |                 |                                                               |                             |                               |       |                |          |                                       |                                          |                   |                                                                                                                      |
|                           |                                                                                                                      |            | 4      | SS      | 54   | 221             |                                                               |                             |                               |       | 0              |          |                                       |                                          |                   |                                                                                                                      |
|                           |                                                                                                                      |            | 5      | SS      | 85   |                 |                                                               |                             |                               | •     | 0              |          |                                       |                                          |                   |                                                                                                                      |
|                           |                                                                                                                      |            |        |         |      | 220             |                                                               |                             |                               |       |                |          |                                       |                                          |                   | 50 mm slotted pip                                                                                                    |
|                           |                                                                                                                      |            |        |         |      |                 |                                                               |                             |                               |       |                |          |                                       |                                          |                   |                                                                                                                      |
| 5.0                       | BOREHOLE TERMINATED AT 5.0 m                                                                                         |            | 6      | SS      | 57   | 219             |                                                               | •                           |                               |       | 0              |          |                                       |                                          |                   | Upon completion of auge                                                                                              |
|                           |                                                                                                                      |            |        |         |      |                 |                                                               |                             |                               |       |                |          |                                       |                                          |                   | Date         Depth         Ele           2021-11-24         0.7         2           2021-12-17         1.5         2 |

| LOCA                             | ECT Proposed Simcoe County Afforda<br>TION 125 Simcoe Road, Bradford, Ona<br>NG METHOD Continuous Flight Solid St | trio       | 0      | Facilit | у          | _           |             | BORII       | IG DA | TE Octobe       | er 29,20                 | 21       |      | ENG | L REF<br>GINEL<br>CHNIC |                   | 21BF0<br>GW<br>FF     | )49                                                                     |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|--------|---------|------------|-------------|-------------|-------------|-------|-----------------|--------------------------|----------|------|-----|-------------------------|-------------------|-----------------------|-------------------------------------------------------------------------|
|                                  | SOIL PROFILE                                                                                                      |            |        | SAM     | PLES       | SCALE       | SHEA        | R STRE      |       | (kPa)<br>VANE O |                          |          | ATUR |     | IQUID                   | F                 |                       |                                                                         |
| ) <u>EPTH</u><br>ELEV<br>netres) | DESCRIPTION                                                                                                       | STRAT PLOT | NUMBER | ТҮРЕ    | "N" VALUES | EVATION SC/ | ▲POC<br>5   | KETPE       | 0 15  | METER O         | ע ביייי<br>איי<br>שר איי | С        |      | NT  |                         | UNIT WEIGHT       | 0                     | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SIZ<br>DISTRIBUTIO |
|                                  | SURFACE ELEVATION 222.98                                                                                          | ν,         |        |         | ÷          | E           |             | 0 40        |       |                 |                          |          |      | 04  |                         | kN/m <sup>3</sup> |                       | GR SA S                                                                 |
|                                  | TOPSOIL: Dark brown sand, trace silt,<br>some gravel, trace organics, moist                                       |            | 1      | SS      | 4          |             | •           |             |       |                 |                          |          | 0    |     |                         |                   |                       | Stick-up casing<br>Concrete                                             |
| 0.70                             | FILL: Dark brown sand fill, trace silt,<br>some gravel, trace organics, moist                                     | XX         |        |         |            |             | $  \rangle$ |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  | SANDY SILT TILL: Compact to dense, brown sandy silt till, some clay, trace to                                     |            | 2      | SS      | 11         | 222         |             |             |       |                 | _                        | 0        |      |     |                         |                   |                       |                                                                         |
|                                  | some gravel, probable cobbles and boulders, moist                                                                 |            |        |         |            |             |             | $\setminus$ |       |                 |                          |          |      |     |                         |                   |                       | Bentonite seal                                                          |
|                                  | ,                                                                                                                 |            | 3      | SS      | 35         | 221         |             | 7           |       |                 | (                        | <b>)</b> |      |     |                         |                   |                       | 11, 32, 5                                                               |
| . <u>2.</u> 1<br>220.9           | becoming grey, trace gravel                                                                                       |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       | 11, 52, 5                                                               |
|                                  |                                                                                                                   | 0          | 4      | SS      | 30         |             |             | /           |       |                 | 0                        |          |      |     |                         |                   | 0                     | 2, 41, 5                                                                |
|                                  |                                                                                                                   |            |        |         |            | 220         |             | /           |       |                 | _                        |          |      |     |                         |                   | l:∐:                  | , ,-                                                                    |
|                                  |                                                                                                                   |            | 5      | SS      | 20         |             | •           | Í           |       |                 | 0                        |          |      |     |                         |                   | 目                     |                                                                         |
|                                  |                                                                                                                   | 0          |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   | [:目:]                 | 50 mm slotted pip                                                       |
|                                  |                                                                                                                   |            |        |         |            | 219         |             |             |       |                 |                          |          |      |     |                         |                   |                       | Filter sand                                                             |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   | ¦:∄:)                 |                                                                         |
| 5.0                              |                                                                                                                   |            | 6      | SS      | 25         | 218         |             | •           |       |                 |                          | 0        |      |     |                         |                   |                       | First water strike a 4.6 m                                              |
| 218.0                            | BOREHOLE TERMINATED AT 5.0 m                                                                                      |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       | completion of auge<br>at 4.5 m                                          |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   | No cav<br>Water       | Level Readings:                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   | <u>Date</u><br>2021-1 | Depth Ele<br>11-24 1.0 2                                                |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   | 2021-1                | 12-17 0.7 2                                                             |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
|                                  |                                                                                                                   |            |        |         |            |             |             |             |       |                 |                          |          |      |     |                         |                   |                       |                                                                         |
| NOTE                             |                                                                                                                   | 1          | I      | 1       |            | _           | 1           |             |       | ļ               |                          |          | Į    |     |                         | I                 | L                     |                                                                         |

Peto MacCallum Ltd.

| LOC                     | JECT Proposed Simcoe County Affordat<br>ATION 125 Simcoe Road, Bradford, Onat<br>ING METHOD Continuous Flight Solid Ste                                      | rio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      |             |      |                 |               |       | ATE October                                 | 26,20          | 21          | I                                     | PML RE<br>ENGINE<br>TECHNI | ER                     | 21BF049<br>GW<br>FF                         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------|-----------------|---------------|-------|---------------------------------------------|----------------|-------------|---------------------------------------|----------------------------|------------------------|---------------------------------------------|
| )EPTH<br>ELEV           | DESCRIPTION                                                                                                                                                  | STRAT PLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMBER | SAMI<br>EAL | PLES | ELEVATION SCALE | +FIEI<br>▲POC | 0 100 | ORVANE O QU<br>OMETER <b>O</b> Q<br>150 200 | ₩ <sub>P</sub> |             | ATURAL<br>DISTURE<br>DNTENT<br>W<br>0 | LIQUII<br>LIMI<br>WL       | UNIT WEIGHT            | GROUND WATEF<br>OBSERVATIONS<br>AND REMARKS |
| netres                  | )<br>SURFACE ELEVATION 223.19<br>TOPSOIL: Dark brown sand, trace clay,                                                                                       | <pre>     STR     STR</pre> | N      |             | N.   | -               | 2             |       | ATION TEST<br>60 80                         |                | ATER<br>0 2 | CONTEI                                |                            | ≤<br>kN/m <sup>8</sup> | GRAIN SI<br>DISTRIBUTIO<br>GR SA S          |
| <u>0.40</u><br>22.79    | FILL: Dark brown sand to sandy silt fill,<br>trace organics, moist<br>FILL: Dark brown sand to sandy silt fill,<br>trace clay, trace gravel, trace organics, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      | SS          | 6    | 223             | 1             |       |                                             |                | 0           |                                       |                            |                        |                                             |
| 1.4                     | moist                                                                                                                                                        | $\bigotimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2      | SS          | 8    | 222             |               |       |                                             |                | 0           |                                       |                            |                        |                                             |
| 221.8                   | SANDY SILT TILL: Compact to very<br>dense brown sandy silt till, some gravel,<br>probable cobbles and boulders, trace to<br>some clay, moist to wet          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3      | SS          | 17   | 221             |               |       |                                             |                | 0           |                                       |                            |                        |                                             |
|                         |                                                                                                                                                              | <sup>0</sup>  .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4      | SS          | 76   |                 |               |       |                                             |                | o           |                                       |                            |                        |                                             |
|                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5      | SS          | 78   | 220             |               |       |                                             |                | 0           |                                       |                            |                        | First water strike at 3.0 n                 |
| . <u>4.</u> 0_<br>219.2 | becoming grey, wet                                                                                                                                           | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |             |      | 219             |               |       |                                             |                |             |                                       |                            |                        |                                             |
| <u>5.0</u><br>218.2     | BOREHOLE TERMINATED AT 5.0 m                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6      | SS          | 90   |                 |               |       |                                             | c              |             |                                       |                            |                        | Upon completion of auge                     |
|                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |             |      |                 |               |       |                                             |                |             |                                       |                            |                        |                                             |

|    | LOCA                | IECT Proposed Simcoe County Affordal<br>ATION 125 Simcoe Road, Bradford, Onal<br>NG METHOD Continuous Flight Solid St | rio          | -      | Facilit | у         |             | BOR                            | ING DA          | <b>TE</b> Oct                | ober 2          | 27,202                          | 21                   | E                            | ML RE<br>NGINI<br>ECHN |           | 21BF049<br>GW<br>7 FF                                      |
|----|---------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|--------|---------|-----------|-------------|--------------------------------|-----------------|------------------------------|-----------------|---------------------------------|----------------------|------------------------------|------------------------|-----------|------------------------------------------------------------|
|    | DEPTH<br>ELEV       | SOIL PROFILE                                                                                                          | STRAT PLOT   | NUMBER | SAM     | PLES      | ATION SCALE |                                | E ATO<br>ENETRO | RVANE<br>DMETER<br>50 200    | 0 Q<br>0        | PLAS<br>LIMIT<br>W <sub>P</sub> | TIC NA<br>MOI<br>COI | TURAL<br>STURE<br>NTENT<br>W | LIQUI<br>LIM<br>WL     | 미흐        | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS                |
| (1 | metres)             | SURFACE ELEVATION 222.70                                                                                              | STR          | NN     |         | <br>Z.    | ELEVATION   | DYNAMIC CO<br>STANDARD F<br>20 |                 | ETRATIO<br>ATION TE<br>50 80 |                 |                                 | ATER C<br>0 20       | ONTEN<br>30                  |                        | S<br>kN/m | GRAIN SIZ<br>DISTRIBUTIO<br>GR SA S                        |
|    |                     | TOPSOIL: Dark brown sand, trace silt,<br>trace gravel, trace organics, moist<br>FILL: Compact to dense, dark brown    | Ŵ            | 1      | SS      | 30        |             | •                              |                 |                              |                 |                                 | o                    |                              |                        |           |                                                            |
|    |                     | sand to silty sand fill, trace gravel, trace organics, moist                                                          | $\bigotimes$ | 2      | SS      | 18        | 222         | •                              |                 |                              |                 |                                 | o                    |                              |                        |           |                                                            |
|    |                     |                                                                                                                       | $\bigotimes$ | 3      | SS      | 16        | 221         |                                |                 |                              |                 |                                 |                      |                              | 0                      | _         |                                                            |
|    |                     |                                                                                                                       | $\bigotimes$ | 4      | SS      | 34        |             |                                |                 |                              |                 |                                 | 0                    |                              |                        |           | First water strike at 2.3 m                                |
|    | <u>2.9</u><br>219.8 | SANDY SILT TILL: Very dense, grey                                                                                     |              | 4      | 55      | 34        | 220         |                                | $\setminus$     |                              |                 |                                 | 0                    |                              |                        |           |                                                            |
|    |                     | sandy silt till, trace gravel, probable<br>cobbles and boulders, trace to some<br>clay,wet                            | 0            | 5      | SS      | 63        | 219         |                                |                 |                              |                 | C                               | >                    |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              | $\overline{\ }$ |                                 |                      |                              |                        |           |                                                            |
|    | 5.0                 |                                                                                                                       |              | 6      | SS      | 83/290 mm | 218         |                                |                 |                              | >>              | • •                             |                      |                              |                        | _         |                                                            |
|    | 217.7               | BOREHOLE TERMINATED AT 5.0 m                                                                                          |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           | Upon completion of auge<br>Water at 2.9 m<br>Cave at 3.9 m |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |
|    |                     |                                                                                                                       |              |        |         |           |             |                                |                 |                              |                 |                                 |                      |                              |                        |           |                                                            |

|   | LOCA                     | IECT         Proposed Simcoe County Affordat           ATION         125 Simcoe Road, Bradford, Onat           NG METHOD         Continuous Flight Solid Ste | rio        |                  | -  | у    |                 | 1             |                    | NG DA                     |                |                            | 29,202         | 21   | E      | PML RI<br>ENGIN<br>ECHN | EER  | 21BF049<br>GW<br>/ FF                              |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|----|------|-----------------|---------------|--------------------|---------------------------|----------------|----------------------------|----------------|------|--------|-------------------------|------|----------------------------------------------------|
| Γ | DEPTH<br>ELEV<br>netres) | SOIL PROFILE<br>DESCRIPTION                                                                                                                                  | STRAT PLOT | NUMBER           |    | PLES | ELEVATION SCALE | +FIEI<br>▲POO | LD VANI<br>CKET PE |                           | RVANE<br>METER | O Qu<br>2 <b>O</b> Q<br>00 | W <sub>P</sub> | CO   | W<br>W | W                       | 미흐   | GROUND WATE<br>OBSERVATION<br>AND REMARK           |
| Ì | ,                        | SURFACE ELEVATION 222.40<br>TOPSOIL: Dark brown sand, trace silt,                                                                                            |            |                  |    | Ž    | ELE             |               |                    | NE PENE<br>ENETRA<br>10 6 |                | EST •<br>30                |                | 0 20 |        | 40                      | kN/n | DISTRIBUT                                          |
| 2 | 222.05                   | trace gravel, trace organics, moist<br>FILL: Loose, dark brown sand fill, trace<br>silt, trace gravel, trace organics, moist                                 | Ň          |                  | SS | 5    | 222             |               |                    |                           |                |                            |                | 0    |        | _                       |      |                                                    |
| 2 |                          | SANDY SILT TILL: Compact, brown<br>sandy silt till, trace gravel, trace to some<br>clay, moist                                                               |            | 2                | SS | 11   | 221             |               |                    |                           |                |                            |                | 0    |        |                         |      |                                                    |
|   | <u>2.</u> 1<br>220.3     | becoming grey, very dense                                                                                                                                    |            | . 3 <sup>1</sup> | SS | 23   |                 |               |                    |                           |                |                            | 0              |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            | 4                | SS | 53   | 220             |               |                    | ٩                         |                |                            | 0              |      |        |                         |      |                                                    |
|   | 3.5                      |                                                                                                                                                              |            | 5                | SS | 76   | 219             |               |                    |                           |                |                            | 0              |      |        |                         |      |                                                    |
|   | 210.9                    | BOREHOLE TERMINATED AT 3.5 m                                                                                                                                 |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      | Upon completion of au<br>Water at 3.0 m<br>No cave |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |
|   |                          |                                                                                                                                                              |            |                  |    |      |                 |               |                    |                           |                |                            |                |      |        |                         |      |                                                    |

|                     | ATION 125 Simcoe Road, Bradford, Onati<br>ING METHOD Continuous Flight Solid Ste<br>SOIL PROFILE       |            | igers    | SAM     | PLES       |                 | SHEARS                   | TRENG            | DATE Oc                     |    | 1              |                | т           | NGINE<br>ECHNI |                        | GW<br>FF                                             |
|---------------------|--------------------------------------------------------------------------------------------------------|------------|----------|---------|------------|-----------------|--------------------------|------------------|-----------------------------|----|----------------|----------------|-------------|----------------|------------------------|------------------------------------------------------|
| EPTH<br>ELEV        | DESCRIPTION                                                                                            | STRAT PLOT | NUMBER   | JAN BAN | "N" VALUES | ELEVATION SCALE | +FIELD \<br>▲POCKE<br>50 | ANE △1<br>TPENET | ORVANE<br>ROMETER<br>150 20 | 00 | W <sub>P</sub> |                | w<br>       | w <sub>L</sub> | UNIT WEIGHT            | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS          |
|                     | SURFACE ELEVATION 221.98<br>TOPSOIL: Dark brown sand, some                                             | STR        |          |         |            | ELEV            | DYNAMIC<br>STANDAR<br>20 | 40               | 60 8                        |    |                | ATER C<br>0 20 | ONTEN<br>30 |                | 5<br>kN/m <sup>3</sup> | GRAIN SI<br>DISTRIBUTIO<br>GR SA S                   |
|                     | gravel, some organics, moist<br>FILL: Dark brown sand fill, trace gravel,<br>trace organics, moist     |            | × 1<br>× | SS      | 33         |                 |                          | •                |                             |    | c              | )              |             |                |                        |                                                      |
|                     | SANDY SILT SILT: Compact to dense,<br>brown sandy silt till, some gravel, trace to<br>some clay, moist |            | 2        | SS      | 19         | 221             |                          |                  |                             |    | •              |                |             |                |                        |                                                      |
| 22010               | becoming grey, probable cobbles and boulders, very moist                                               |            | 3        | SS      | 30         | -220            |                          | •                |                             |    | 0              |                |             |                |                        |                                                      |
|                     |                                                                                                        |            | 4        | SS      | 19         |                 |                          |                  |                             |    | 0              |                |             |                |                        |                                                      |
|                     |                                                                                                        | 0          | 5        | SS      | 29         | 219             |                          | •                |                             |    | 0              |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            | 218             |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            | 6        | SS      | 41         |                 |                          |                  |                             |    | 0              |                |             |                |                        | First water strike at 4.5 m                          |
| <u>5.0</u><br>217.0 | BOREHOLE TERMINATED AT 5.0 m                                                                           |            |          |         |            | 217             |                          |                  |                             |    |                |                |             |                |                        | Upon completion of auge<br>Water at 4.5 m<br>No cave |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |
|                     |                                                                                                        |            |          |         |            |                 |                          |                  |                             |    |                |                |             |                |                        |                                                      |

| LOCA                | FORDER         Proposed Simcoe County Afforda           ATION         125 Simcoe Road, Bradford, Ona           NG METHOD         Continuous Flight Solid St | rio        |        | Facilit   | у        | 1          |               |                 | ING DA                    |                        |                     | 28,202                          | 21                 | E                                     | ML RE<br>NGINE<br>ECHNI           | ER          | 21BF049<br>GW<br>FF  | )                                          |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-----------|----------|------------|---------------|-----------------|---------------------------|------------------------|---------------------|---------------------------------|--------------------|---------------------------------------|-----------------------------------|-------------|----------------------|--------------------------------------------|
| <u>EPTH</u><br>ELEV | SOIL PROFILE                                                                                                                                                | STRAT PLOT | NUMBER | SAMI<br>I | PLES     | TION SCALE | +FIEL<br>▲POC | D VAN<br>KET PE | OO 1                      | RVANE<br>METER<br>50 2 | O Qu<br>0 Q<br>00   | PLAS<br>LIMIT<br>W <sub>P</sub> | TIC MC<br>MC<br>CC | ATURAL<br>DISTURE<br>DNTENT<br>W<br>0 | LIQUIE<br>LIMIT<br>W <sub>L</sub> | UNIT WEIGHT | OB                   | OUND WATER<br>SERVATIONS<br>ID REMARKS     |
|                     | SURFACE ELEVATION 222.41                                                                                                                                    | STRA       | NN     | Ĥ         | >N.      | ELEVATION  |               |                 | NE PENI<br>ENETRA<br>40 6 |                        | ON ×<br>EST ●<br>80 |                                 | ATER               | CONTEN                                | . ,                               | ے<br>kN/m³  |                      | GRAIN SI<br>DISTRIBUTIC<br>GR SA S         |
| 22.16               | TOPSOIL: Dark brown sand, trace<br>gravel, trace organics, moist<br>FILL: Loose, dark brown sand fill, trace                                                | Ŵ          | 1      | SS        | 7        | 222        | •             |                 |                           |                        |                     |                                 |                    | <b>b</b>                              |                                   |             | Si C                 | tick-up casing<br>Concrete                 |
| 21.71               | gravel, trace organics, moist<br>SANDY SILT TILL: Compact to dense,<br>brown sandy silt till, trace gravel, trace to                                        |            | 2      | SS        | 11       |            |               |                 |                           |                        |                     |                                 | 0                  |                                       |                                   |             |                      |                                            |
|                     | some clay, moist to wet                                                                                                                                     |            | 3      | SS        | 19       | 221        |               |                 |                           |                        |                     |                                 | 0                  |                                       |                                   |             | Fi                   | entonite seal<br>rst water strike a<br>5 m |
|                     |                                                                                                                                                             |            |        |           |          |            |               | $\backslash$    |                           |                        |                     |                                 |                    |                                       |                                   |             |                      | 5111                                       |
| <u>2.9</u>          |                                                                                                                                                             |            | 4      | SS        | 38       | 220        |               |                 |                           |                        |                     | C                               |                    |                                       |                                   |             |                      |                                            |
| 219.5               | becoming grey, dense to very dense                                                                                                                          |            | 5      | SS        | 45       | 219        |               |                 |                           |                        |                     | c                               |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      | ) mm slotted pip<br>ïlter sand             |
| 4.6                 | probable cobbles and boulders                                                                                                                               |            |        |           |          | 218        |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
| 5.0                 | BOREHOLE TERMINATED AT 5.0 m                                                                                                                                |            | 6      | SS        | 50/75 mm |            |               |                 |                           |                        | >>                  | • •                             |                    |                                       |                                   |             | Upon cor<br>Water at | npletion of auge                           |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             | No cave              | vel Readings:<br>Depth Ele                 |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             | 2021-11-<br>2021-12- | 24 0.7 2                                   |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |
|                     |                                                                                                                                                             |            |        |           |          |            |               |                 |                           |                        |                     |                                 |                    |                                       |                                   |             |                      |                                            |

| LO                 | <b>COJECT</b> Proposed Simcoe County Afforda<br><b>CATION</b> 125 Simcoe Road, Bradford, One<br><b>DRING METHOD</b> Continuous Flight Solid S                             | atrio      | -      | Facilit | y        | T               |                                                  |                       |                     | TE Octo                | ober 2 | 8,2021                                     |                                   | ENG  | REF<br>GINEE<br>CHNIC                |                   | 21BF049<br>GW<br>FF                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------|----------|-----------------|--------------------------------------------------|-----------------------|---------------------|------------------------|--------|--------------------------------------------|-----------------------------------|------|--------------------------------------|-------------------|----------------------------------------------------------|
| DEPT<br>ELE        | W DESCRIPTION                                                                                                                                                             | STRAT PLOT | NUMBER | SAMI    | PLES     | ELEVATION SCALE | SHEAR<br>+FIELD<br>POCK<br>50<br>UNAMI<br>STANDA | VANE<br>ET PEN<br>100 | ∆TOR<br>ETROM<br>15 | VANE<br>METER<br>0 200 | 0      | PLASTIC<br>LIMIT<br>W <sub>P</sub><br>WATI | NATUR<br>MOISTU<br>CONTE<br>W<br> |      | IQUID<br>LIMIT<br>W <sub>L</sub><br> | UNIT WEIGHT       | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SIZ |
| 0.30               |                                                                                                                                                                           | s<br>S     | 1      | SS      | 4        | ELE             | 20                                               |                       | 60                  |                        |        |                                            |                                   | 80 4 | · ·                                  | kN/m <sup>3</sup> | DISTRIBUTIO<br>GR SA S                                   |
|                    | OFILL: Loose, dark brown sand fill, trace<br>silt, trace gravel, trace organics, moist<br>SANDY SILT TILL: Compact to very<br>dense, brown to grey sandy silt till, trace |            | 2      | SS      | 15       | 221             |                                                  |                       |                     |                        |        | 0                                          |                                   |      |                                      |                   |                                                          |
|                    | gravel, trace to some clay, probable cobbles and boulders, moist to wet                                                                                                   |            | 3      | SS      | 37       | 220             |                                                  |                       | <u> </u>            |                        |        | 0                                          |                                   |      |                                      |                   | First water strike a<br>1.5 m                            |
|                    |                                                                                                                                                                           |            | 4      | SS      | 54       | 219             |                                                  |                       |                     |                        |        | 0                                          |                                   |      |                                      |                   |                                                          |
| <u>3.4</u><br>218. | 4<br>.2 BOREHOLE TERMINATED AT 3.4 m                                                                                                                                      |            | 5      | SS      | 50/40 mm |                 |                                                  |                       | _                   |                        | × /    | • •                                        |                                   |      |                                      |                   | Upon completion of auger<br>Wet cave at 1.1 m            |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |
|                    |                                                                                                                                                                           |            |        |         |          |                 |                                                  |                       |                     |                        |        |                                            |                                   |      |                                      |                   |                                                          |

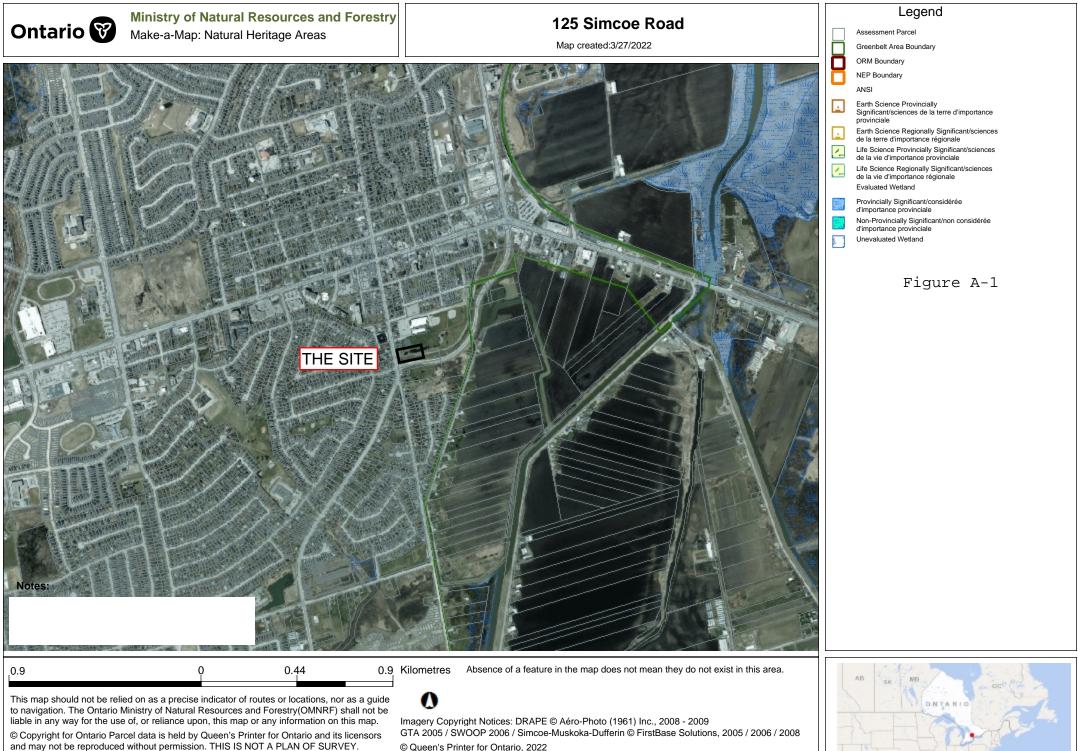
| LOCA                   | JECT Proposed Simcoe County Afforda<br>ATION 125 Simcoe Road, Bradford, Ona<br>ING METHOD Continuous Flight Solid St | trio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -        | ty        |                 |                      |                         | NG DA            |                    |                                         | 27,202         | 21          | E                                     | ML RE<br>NGINE<br>ECHN |                   | 21BF049<br>GW<br>FF                                                                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------|-----------------|----------------------|-------------------------|------------------|--------------------|-----------------------------------------|----------------|-------------|---------------------------------------|------------------------|-------------------|---------------------------------------------------------------------------------------|
| <u>DEPTH</u><br>ELEV   | SOIL PROFILE<br>DESCRIPTION                                                                                          | STRAT PLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMBER |          | PLES      | ELEVATION SCALE | ▲POC<br>50           | O VANE<br>KET PE<br>) 1 | E ATOF<br>ENETRO | RVANE<br>METER     | O Qu<br>O Q<br>0                        | W <sub>P</sub> |             | ATURAL<br>DISTURE<br>DNTENT<br>W<br>0 | LIQUI<br>LIM<br>WL     | шĘ                | GROUND WATEF<br>OBSERVATIONS<br>AND REMARKS                                           |
| metres)                | SURFACE ELEVATION 221.58<br>TOPSOIL: Dark brown sand, trace                                                          | <pre> {     straight straight</pre> | NUN    | ŕ.       | > "N      | ELEVA           | DYNAM<br>STAND<br>20 |                         |                  | ETRATION TI<br>0 8 |                                         |                | ATER<br>0 2 | CONTEN<br>0 30                        |                        | KN/m <sup>6</sup> | GRAIN SI<br>DISTRIBUTIO<br>GR SA S                                                    |
| <u>0.34</u><br>221.24  | gravel, trace organics, moist<br>FILL: Loose, dark brown sand fill, trace<br>gravel, trace organics, moist           | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2      | SS<br>SS | 7         | -221            | I                    |                         |                  |                    |                                         |                | 0           |                                       |                        | _                 | Concrete                                                                              |
| <u>1.4</u><br>220.2    | SANDY SILT TILL: Compact, brown<br>sandy silt till, trace gravel, some clay,                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3      |          | 20        | 220             |                      |                         |                  |                    |                                         | 0              |             |                                       |                        | _                 | Bentonite seal                                                                        |
| . <u>2.</u> 1<br>219.5 | moist to wet<br>becoming grey, probable cobbles and<br>boulders                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>  | SS       | 23        | 219             |                      |                         |                  |                    |                                         | 0              |             |                                       |                        |                   |                                                                                       |
| <u>3.0</u><br>218.6    | becoming dense to very dense                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5      | SS       | 46        |                 |                      |                         | e.               |                    |                                         | 0              |             |                                       |                        |                   |                                                                                       |
|                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |           | 218             |                      |                         |                  |                    |                                         |                |             |                                       |                        |                   | 50 mm slotted pip                                                                     |
| 5.0                    | BOREHOLE TERMINATED AT 5.0 m                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6      | SS       | 90/290 mm | 217             |                      |                         |                  |                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | • •            |             |                                       |                        |                   | First water strike a 4.6 m                                                            |
|                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |           |                 |                      |                         |                  |                    |                                         |                |             |                                       |                        |                   | Water Level Readings:<br><u>Date Depth El</u><br>2021-11-24 1.3 2<br>2021-12-17 1.2 2 |

| LOC                   | JECT Proposed Simcoe County Affordabl<br><b>4TION</b> 125 Simcoe Road, Bradford, Onatri<br><b>ING METHOD</b> Continuous Flight Solid Ster | 0                 | -      | Facility | /          |           |               | BORIN   | IG DA                         | <b>TE</b> Octo      | ber 2       | 7,2021                             |                       | EN                | IL REI<br>IGINEI<br>CHNI          | ER                        | 21BF049<br>GW<br>FF                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|----------|------------|-----------|---------------|---------|-------------------------------|---------------------|-------------|------------------------------------|-----------------------|-------------------|-----------------------------------|---------------------------|-------------------------------------------------------------|
| DEPTH                 | SOIL PROFILE                                                                                                                              |                   |        | SAMF     |            | ON SCALE  | +FIEL<br>▲POC |         | NGTH<br>ATOF<br>NETRO<br>0 15 | WANE (              |             | PLASTIC<br>LIMIT<br>W <sub>P</sub> | NATU<br>MOIST<br>CONT | RAL<br>URE<br>ENT | LIQUIE<br>LIMIT<br>W <sub>L</sub> | UNIT WEIGHT               | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS                 |
| ELEV<br>metres)       |                                                                                                                                           | STRAT PLOT        | NUMBER | ТҮРЕ     | "N" VALUES | ELEVATION |               | ARD PEI |                               | TRATION<br>TION TES | I ×<br>ST ● | WAT<br>10                          | ER CO                 |                   |                                   | LINN<br>kN/m <sup>3</sup> | GRAIN SIZ<br>DISTRIBUTIOI                                   |
| <u>0.30</u><br>221.32 | TOPSOIL: Dark brown sandy silt, trace<br>gravel, trace organics, moist<br>FILL: Loose to very loose, dark brown                           | )<br>)<br>)       | 1      | SS       | 8          | -221      | •             |         |                               |                     |             | 0                                  |                       |                   |                                   |                           |                                                             |
| 1.4                   | sand fill, trace silt, trace gravel, trace organics, moist                                                                                | $\bigotimes$      | 2      | SS       | 2          |           |               |         |                               |                     |             |                                    | o                     |                   |                                   |                           |                                                             |
| 220.2                 | SANDY SILT TILL: Compact to dense,<br>brown sandy silt till, trace gravel, some<br>clay, probable cobbles and boulders, wet               | ¥ ¥<br>•<br>• • • | 3      | SS       | 18         | 220       |               |         |                               |                     |             | 0                                  |                       |                   |                                   | -                         | First water strike at 1.5 m                                 |
|                       |                                                                                                                                           |                   | 4      | SS       | 36         | 219       | I             |         |                               |                     |             | 0                                  |                       |                   |                                   |                           |                                                             |
| 3.5                   |                                                                                                                                           |                   | 5      | SS       | 41         | -         |               |         |                               |                     |             | o                                  |                       |                   |                                   |                           |                                                             |
| 218.1                 | BOREHOLE TERMINATED AT 3.5 m                                                                                                              |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           | Upon completion of auger<br>Water at 2.1 m<br>Cave at 3.0 m |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       |                                                                                                                                           |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |
|                       | ES                                                                                                                                        |                   |        |          |            |           |               |         |                               |                     |             |                                    |                       |                   |                                   |                           |                                                             |

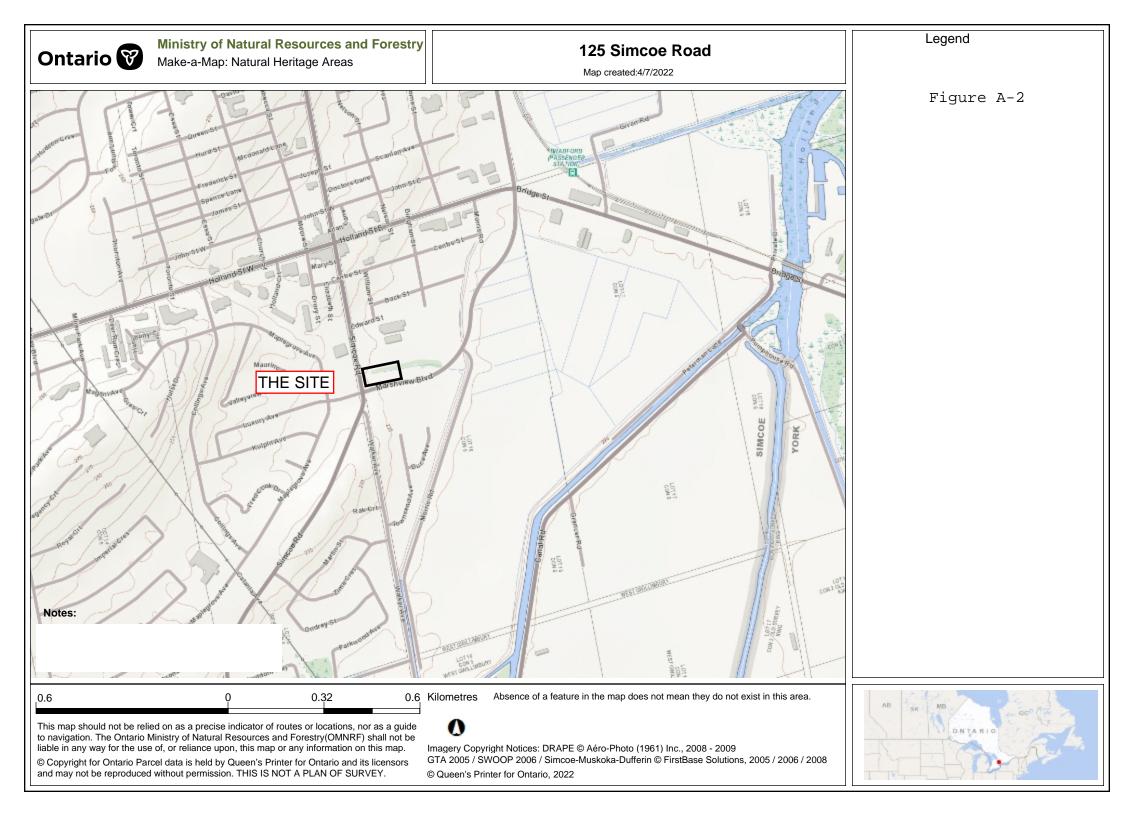
Peto MacCallum Ltd.

| SOIL PROFILE<br>DESCRIPTION<br>RFACE ELEVATION 221.25<br>SOIL: Dark brown sand, trace<br>rel, some organics, moist<br>:: Compact, dark brown sand fill,<br>te gravel, trace organics, moist<br>DPY SILT TILL: Compact, brown to<br>k brown sandy silt till, trace gravel,<br>vable cobbles and boulders, some | STRAT PLOT                 |                            |          |          | PLES       | Ľ,              |        |                         |                          | l (kPa)        |                   |                |        |      |       |     |     | F                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------|----------|------------|-----------------|--------|-------------------------|--------------------------|----------------|-------------------|----------------|--------|------|-------|-----|-----|------------------------------------------------------------------------------------|
| PSOIL: Dark brown sand, trace<br>vel, some organics, moist<br>.: Compact, dark brown sand fill,<br>ne gravel, trace organics, moist<br>JDY SILT TILL: Compact, brown to<br>k brown sandy silt till, trace gravel,                                                                                             | ĨX                         |                            | ÍN       | ТҮРЕ     | "N" VALUES | ELEVATION SCALE | +FIELI | D VANE<br>KET PE<br>0 1 | E ∆TOF<br>ENETRC<br>00 1 | RVANE<br>METER | O Qu<br>0 Q<br>00 | ₩ <sub>P</sub> | ATER ( |      | w<br> |     |     | GROUND WATER<br>OBSERVATIONS<br>AND REMARKS<br>GRAIN SIZ<br>DISTRIBUTIO<br>GR SA S |
| L: Compact, dark brown sand fill,<br>the gravel, trace organics, moist<br>NDY SILT TILL: Compact, brown to<br>k brown sandy silt till, trace gravel,                                                                                                                                                          | ĸх                         | ÷                          |          |          |            | -               | 20     |                         |                          |                | 30                |                | 0 20   | ) 30 | 40    | kN/ | /m³ | GR SA S                                                                            |
| brown sandy silt till, trace gravel,                                                                                                                                                                                                                                                                          |                            |                            |          | SS<br>SS | 21         | 221             |        |                         |                          |                |                   |                | 0      |      |       |     |     |                                                                                    |
| , moist                                                                                                                                                                                                                                                                                                       | · · · .                    | !₽<br>.'                   |          |          |            | 220             |        |                         |                          |                |                   |                | 0      |      |       |     |     |                                                                                    |
| oming grey                                                                                                                                                                                                                                                                                                    |                            |                            | 3        | SS       | 17         | 219             |        |                         |                          |                |                   | 0              |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            | 4        | SS       | 14         |                 | •      |                         |                          |                |                   | o              |        |      |       |     |     |                                                                                    |
| REHOLE TERMINATED AT 3.5 m                                                                                                                                                                                                                                                                                    |                            | i.                         | 5        | SS       | 20         | 218             | •      | •                       |                          |                |                   | 0              |        |      |       | _   | ļ   | Upon completion of auge                                                            |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     | No water<br>No cave                                                                |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               |                            |                            |          |          |            |                 |        |                         |                          |                |                   |                |        |      |       |     |     |                                                                                    |
|                                                                                                                                                                                                                                                                                                               | REHOLE TERMINATED AT 3.5 m | REHOLE TERMINATED AT 3.5 m | [ ] d· ] | [ d· ]   | <b>   </b> |                 |        | [ ]                     |                          |                |                   |                |        |      |       |     |     | REHOLE TERMINATED AT 3.5 m                                                         |

| гос                  | JECT Proposed Simcoe County Affordate<br>ATION 125 Simcoe Road, Bradford, Onate<br>ING METHOD Continuous Flight Solid Ste | io           | -      | Facilit | y          |           |               | BORII             | NG DAT           | <b>E</b> Oc   | tober 2     | 7,2021                            |                      | E                           | PML R<br>ENGIN<br>ECHN | EER | (      | 21BF049<br>GW<br>FF                                        |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|--------|---------|------------|-----------|---------------|-------------------|------------------|---------------|-------------|-----------------------------------|----------------------|-----------------------------|------------------------|-----|--------|------------------------------------------------------------|
| EPTH                 | SOIL PROFILE                                                                                                              | чот          | ER     |         | PLES       | DN SCALE  | +FIEL<br>▲POC | D VANE<br>KET PE  | ENGTH            | VANE<br>IETER |             | PLASTI<br>LIMIT<br>W <sub>P</sub> | C NAT<br>MOIS<br>CON | URAL<br>STURE<br>ITENT<br>W | LIQU<br>LIN<br>W       |     | עבופחו | GROUND WATER<br>OBSERVATIONS                               |
| ELEV<br>netres)      | DESCRIPTION                                                                                                               | STRAT PLOT   | NUMBER | ТҮРЕ    | "N" VALUES | ELEVATION |               | IIC CON<br>ARD PE | E PENE<br>NETRAT | TRATIC        | N ×<br>ST ● | WA <sup>-</sup><br>10             | TER CO<br>20         |                             | NT (%)<br>40           | kN  |        | AND REMARKS<br>GRAIN SI<br>DISTRIBUTIC<br>GR SA S          |
| <u>0.32</u><br>21.56 | TOPSOIL: Dark brown sand, tace gravel,<br>trace organics, moist<br>FILL: Loose, dark brown sand fill, trace               | Ĩ.<br>X      | 1      | SS      | 10         |           | •             |                   |                  |               | -           |                                   | 0                    |                             |                        |     | ,      |                                                            |
| 1.4                  | organics, trace gravel, moist                                                                                             | $\bigotimes$ | 2      | SS      | 6          | 221       |               |                   |                  |               |             |                                   | (                    | D C                         |                        | _   |        |                                                            |
| 220.5                | SANDY SILT TILL: Compact to very<br>dense, brown sandy silt till, some clay,<br>probable cobbles and boulders, wet        |              | 3      | SS      | 19         | 220       |               |                   |                  |               |             | 0                                 |                      |                             |                        |     |        | First water strike at 1.4 m<br>12, 40, 4                   |
|                      |                                                                                                                           |              | 4      | SS      | 24         |           |               |                   |                  |               |             | 0                                 |                      |                             |                        |     |        |                                                            |
| 3.5                  |                                                                                                                           |              | 5      | SS      | 63         | 219       |               |                   |                  | •             |             | 0                                 |                      |                             |                        |     |        | 8, 29, 6                                                   |
| 218.4                | BOREHOLE TERMINATED AT 3.5 m                                                                                              |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        | Upon completion of auge<br>Water at 1.5 m<br>Cave at 2.6 m |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
|                      |                                                                                                                           |              |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |
| ΝΟΤΙ                 | ES                                                                                                                        | 1            |        |         |            |           |               |                   |                  |               |             |                                   |                      |                             |                        |     |        |                                                            |


Peto MacCallum Ltd.

| LOC                             | JECT Proposed Simcoe County Afford<br>ATION 125 Simcoe Road, Bradford, Ona<br>ING METHOD Continuous Flight Solid S | atrio      |        | Facilit | у          |                 |               | BORI              | NG DA                    | <b>TE</b> Oc   | tober 2          | 27,202                          | 21                 | E                                      | ML RE<br>NGINE<br>ECHN          |                        | 21BF049<br>GW<br>FF                                    |                                                                |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|------------|--------|---------|------------|-----------------|---------------|-------------------|--------------------------|----------------|------------------|---------------------------------|--------------------|----------------------------------------|---------------------------------|------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| DEPTH<br>ELEV                   | DESCRIPTION                                                                                                        | STRAT PLOT | NUMBER | SAM     | PLES       | ELEVATION SCALE | +FIEL<br>▲POC | D VANE<br>CKET PE | NETRO<br>00 15           | RVANE<br>METER | O Qu<br>O Q<br>0 | PLAS<br>LIMIT<br>W <sub>P</sub> | TIC NA<br>MC<br>CC | ATURAL<br>DISTURE<br>DINTENT<br>W<br>O | LIQUI<br>LIMI<br>W <sub>L</sub> | UNIT WEIGHT            | OBS                                                    | DUND WATER<br>SERVATIONS<br>D REMARKS                          |
| metres                          | SURFACE ELEVATION 220.82<br>TOPSOIL: Dark brown sand, trace                                                        | STR        |        | ss      | 11         | ELEV            |               |                   | NE PENE<br>ENETRA<br>0 6 |                | EST •            |                                 | ATER (<br>0 20     | CONTEN                                 | T (%)<br>40                     | ≤<br>kN/m <sup>3</sup> | Sti                                                    | GRAIN SI<br>DISTRIBUTIC<br>GR SA S<br>ick-up casing<br>oncrete |
| 220.50<br><u>0.70</u><br>220.12 | FILL: Compact, dark brown sand fill,                                                                               |            | 2      | SS      | 14         | 220             |               |                   |                          |                |                  |                                 | 0                  |                                        |                                 |                        |                                                        |                                                                |
| 2.1                             | probable cobbles and boulders, moist                                                                               |            | . 3    | SS      | 16         | 219             |               |                   |                          |                |                  |                                 | 0                  |                                        |                                 | _                      | Fir                                                    | entonite seal<br>est water strike<br>7 m                       |
| _ <u>2.</u> 1_<br>218.7         | becoming dense to very dence, some<br>clay                                                                         |            | 4      | SS      | 45         | 218             |               |                   |                          |                |                  | 0                               |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            | 5      | SS      | 100/240mmr | -               |               |                   |                          |                | *                |                                 | 0                  |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            | 217             |               |                   |                          | /              |                  |                                 |                    |                                        | _                               | _                      |                                                        | mm slotted pip<br>Iter sand                                    |
| <u>5.0</u><br>215.8             | BOREHOLE TERMINATED AT 5.0 m                                                                                       |            | 6      | SS      | 69         | 216             |               |                   |                          |                |                  | c                               |                    |                                        |                                 | _                      | Upon com                                               | pletion of auge                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        | No cave<br>Water Lev<br>Date<br>2021-11-2<br>2021-12-1 |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |
|                                 |                                                                                                                    |            |        |         |            |                 |               |                   |                          |                |                  |                                 |                    |                                        |                                 |                        |                                                        |                                                                |




# APPENDIX A

Site and Vicinity Maps

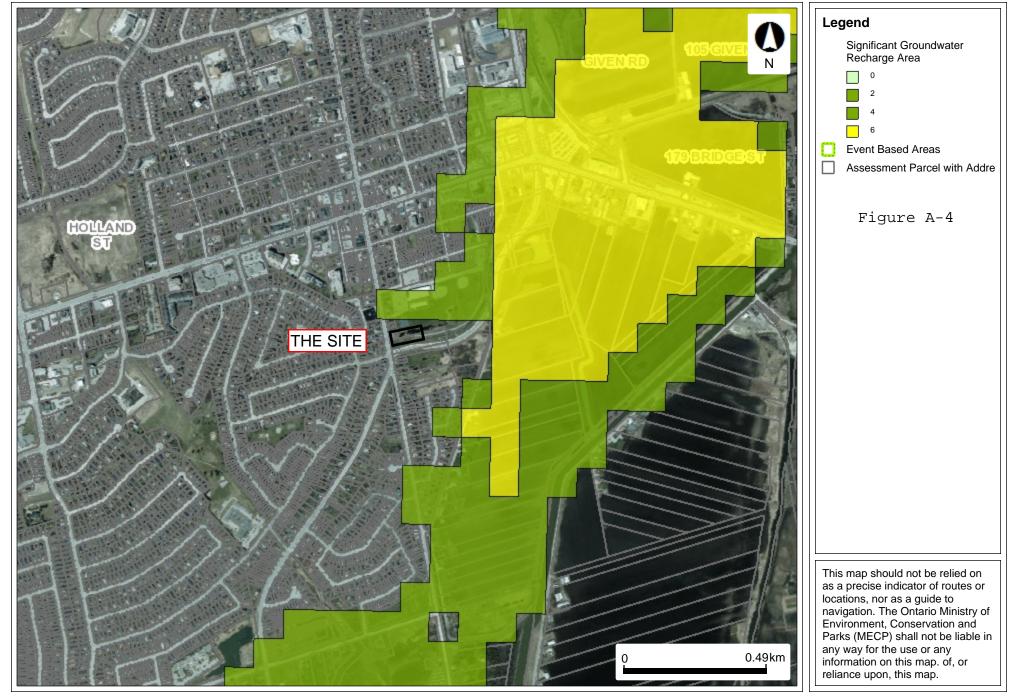


© Queen's Printer for Ontario, 2022





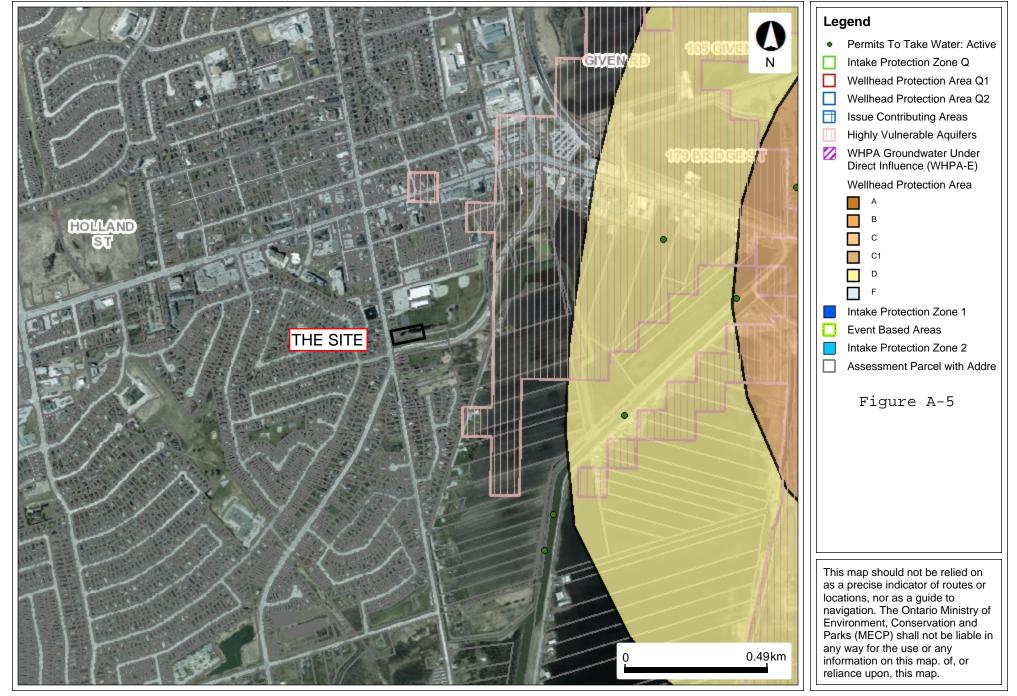

# 125 Simcoe Road, Bradford


### Features








# 125 Simcoe Road, Bradford



Ontario 🚱 © Queen's Printer for Ontario, 2022

Map Created: 3/27/2022 Map Center: 44.11011 N, -79.56287 W

# 125 Simcoe Road, Bradford





# APPENDIX B

Ministry of the Environment, Conservation and Parks Water Well Records Summary

### MECP WELL RECORD SUMMARY

### 125 Simcoe Road, Bradford

Summarized well records of wells within UTM Easting +/- 600 m and UTM Northing +/- 600 m of site centre

| штм  |         |          |     |              |            |                        |                     |          |               |                             |                                                                                                                                   |
|------|---------|----------|-----|--------------|------------|------------------------|---------------------|----------|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ZONE | EASTING | NORTHING | LOT | DATE CNTR    | CASING DIA | WATER                  | PUMP TEST           | WELL USE | SCREEN        | WELL IDENTIFICATION         | FORMATION                                                                                                                         |
| 17   | 614449  | 4885397  | W   | 2020/09 7215 |            |                        |                     |          |               | 7369196 (Z333657) A295087 P |                                                                                                                                   |
| 17   | 614475  | 4885468  | w   | 2020/06 6988 |            |                        |                     |          |               | 7376554 (C49206) A276705 P  |                                                                                                                                   |
| 17   | 614481  | 4885471  | w   | 2020/05 7230 |            |                        |                     |          |               | 7363267 (C47961) A287778 P  |                                                                                                                                   |
| 17   | 614819  | 4885087  | w   | 2017/08 7230 | 1.05       | UT 0007                |                     | TH MO    | 0010 5        | 7306614 (Z258039) A229406   | BRWN FILL GRVL 0002 BRWN FILL CLAY 0007 BRWN SILT CLAY 0015                                                                       |
| 17   | 614647  | 4885154  | w   | 2017/08 7230 | 1.05       | UT 0014                |                     | TH       | 0010 5        | 7306611 (Z258036) A229403   | BRWN FILL SAND 0002 BRWN FILL SAND 0004 GREY CLAY SILT 0015                                                                       |
| 17   | 614622  | 4885054  | w   | 2017/08 7230 | 1.05       | UT 0010                |                     | TH MO    | 0010 5        | 7306612 (Z258037) A229407   | BRWN FILL SAND 0007 BRWN SILT SAND 0010 GREY CLAY SILT 0015                                                                       |
| 17   | 614547  | 4885194  | w   | 2017/08 7230 | 1.05       | UT 0004                |                     | TH MO    | 0010 5        | 7306615 (Z258003) A226697   | BRWN FILL GRVL 0002 GREY FILL CLAY 0005 GREY CLAY SILT HARD 0015                                                                  |
| 17   | 614623  | 4884559  | W   | 2017/08 7230 | 1.05       | UT 0011                |                     | TH MO    | 0011 5        | 7306616 (Z258004) A229404   | BRWN FILL SAND 0002 BRWN FILL CLAY 0007 BRWN CLAY SILT 0016                                                                       |
| 17   | 614918  | 4884771  | W   | 2017/08 7230 | 1.05       | UT 0014                |                     | MO TH    | 0010 5        | 7306618 (Z258040) A226696   | BRWN FILL SAND 0002 BRWN FILL CLAY HARD 0007 BRWN SILT CLAY DNSE 0015                                                             |
| 17   | 614818  | 4885087  | w   | 2017/08 7230 | 1.05       | UT 0009                |                     | TH MO    | 0010 5        | 7306619 (Z258006) A229405   | BRWN FILL SAND DNSE 0002 BRWN CLAY SILT HARD 0015                                                                                 |
| 17   | 614920  | 4885555  | w   | 2017/03 7383 | 2          | UT 0008                |                     | TH MO    | 0004 5        | 7287020 (Z241992) A221859   | GREY HARD 0000 BRWN SAND SILT GRVL 0009                                                                                           |
| 17   | 614921  | 4885564  | w   | 2017/02 7383 | 2          |                        |                     | MO       | 0010 10       | 7289356 (Z257561) A222697   | FILL SILT SNDY 0020                                                                                                               |
| 17   | 614913  | 4885559  | W   | 2017/02 7383 | 2          |                        |                     | TH       | 0010 10       | 7289355 (Z257562) A222698   | FILL SILT SNDY 0020                                                                                                               |
| 17   | 615146  | 4885424  | w   | 2016/10 6926 | 2          |                        |                     | MO       | 0010 5        | 7274768 (Z242767) A         |                                                                                                                                   |
| 17   | 615094  | 4884860  | W   | 2016/10 6926 | 5.07       | 4                      |                     | MO       | 0003 2        | 7274769 (Z242768) A         |                                                                                                                                   |
| 17   | 615159  | 4884893  | W   | 2016/10 6926 | 2          | 5                      |                     | MO       | 0010 5        | 7274770 (Z242769) A         |                                                                                                                                   |
| 17   | 614896  | 4885568  | W   | 2016/08 7295 | 1.79       |                        |                     | MO       | 0010 10       | 7273129 (Z230894) A203461   | BRWN SAND CLAY DRY 0010 GREY CLAY SAND DRY 0017 GREY CLAY WBRG 0020                                                               |
| 17   | 614840  | 4885338  | W   | 2015/12 7241 | 2          |                        |                     | MT       | 0020 10       | 7256413 (Z225004) A183582   | BRWN SAND GRVL SILT 0024 BRWN SAND GRVL WBRG 0030                                                                                 |
| 17   | 615137  | 4885422  | W   | 2015/10 7383 | 2          | 10                     |                     |          | 0010 5        | 7260855 (Z222026) A182208   |                                                                                                                                   |
| 17   | 615161  | 4884661  | W   | 2015/10 7383 | 2          |                        |                     | TH       | 0010 5        | 7260856 (Z222029) A182210   |                                                                                                                                   |
| 17   | 615161  | 4884890  | W   | 2015/10 7383 | 2          | 10                     |                     | TH       | 0010 5        | 7260853 (Z222027) A182209   |                                                                                                                                   |
| 17   | 615351  | 4885162  | W   | 2015/10 7088 |            |                        |                     |          |               | 7251659 (Z218954) A         | FILL 0005 0006 GRVL 0010 0010 GRVL 0013                                                                                           |
| 17   | 614952  | 4885162  | W   | 2014/12 7437 | 8          | 12                     |                     | OT       |               | 7236246 (Z202111) A         |                                                                                                                                   |
| 17   | 614948  | 4885112  | W   | 2014/12 7437 | 10         | 6                      |                     | OT       |               | 7236244 (Z202116) A         |                                                                                                                                   |
| 17   | 615203  | 4885240  | W   | 2014/12 7437 | 10         | 10                     |                     | ОТ       |               | 7236240 (Z202112) A         |                                                                                                                                   |
| 17   | 614956  | 4885162  | W   | 2014/12 7437 | 10         | 12                     |                     | ОТ       |               | 7236238 (Z202110) A011217 A |                                                                                                                                   |
| 17   | 614479  | 4885431  | W   | 2013/11 7383 | 2          | 20                     |                     | MO       | 0013 10       | 7214644 (Z166174) A151182   | 0000 FILL 0012 SILT SNDY 0023                                                                                                     |
| 17   | 614817  | 4885502  | W   | 2013/05 7147 | 19.6       | FR 0022                |                     |          | 0015 10       | 7202200 (Z171523) A137276   | BRWN 0001 BRWN SILT SAND 0025                                                                                                     |
| 17   | 615051  | 4884566  | W   | 2009/04 7190 | 6.5 2.09   | UK 0008                |                     | MT       | 0006 10       | 7124830 (Z91180) A080169    | BRWN SAND SILT LOOS 0010 GREY SILT SAND DNSE 0020                                                                                 |
| 17   | 614884  | 4885454  | W   | 2008/06 7241 | 2.04       |                        |                     | MO       |               | 7107941 (M01594) A072860    | BRWN SAND SILT HARD 0025                                                                                                          |
| 17   | 614506  | 4885613  | W   | 2008/05 3108 |            |                        |                     | NU       |               | 7107507 (Z66930) A          | 16                                                                                                                                |
| 17   | 614844  | 4885422  | W   | 2007/08 7241 | 2          |                        |                     | MO       |               | 7101220 (M00187) A061576    | BRWN FILL LOOS 0001 BRWN SAND SILT LOOS 0009 GREY SILT SAND 0015 GREY SILT ROCK DNSE 0020                                         |
| 17   | 615181  | 4884666  | W   | 2006/06 2513 |            |                        |                     |          |               | 7039243 (Z15159) A015096 A  |                                                                                                                                   |
| 17   | 615585  | 4885632  | W   | 2006/02 6607 | 2          | FR 0005                |                     |          | 0005 15       | 5740658 (Z44186) A037810    | BRWN LOAM PEAT 0005 GREY CLAY 0020                                                                                                |
| 17   | 614954  | 4885159  | W   | 2005/02 2801 | 10.2       |                        | 15/69/161/24:0      | MN       | 0092 15       | 5739595 (Z11281) A011217    | BRWN CLAY GRVL 0008 GREY CLAY GRVL 0023 SAND GRVL CLAY 0037 GREY CLAY GRVL 0049 GREY CLAY SLTY 0071 FSND PCKD 0091 FSND LOOS      |
|      |         |          |     |              |            |                        |                     |          |               |                             | 0098 FSND CLAY LYRD 0112 GREY CLAY SAND LYRD 0119                                                                                 |
| 17   | 614997  | 4885096  | W   | 2001/01 2801 |            |                        |                     | NU       |               | 5735835 (225716) A          |                                                                                                                                   |
| 17   | 614995  | 4885281  | W   | 2001/01 2801 |            |                        |                     | NU       |               | 5735834 (225717) A          |                                                                                                                                   |
| 17   | 614695  | 4884783  | L   | 1991/03 4919 | 30         | UK 0050                | 20/35/10/1:0        | DO       |               | 5727998 (77222)             | BRWN LOAM HARD 0001 BRWN CLAY HARD 0020 GREY CLAY HARD 0050 GREY SAND LOOS 0059                                                   |
| 17   | 614906  | 4884604  | W   | 1967/09 1621 | 8          | FR 0256                | 16/60/105/26:0      | MN       | 0257 5 0262 6 | 5700319 ()                  | LOAM 0002 CLAY SAND BLDR 0240 FSND CLAY SILT 0256 FSND 0260 MSND 0268 BLUE CLAY SAND GRVL 0269                                    |
| 17   | 615562  | 4884871  | W   | 1967/03 3414 | 4          | FR 0327                | 4/15/5/6:0          | DO       |               | 5700318 ()                  | LOAM 0006 CLAY 0141 GRVL 0149 SILT CLAY 0320 GRVL 0322 LMSN 0327                                                                  |
| 17   | 615031  | 4884790  | w   | 1967/01 3109 | 30         | FR 0015                | 4/11/1/:            | DO       |               | 5705249 ()                  | LOAM 0002 BRWN CLAY 0005 BLUE CLAY 0021                                                                                           |
| 17   | 614751  | 4884689  | W   | 1962/01 4102 | 24         | FR 0050                | 30//3/:             | DO       |               | 5705251 ()                  | PRDG 0030 CLAY MSND 0050 GRVL 0052                                                                                                |
| 17   | 614995  | 4885281  | w   | 1960/12 4823 | 55         | FR 0342                | 11/113/30/4:0       | PS DO    |               | 5700314 ()                  | LOAM 0003 MSND CLAY BLDR 0030 HPAN 0052 CLAY MSND 0082 SILT 0087 GRVL CLAY MSND 0096 CLAY MSND 0111 CLAY MSND GRVL 0167           |
|      |         |          |     |              |            |                        |                     |          |               |                             | HPAN 0198 BLUE CLAY 0227 BLUE CLAY SILT 0235 BLUE CLAY 0248 CLAY SILT 0269 HPAN 0280 CLAY SILT 0289 BLUE CLAY 0315 GRVL CLAY 0333 |
|      |         |          |     |              |            |                        |                     |          |               |                             | BLUE CLAY 0338 BRWN LMSN 0345                                                                                                     |
| 17   | 615009  | 4885566  | W   | 1960/11 4823 |            |                        |                     |          |               | 5705250 () A                | LOAM 0002 YLLW MSND GRVL 0012 BLUE CLAY GRVL 0030 BLUE CLAY 0085 CLAY MSND 0093 BLUE CLAY GRVL 0130 CLAY MSND 0154 CLAY GRVL      |
|      |         |          |     |              |            |                        |                     |          |               |                             | MSND 0248 CLAY MSND 0288 MSND SILT 0311 CLAY MSND GRVL 0348 BRWN LMSN 0396                                                        |
| 17   | 614960  | 4885210  | W   | 1959/07 4823 | 4          | FR 0340                | 12//84/10:30        | MN       | 0342 8        | 5700316 ()                  | LOAM 0001 BRWN MSND BLDR 0012 GREY MSND STNS CLAY 0045 BLUE CLAY 0085 MSND GRVL CLAY 0180 HPAN 0200 CLAY 0224 CLAY SILT 0225      |
|      |         |          |     |              |            |                        |                     |          |               |                             | FSND 0260 MSND 0270 MSND GRVL 0280 MSND CLAY 0285 HPAN 0340 GRVL MSND 0345 BRWN LMSN 0350                                         |
| 17   | 615587  | 4884621  | W   | 1953/05 4521 | 222        |                        |                     |          |               | 5700310 () A                | LOAM 0010 CLAY 0042 QSND CLAY 0140 FSND 0155 HPAN MSND 0164 LMSN 0165                                                             |
| 17   | 614960  | 4885125  | w   | 1952/11 2529 | 777        | R 0127 FR 0288 FR 034! | 7/40/80/:           | MN       |               | 5700308 ()                  | LOAM 0004 GRVL 0008 CLAY BLDR 0025 CLAY 0130 FSND 0170 CLAY 0270 GRVL 0305 CLAY 0340 GRVL HPAN 0350 BRWN LMSN 0351                |
| 17   | 615230  | 4885251  | w   | 1948/06 2801 | 10         | UK 0073 UK 0094        | /26/115/36:0        | MN       | 0084 10       | 5700306 ()                  | LOAM MSND 0004 MSND CLAY 0073 CSND 0094 GRVL MSND 0096                                                                            |
| 17   | 614955  | 4885195  | w   | 1947/06 2801 | 2 2        |                        | //20/2:0            |          |               | 5700307 ()                  | CLAY LOAM 0008 CLAY BLDR 0017 CLAY MSND GRVL 0055 CLAY GRVL BLDR 0060 MSND GRVL CLAY 0115                                         |
| 17   | 614964  | 4885666  | W   | 1947/06 2801 | 5          |                        |                     |          |               | 5700305 ()                  | CLAY GRVL BLDR 0012 MSND GRVL BLDR 0030 CLAY GRVL 0160 CLAY BLDR 0170                                                             |
| 17   | 615028  | 4885229  | W   | 1946/10 2801 | 6          | UK 0073 UK 0094        | -2/4/20/50995:51015 | NU       |               | 5700300 ()                  | LOAM MSND 0004 MSND CLAY 0073 CSND 0094 GRVL MSND 0123 FSND CLAY GRVL 0166 CLAY SILT 0230 CLAY GRVL 0330 CLAY BLDR 0339           |
|      |         |          |     |              |            |                        |                     |          |               |                             |                                                                                                                                   |
| 17   | 615060  | 4885366  | W   | 1946/09 2801 | 6          |                        |                     |          |               | 5700296 ()                  | LOAM 0001 CLAY MSND GRVL 0027 HPAN 0034 CLAY MSND GRVL 0075 CLAY MSND 0114 CLAY MSND GRVL 0190 CLAY 0192 LMSN 0193                |
|      |         |          |     |              |            |                        |                     |          |               |                             |                                                                                                                                   |
| 17   | 614804  | 4885265  | W   | 1946/09 2801 | 6          |                        |                     |          |               | 5700295 ()                  | LOAM CLAY 0004 MSND GRVL 0016 HPAN MSND GRVL 0049 CLAY GRVL 0105 CLAY MSND GRVL 0120 FSND CLAY 0193 CLAY 0202                     |
| 17   | 615061  | 4884650  | w   | 1946/09 2801 | 6          |                        |                     |          |               | 5700297 ()                  | LOAM MSND 0003 CLAY 0037 CLAY MSND GRVL 0060 CLAY FSND 0087 CLAY GRVL BLDR 0093 CLAY MSND GRVL 0123 CLAY FSND 0159 CLAY GRVL      |
|      |         |          |     |              |            |                        |                     |          |               |                             | 0210 CLAY SILT 0240 CLAY MSND GRVL 0243 CLAY FSND GRVL 0283 CLAY 0362 CLAY GRVL 0369 LMSN 0370                                    |
| 17   | 614538  | 4885560  | w   | 1946/08 2801 | 6          |                        |                     |          |               | 5700293 ()                  | LOAM 0001 MSND CLAY 0007 CLAY MSND GRVL 0053 FSND GRVL CLAY 0057 GRVL MSND CLAY 0090 CLAY MSND 0146 CLAY GRVL 0191 CLAY           |
|      |         |          |     |              |            |                        |                     |          |               |                             | 0202 LMSN 0203                                                                                                                    |
| 17   | 614965  | 4885200  | w   | 1930/10 2801 | 10         | UK 0067                | /27/100/:           | MN       | 0091 20       | 5700292 ()                  | LOAM 0001 CLAY BLDR GRVL 0067 MSND CLAY 0111                                                                                      |
| 17   | 615285  | 4885195  | w   | 7360         | 2          | UT 0010                |                     | MO       | 0030 10       | 7238143 (Z192061) A177417   | SAND WBRG 0025 GREY SAND SILT 0030 GREY SAND SILT 0040                                                                            |
|      |         |          |     |              |            |                        |                     |          |               |                             |                                                                                                                                   |

## MECP WELL RECORD TABLE ABBREVIATIONS AND DESCRIPTIONS

## Header Descriptions

| ABBREVIATION | DESCRIPTION                                                                                                                 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| UTM          | UTM in Zone, Easting, Northing and Datum is NAD83                                                                           |
| LOT          | UTM estimated from Centroid of Lot                                                                                          |
| W            | UTM not from Lot Centroid                                                                                                   |
| DATE CNTR    | Date Work Completed and Well Contractor Licence Number                                                                      |
| CASING DIA   | Casing diameter in inches                                                                                                   |
| WATER        | Depth of water found, in Feet. See Water Kind, below for meaning of Code                                                    |
| PUMP TEST    | Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour:Minutes |
| WELL USE     | See below for Meaning of Code                                                                                               |
| SCREEN       | Screen Depth and Length in feet                                                                                             |
| WELL         | Well ID, AUDIT #, Well Tag, A for abandonment; P for Partial Data Entry Only                                                |
| FORMATION    | See below for Meaning of Code                                                                                               |

# Meaning of Core Material and Descriptive Terms

| ABBV | DESCRIPTION    | ABBV | DESCRIPTION        | ABBV | DESCRIPTION    | ABBV | DESCRIPTION    |
|------|----------------|------|--------------------|------|----------------|------|----------------|
| CLN  | CLEAN          | FILL | FILL               | MARL | MARL           | SILT | SILT           |
| DRY  | DRY            | FLDS | FELDSPAR           | MGRD | MEDIUM-GRAINED | SLTE | SLATE          |
| QTZ  | QUARTZ         | FLNT | FLINT              | MGVL | MEDIUM GRAVEL  | SLTY | SILTY          |
| BLDR | BOULDERS       | FOSS | FOSILIFEROUS       | MRBL | MARBLE         | SNDS | SANDSTONE      |
| BSLT | BASALT         | FSND | FINE SAND          | MSND | MEDIUM SAND    | SNDY | SAN DY         |
| CGRD | COARSE-GRAINED | GNIS | GNEISS             | MUCK | MUCK           | SOFT | SOFT           |
| CGVL | COARSE GRAVEL  | GRNT | GRANITE            | OBDN | OVERBURDEN     | SPST | SOAPSTONE      |
| CHRT | CHERT          | GRSN | GREENSTONE         | PCKD | PACKED         | STKY | STICKY         |
| CLAY | CLAY           | GRVL | GRAVEL             | PEAT | PEAT           | STNS | STONES         |
| CLYY | CLAYEY         | GRWK | GREYWACKE          | PGVL | PEA GRAVEL     | STNY | STONEY         |
| CMTD | CEMENTED       | GVLY | GRAVELLY           | PORS | POROUS         | THIK | THICK          |
| CONG | CONGLOMERATE   | GYPS | GYPSUM             | PRDG | PREVIOUSLY DUG | THIN | THIN           |
| CRYS | CRYSTALLINE    | HARD | HARD               | PRDR | PREV. DRILLED  | TILL | TILL           |
| CSND | COARSE SAND    | HPAN | HARDPAN            | QRTZ | QUARTZITE      | UNKN | UNKNOWN TYPE   |
| DKCL | DARK-COLOURED  | IRFM | IRON<br>FORMATION  | QSND | QUICKSAND      | VERY | VERY           |
| DLMT | DOLOMITE       | LIMY | LIMY               | ROCK | ROCK           | WBRG | WATER-BEARING  |
| DNSE | DENSE          | LMSN | LIMESTONE          | SAND | SAND           | WDFR | WOOD FRAGMENTS |
| DRTY | DIRTY          | LOAM | TOPSOIL            | SHLE | SHALE          | WTHD | WEATHERED      |
| FCRD | FRACTURED      | LOOS | LOOSE              | SHLY | SHALY          |      |                |
| FGRD | FINE-GRAINED   | LTCL | LIGHT-<br>COLOURED | SHRP | SHARP          |      |                |
| FGVL | FINE GRAVEL    | LYRD | LAYERED            | SHST | SCHIST         |      |                |

# Core Color

| ABBV  | DESCRIPTION |  |  |  |  |  |
|-------|-------------|--|--|--|--|--|
| WHIT  | WHITE       |  |  |  |  |  |
| GREY  | GREY        |  |  |  |  |  |
| BLUE  | BLUE        |  |  |  |  |  |
| GREN  | GREEN       |  |  |  |  |  |
| YLLW  | YELLOW      |  |  |  |  |  |
| BRWN  | BROWN       |  |  |  |  |  |
| RED   | RED         |  |  |  |  |  |
| BLC K | BLACK       |  |  |  |  |  |
| BLGY  | BLUE-GREY   |  |  |  |  |  |
| BLGT  | BLUE-GRET   |  |  |  |  |  |

# Well Use

| ABBV | DESCRIPTION    |
|------|----------------|
| DO   | Domestic       |
| ST   | Livestock      |
| IR   | Irrigation     |
| IN   | Industrial     |
| CO   | Commercial     |
| MN   | Municipal      |
| PS   | Public         |
| AC   | Cooling And AC |
| NU   | Not Used       |
| OT   | Other          |
| TH   | Test Hole      |
| DE   | Dewatering     |
| MO   | Monitoring     |
| MT   | Monitoring and |
|      | Test Hole      |

## Water Kind

| ABBV | DESCRIPTION |
|------|-------------|
| FR   | Fresh       |
| SA   | Salty       |
| SU   | Sulphur     |
| MN   | Minerial    |
| UK   | Not Stated  |
| GS   | Gas         |
| IR   | Iron        |
| UT   | Untested    |
| OT   | Other       |



## APPENDIX C

Summarized Water Well Survey Responses

#### WATER WELL SURVEY SUMMARY

#### 125 Simcoe Road, Bradford

Summarized results of door-to-door water well survey

#### **TABLE C-1: Properties Surveyed**

| Address           | Responded to Survey?         | Do you have a water<br>supply well? |
|-------------------|------------------------------|-------------------------------------|
| 175 Walker Avenue | No<br>(questionannaire left) | No (*observation)                   |
| 185 Walker Avenue | No<br>(questionannaire left) | No (*observation)                   |
| 159 Morris Road   | No<br>(questionannaire left) | No (*observation)                   |
| 201 Morris Road   | Yes                          | No                                  |
| 221 Morris Road   | No<br>(questionannaire left) | Yes (*observation)                  |
| 251 Morris Road   | Yes                          | No                                  |
| 271 Morris Road   | No<br>(questionannaire left) | No (*observation)                   |
| 291 Morris Road   | No<br>(questionannaire left) | No (*observation)                   |
| 303 Morris Road   | No<br>(questionannaire left) | Yes (*observation)                  |

Note: \* Best estimate based on observation by survey taker from the road.

#### TABLE C-2: Properties Suspected of Having Wells Based on Survey

| Address         | Responded to Survey?         | Do you have a water<br>supply well? | Well Location                            | Date of<br>install | Туре    | Depth | Flow rate | Water<br>Shortages? | Treatment | Drink? | Septic System | Name of Owner or<br>respondant |
|-----------------|------------------------------|-------------------------------------|------------------------------------------|--------------------|---------|-------|-----------|---------------------|-----------|--------|---------------|--------------------------------|
| 221 Morris Road | No<br>(questionannaire left) | Yes (*observation)                  | South side of property<br>(*observation) |                    | Dug     |       |           |                     |           |        |               |                                |
| 303 Morris Road | No<br>(questionannaire left) | Yes (*observation)                  | Backyard (*observation)                  |                    | Drilled |       |           |                     |           |        |               |                                |

Note: \* Best estimate based on observation by survey taker from the road.



## APPENDIX D

Borehole Permeability Testing Plots

| Estimation of K by Slug Test, based o | on Hvorslev equation |      |                                       |                     |       |
|---------------------------------------|----------------------|------|---------------------------------------|---------------------|-------|
| Date:                                 | February 11, 2022    |      | Static water depth, H:                | 2.14                | mbgs  |
| Conducted by:                         | J. N.                |      | Water depth at time t = 0, Ho:        | 2.38                | mbgs  |
| Project Number:                       | 21BF049              |      | Water depth at time t, h:             | see below           | mbgs  |
| Well Number:                          | BH 1                 |      | Basic time lag, To:                   | 2,990               | sec   |
| Well Screen Bottom:                   |                      | mbgs | Length of well screen, L:             | 150                 | cm    |
| Top of Pipe:                          |                      | mags | Diameter of the borehole, 2R:         | 15.2                | cm    |
| Well Casing Diameter:                 |                      | cm   | Diameter of the well casing, 2r:      | 5.1                 | cm    |
| Well Elevation:                       | 224.13               | masl | Estimated Sy of sand pack:            | 0.00                | 0 for |
| Static Water Level:                   | 2.14                 | mbgs | Estimated effective 2r <sub>e</sub> : | 5.1                 | cm    |
| Ground Elevation:                     | 224.13               | masl | $K^* = r_e 2 \ln(L/R) / (2LTo) =$     | 2.2E-05             | cm/s  |
| WATER LEVEL BEFORE TEST = H =         | 2.14                 | mbgs | Modified to acc                       | ount for sand pack? | NO    |
|                                       |                      |      |                                       |                     |       |

|              | h           |                  |             |
|--------------|-------------|------------------|-------------|
|              | Water Level | Water Level      |             |
| Time t (sec) | (mbgs)      | Elevation (masl) | Time t (sec |
| 0            | 2.38        | 221.75           | 0           |
| 1            | 2.38        | 221.75           | 1           |
| 2            | 2.38        | 221.75           | 2           |
| 3            | 2.38        | 221.75           | 3           |
| 4            | 2.38        | 221.75           | 4           |
| 5            | 2.38        | 221.75           | 5           |
| 6<br>7       | 2.38        | 221.75           | 7           |
| 8            | 2.38        | 221.75<br>221.75 | 8           |
| <u> </u>     | 2.38        | 221.75           |             |
| 10           | 2.38        | 221.75           | 10          |
| 10           | 2.38        | 221.75           |             |
| 12           | 2.37        | 221.76           | 12          |
| 13           | 2.37        | 221.76           | 13          |
| 14           | 2.37        | 221.76           | 14          |
| 15           | 2.37        | 221.76           | 15          |
| 16           | 2.37        | 221.76           | 16          |
| 17           | 2.37        | 221.76           | 17          |
| 18           | 2.38        | 221.75           | 18          |
| 19           | 2.38        | 221.75           | 19          |
| 20           | 2.38        | 221.75           | 20          |
| 21           | 2.38        | 221.75           | 21          |
| 22           | 2.38        | 221.75           | 22          |
| 23           | 2.38        | 221.75           | 23          |
| 24           | 2.38        | 221.75           | 24          |
| 25           | 2.37        | 221.76           | 25          |
| 26           | 2.37        | 221.76           | 26          |
| 27           | 2.37        | 221.76           | 27          |
| 28           | 2.37        | 221.76           | 28          |
| 29           | 2.37        | 221.76           | 29          |
| 30           | 2.37        | 221.76           | 30          |
| 31           | 2.37        | 221.76           | 31          |
| 32           | 2.37        | 221.76           | 32          |
|              |             |                  |             |

| Time t (sec) | h - H | Ho - H | (h-H)/(Ho-H) |
|--------------|-------|--------|--------------|
| 0            | 0.242 | 0.242  | 1.000        |
| 1            | 0.242 | 0.242  | 0.999        |
| 2            | 0.240 | 0.242  | 0.993        |
| 3            | 0.240 | 0.242  | 0.992        |
| 4            | 0.239 | 0.242  | 0.990        |
| 5            | 0.239 | 0.242  | 0.990        |
| 6            | 0.239 | 0.242  | 0.990        |
| 7            | 0.240 | 0.242  | 0.991        |
| 8            | 0.239 | 0.242  | 0.987        |
| 9            | 0.237 | 0.242  | 0.981        |
| 10           | 0.238 | 0.242  | 0.982        |
| 11           | 0.237 | 0.242  | 0.981        |
| 12           | 0.232 | 0.242  | 0.959        |
| 13           | 0.234 | 0.242  | 0.966        |
| 14           | 0.235 | 0.242  | 0.971        |
| 15           | 0.233 | 0.242  | 0.962        |
| 16           | 0.232 | 0.242  | 0.958        |
| 17           | 0.234 | 0.242  | 0.967        |
| 18           | 0.236 | 0.242  | 0.977        |
| 19           | 0.236 | 0.242  | 0.974        |
| 20           | 0.236 | 0.242  | 0.975        |
| 21           | 0.235 | 0.242  | 0.974        |
| 22           | 0.236 | 0.242  | 0.974        |
| 23           | 0.235 | 0.242  | 0.972        |
| 24           | 0.235 | 0.242  | 0.973        |
| 25           | 0.235 | 0.242  | 0.971        |
| 26           | 0.235 | 0.242  | 0.971        |
| 27           | 0.235 | 0.242  | 0.971        |
| 28           | 0.234 | 0.242  | 0.969        |
| 29           | 0.235 | 0.242  | 0.970        |
| 30           | 0.234 | 0.242  | 0.969        |
| 31           | 0.235 | 0.242  | 0.970        |
| 32           | 0.234 | 0.242  | 0.969        |

mbgs

mbgs

mbgs

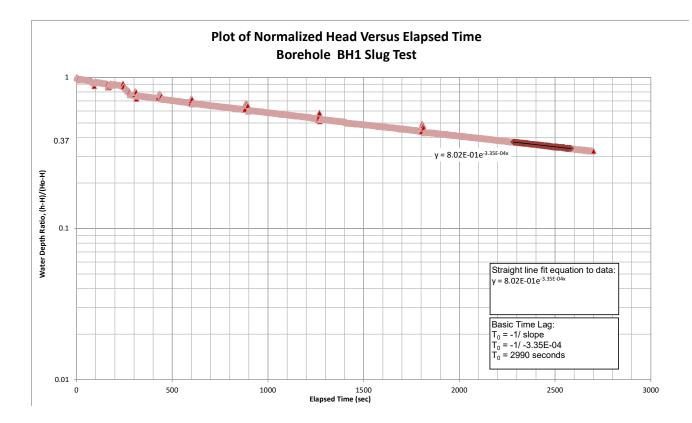
cm/s

0 for No cm

| 33       | 2.37         | 221.76           |
|----------|--------------|------------------|
| 34       | 2.37         | 221.76           |
| 35       | 2.37         | 221.76           |
| 36       | 2.37         | 221.76           |
|          |              |                  |
| 37       | 2.37         | 221.76           |
| 38       | 2.37         | 221.76           |
| 39       | 2.37         | 221.76           |
| 40       | 2.37         | 221.76           |
| 41       | 2.37         | 221.76           |
| 42       | 2.37         | 221.76           |
| 43       | 2.37         | 221.76           |
| 44       | 2.37         | 221.76           |
| 45       | 2.37         | 221.76           |
| 46       | 2.37         | 221.76           |
| 47       | 2.37         | 221.76           |
| 48       | 2.37         | 221.76           |
| 49       | 2.37         | 221.76           |
| 50       | 2.37         | 221.76           |
| 51       | 2.37         | 221.76           |
| 52       | 2.37         | 221.76           |
| 53       | 2.37         | 221.76           |
| 54       | 2.37         | 221.76           |
| 55       | 2.37         | 221.76           |
| 56       | 2.37         | 221.76           |
| 57       | 2.37         | 221.76           |
| 58       | 2.37         | 221.76           |
| 59       | 2.37         | 221.76           |
| 60       | 2.37         | 221.76           |
| 61<br>62 | 2.37<br>2.37 | 221.76<br>221.76 |
| 63       | 2.37         | 221.76           |
| 64       | 2.37         | 221.76           |
| 65       | 2.37         | 221.76           |
| 66       | 2.37         | 221.76           |
| 67       | 2.37         | 221.76           |
| 68       | 2.37         | 221.76           |
| 69       | 2.37         | 221.76           |
| 70       | 2.37         | 221.76           |
| 71       | 2.37         | 221.76           |
| 72       | 2.37         | 221.76           |
| 73       | 2.37         | 221.76           |
| 74       | 2.37         | 221.76           |
| 75       | 2.37         | 221.76           |
| 76       | 2.37         | 221.76           |
| 77       | 2.37         | 221.76           |
| 78       | 2.37         | 221.76           |
| 79       | 2.37         | 221.76           |
| 80       | 2.37         | 221.76           |
| 81       | 2.37         | 221.76           |
| 82       | 2.37<br>2.37 | 221.76<br>221.76 |
| 83       | 2.37         | 221.76           |
| 85       | 2.36         | 221.77           |
| 85       | 2.30         | 221.77           |
| 87       | 2.36         | 221.77           |
| 88       | 2.36         | 221.77           |
|          | 2.50         | 221.11           |

|    |       | 1     |       |
|----|-------|-------|-------|
| 33 | 0.234 | 0.242 | 0.967 |
| 34 | 0.234 | 0.242 | 0.966 |
| 35 | 0.234 | 0.242 | 0.967 |
| 36 | 0.234 | 0.242 | 0.969 |
| 37 | 0.234 | 0.242 | 0.967 |
| 38 | 0.233 | 0.242 | 0.964 |
|    |       |       |       |
| 39 | 0.233 | 0.242 | 0.964 |
| 40 | 0.233 | 0.242 | 0.965 |
| 41 | 0.233 | 0.242 | 0.962 |
| 42 | 0.233 | 0.242 | 0.964 |
| 43 | 0.233 | 0.242 | 0.963 |
| 44 | 0.233 | 0.242 | 0.964 |
| 45 | 0.233 | 0.242 | 0.963 |
| 46 | 0.232 | 0.242 | 0.961 |
| 47 | 0.233 | 0.242 | 0.963 |
| 48 | 0.232 | 0.242 | 0.961 |
| 49 | 0.232 | 0.242 | 0.960 |
| 50 | 0.232 | 0.242 | 0.959 |
| 51 | 0.232 | 0.242 | 0.958 |
| 52 | 0.232 | 0.242 | 0.959 |
| 53 | 0.233 | 0.242 | 0.962 |
| 54 | 0.232 | 0.242 | 0.958 |
| 55 | 0.232 | 0.242 | 0.958 |
| 56 | 0.231 | 0.242 | 0.957 |
| 57 | 0.231 | 0.242 | 0.956 |
| 58 | 0.232 | 0.242 | 0.957 |
| 59 | 0.231 | 0.242 | 0.955 |
| 60 | 0.231 | 0.242 | 0.954 |
| 61 | 0.231 | 0.242 | 0.953 |
| 62 | 0.230 | 0.242 | 0.953 |
| 63 | 0.231 | 0.242 | 0.954 |
| 64 | 0.231 | 0.242 | 0.955 |
| 65 | 0.231 | 0.242 | 0.953 |
| 66 | 0.230 | 0.242 | 0.952 |
| 67 | 0.230 | 0.242 | 0.952 |
| 68 | 0.230 | 0.242 | 0.952 |
| 69 | 0.230 | 0.242 | 0.952 |
| 70 | 0.230 | 0.242 | 0.951 |
| 71 | 0.229 | 0.242 | 0.949 |
| 72 | 0.230 | 0.242 | 0.952 |
| 73 | 0.230 | 0.242 | 0.950 |
| 74 | 0.230 | 0.242 | 0.949 |
| 75 | 0.229 | 0.242 | 0.949 |
| 76 | 0.229 | 0.242 | 0.949 |
| 77 | 0.229 | 0.242 | 0.948 |
| 78 | 0.229 | 0.242 | 0.947 |
| 79 | 0.228 | 0.242 | 0.944 |
| 80 | 0.228 | 0.242 | 0.944 |
| 81 | 0.228 | 0.242 | 0.941 |
| 82 | 0.226 | 0.242 | 0.935 |
| 83 | 0.225 | 0.242 | 0.932 |
| 84 | 0.225 | 0.242 | 0.930 |
| 85 | 0.224 | 0.242 | 0.928 |
| 86 | 0.224 | 0.242 | 0.927 |
| 87 | 0.224 | 0.242 | 0.927 |
| 88 | 0.222 | 0.242 | 0.919 |

| 89         | 2.36 | 221.77           |
|------------|------|------------------|
| 90         | 2.36 | 221.77           |
| 91         | 2.36 | 221.77           |
| 92         | 2.35 | 221.78           |
| 93         | 2.36 | 221.77           |
| 94         | 2.36 | 221.77           |
| 95         | 2.37 | 221.76           |
| 96         | 2.36 | 221.77           |
| 97         | 2.36 | 221.77           |
| 98         | 2.37 | 221.76           |
| 99         | 2.37 | 221.77           |
| 100        | 2.36 | 221.77           |
| 101        | 2.36 | 221.77           |
| 102        | 2.37 | 221.76           |
| 103        | 2.36 | 221.77           |
| 103        | 2.36 | 221.77           |
| 105        | 2.37 | 221.76           |
| 105        | 2.36 | 221.70           |
| 100        | 2.30 | 221.77           |
| 107        | 2.36 | 221.77           |
| 108        | 2.36 | 221.77           |
|            | 2.36 |                  |
| 110<br>111 | 2.36 | 221.77<br>221.77 |
|            |      |                  |
| 112        | 2.36 | 221.77           |
| 113        | 2.36 | 221.77           |
| 114        | 2.36 | 221.77           |
| 115        | 2.36 | 221.77           |
| 116        | 2.36 | 221.77           |
| 117        | 2.36 | 221.77           |
| 118        | 2.36 | 221.77           |
| 119        | 2.36 | 221.77           |
| 120        | 2.36 | 221.77           |
| 121        | 2.36 | 221.77           |
| 122        | 2.36 | 221.77           |
| 123        | 2.36 | 221.77           |
| 124        | 2.36 | 221.77           |
| 125        | 2.36 | 221.77           |
| 126        | 2.36 | 221.77           |
| 127        | 2.36 | 221.77           |
| 128        | 2.36 | 221.77           |
| 129        | 2.36 | 221.77           |
| 130        | 2.36 | 221.77           |
| 131        | 2.36 | 221.77           |
| 132        | 2.36 | 221.77           |
| 133        | 2.36 | 221.77           |
| 134        | 2.36 | 221.77           |
| 135        | 2.36 | 221.77           |
| 136        | 2.36 | 221.77           |
| 137        | 2.36 | 221.77           |
| 138        | 2.36 | 221.77           |
| 139        | 2.36 | 221.77           |
| 140        | 2.36 | 221.77           |
| 141        | 2.36 | 221.77           |
| 142        | 2.36 | 221.77           |
| 143        | 2.36 | 221.77           |
| 144        | 2.36 | 221.77           |
| 145        | 2.36 | 221.77           |
| 146        | 2.36 | 221.77           |
|            |      | ]                |


|     |       | 1     |       |
|-----|-------|-------|-------|
| 89  | 0.223 | 0.242 | 0.921 |
| 90  | 0.223 | 0.242 | 0.923 |
| 91  | 0.223 | 0.242 | 0.922 |
| 92  | 0.212 | 0.242 | 0.875 |
| 93  | 0.220 | 0.242 | 0.911 |
| 94  | 0.222 | 0.242 | 0.919 |
| 95  | 0.226 | 0.242 | 0.933 |
| 96  | 0.225 | 0.242 | 0.930 |
| 97  | 0.225 | 0.242 | 0.930 |
| 98  | 0.225 | 0.242 | 0.931 |
| 99  | 0.225 | 0.242 | 0.931 |
| 100 | 0.225 | 0.242 | 0.930 |
| 101 | 0.225 | 0.242 | 0.930 |
| 102 | 0.225 | 0.242 | 0.931 |
| 103 | 0.225 | 0.242 | 0.930 |
| 104 | 0.224 | 0.242 | 0.928 |
| 105 | 0.225 | 0.242 | 0.931 |
| 106 | 0.225 | 0.242 | 0.929 |
| 107 | 0.225 | 0.242 | 0.928 |
| 108 | 0.225 | 0.242 | 0.928 |
| 109 | 0.225 | 0.242 | 0.928 |
| 110 | 0.224 | 0.242 | 0.928 |
| 111 | 0.225 | 0.242 | 0.929 |
| 112 | 0.224 | 0.242 | 0.926 |
| 113 | 0.224 | 0.242 | 0.925 |
| 114 | 0.222 | 0.242 | 0.920 |
| 115 | 0.223 | 0.242 | 0.924 |
| 116 | 0.224 | 0.242 | 0.926 |
| 117 | 0.223 | 0.242 | 0.923 |
| 118 | 0.223 | 0.242 | 0.921 |
| 119 | 0.224 | 0.242 | 0.925 |
| 120 | 0.223 | 0.242 | 0.922 |
| 121 | 0.223 | 0.242 | 0.923 |
| 122 | 0.224 | 0.242 | 0.926 |
| 123 | 0.223 | 0.242 | 0.921 |
| 124 | 0.222 | 0.242 | 0.920 |
| 125 | 0.222 | 0.242 | 0.919 |
| 126 | 0.222 | 0.242 | 0.919 |
| 127 | 0.222 | 0.242 | 0.919 |
| 128 | 0.222 | 0.242 | 0.919 |
| 129 | 0.222 | 0.242 | 0.918 |
| 130 | 0.222 | 0.242 | 0.919 |
| 130 | 0.222 | 0.242 | 0.918 |
| 131 | 0.222 | 0.242 | 0.917 |
| 132 | 0.221 | 0.242 | 0.916 |
| 133 | 0.222 | 0.242 | 0.916 |
| 134 | 0.223 | 0.242 | 0.921 |
| 135 | 0.223 | 0.242 | 0.914 |
| 130 | 0.221 | 0.242 | 0.915 |
| 137 | 0.221 | 0.242 | 0.915 |
| 138 | 0.221 | 0.242 | 0.910 |
| 139 | 0.221 | 0.242 | 0.912 |
| 140 | 0.221 | 0.242 | 0.913 |
| 141 | 0.221 | 0.242 | 0.913 |
| 142 | 0.220 | 0.242 | 0.909 |
| 143 | 0.220 | 0.242 | 0.909 |
| 144 | 0.220 | 0.242 | 0.911 |
| 145 | 0.220 | 0.242 | 0.911 |
| 140 | 0.221 | 0.272 | 0.312 |

| 147 | 2.36 | 221.77 |
|-----|------|--------|
| 148 | 2.36 | 221.77 |
| 149 | 2.36 | 221.77 |
| 150 | 2.36 | 221.77 |
| 151 | 2.36 | 221.77 |
| 152 | 2.36 | 221.77 |
| 152 | 2.36 | 221.77 |
| 155 | 2.36 | 221.77 |
|     |      |        |
| 155 | 2.36 | 221.77 |
| 156 | 2.36 | 221.77 |
| 157 | 2.36 | 221.77 |
| 158 | 2.36 | 221.77 |
| 159 | 2.36 | 221.77 |
| 160 | 2.36 | 221.77 |
| 161 | 2.36 | 221.77 |
| 162 | 2.36 | 221.77 |
| 163 | 2.35 | 221.78 |
| 164 | 2.35 | 221.78 |
| 165 | 2.35 | 221.78 |
| 166 | 2.35 | 221.78 |
| 167 | 2.35 | 221.78 |
| 168 | 2.36 | 221.77 |
| 169 | 2.36 | 221.77 |
| 170 | 2.36 | 221.77 |
| 171 | 2.35 | 221.78 |
| 172 | 2.35 | 221.78 |
| 172 | 2.36 | 221.78 |
| 173 | 2.36 | 221.77 |
|     | 2.36 |        |
| 175 |      | 221.77 |
| 176 | 2.36 | 221.77 |
| 177 | 2.36 | 221.77 |
| 178 | 2.36 | 221.77 |
| 179 | 2.36 | 221.77 |
| 180 | 2.36 | 221.77 |
| 181 | 2.36 | 221.77 |
| 182 | 2.36 | 221.77 |
| 183 | 2.36 | 221.77 |
| 184 | 2.36 | 221.77 |
| 185 | 2.35 | 221.78 |
| 186 | 2.35 | 221.78 |
| 187 | 2.35 | 221.78 |
| 188 | 2.35 | 221.78 |
| 189 | 2.36 | 221.77 |
| 190 | 2.36 | 221.77 |
| 191 | 2.36 | 221.77 |
| 192 | 2.36 | 221.77 |
| 192 | 2.36 | 221.77 |
| 195 | 2.36 | 221.77 |
| 194 | 2.36 | 221.77 |
| 195 | 2.36 | 221.77 |
|     |      |        |
| 197 | 2.36 | 221.77 |
| 198 | 2.36 | 221.77 |
| 199 | 2.36 | 221.77 |
| 200 | 2.36 | 221.77 |
| 201 | 2.36 | 221.77 |
| 202 | 2.36 | 221.77 |
| 203 | 2.36 | 221.77 |
| 204 | 2.36 | 221.77 |
|     |      |        |

| 147 | 0.221 | 0.242 | 0.912 |
|-----|-------|-------|-------|
| 148 | 0.220 | 0.242 | 0.911 |
| 149 | 0.220 | 0.242 | 0.910 |
| 150 | 0.221 | 0.242 | 0.915 |
| 151 | 0.219 | 0.242 | 0.907 |
| 152 | 0.220 | 0.242 | 0.910 |
| 153 | 0.220 | 0.242 | 0.908 |
| 154 | 0.220 | 0.242 | 0.909 |
| 155 | 0.220 | 0.242 | 0.909 |
| 156 | 0.219 | 0.242 | 0.906 |
| 157 | 0.219 | 0.242 | 0.906 |
| 158 | 0.219 | 0.242 | 0.907 |
| 159 | 0.219 | 0.242 | 0.906 |
| 160 | 0.219 | 0.242 | 0.907 |
| 161 | 0.219 | 0.242 | 0.905 |
| 162 | 0.218 | 0.242 | 0.903 |
| 163 | 0.212 | 0.242 | 0.877 |
| 164 | 0.208 | 0.242 | 0.861 |
| 165 | 0.208 | 0.242 | 0.862 |
| 166 | 0.207 | 0.242 | 0.856 |
| 167 | 0.212 | 0.242 | 0.876 |
| 168 | 0.216 | 0.242 | 0.895 |
| 169 | 0.217 | 0.242 | 0.897 |
| 170 | 0.217 | 0.242 | 0.897 |
| 171 | 0.209 | 0.242 | 0.864 |
| 172 | 0.213 | 0.242 | 0.880 |
| 173 | 0.217 | 0.242 | 0.897 |
| 174 | 0.219 | 0.242 | 0.905 |
| 175 | 0.219 | 0.242 | 0.906 |
| 176 | 0.219 | 0.242 | 0.904 |
| 177 | 0.217 | 0.242 | 0.897 |
| 178 | 0.219 | 0.242 | 0.906 |
| 179 | 0.219 | 0.242 | 0.904 |
| 180 | 0.219 | 0.242 | 0.904 |
| 181 | 0.219 | 0.242 | 0.904 |
| 182 | 0.218 | 0.242 | 0.901 |
| 183 | 0.217 | 0.242 | 0.897 |
| 184 | 0.215 | 0.242 | 0.890 |
| 185 | 0.214 | 0.242 | 0.886 |
| 186 | 0.214 | 0.242 | 0.884 |
| 187 | 0.214 | 0.242 | 0.883 |
| 188 | 0.215 | 0.242 | 0.889 |
| 189 | 0.218 | 0.242 | 0.903 |
| 190 | 0.218 | 0.242 | 0.901 |
| 191 | 0.218 | 0.242 | 0.900 |
| 192 | 0.218 | 0.242 | 0.900 |
| 192 | 0.218 | 0.242 | 0.901 |
| 193 | 0.218 | 0.242 | 0.902 |
| 195 | 0.217 | 0.242 | 0.898 |
| 195 | 0.217 | 0.242 | 0.899 |
| 190 | 0.218 | 0.242 | 0.901 |
| 198 | 0.217 | 0.242 | 0.899 |
| 199 | 0.217 | 0.242 | 0.899 |
| 200 | 0.217 | 0.242 | 0.898 |
| 200 | 0.217 | 0.242 | 0.898 |
| 201 | 0.217 | 0.242 | 0.897 |
| 202 | 0.217 | 0.242 | 0.899 |
| 203 | 0.217 | 0.242 | 0.898 |
|     |       |       | 0.000 |

| 205        | 2.36 | 221.77 |
|------------|------|--------|
| 206        | 2.36 | 221.77 |
| 207        | 2.36 | 221.77 |
| 208        | 2.36 | 221.77 |
| 209        | 2.36 | 221.77 |
| 210        | 2.36 | 221.77 |
| 211        | 2.36 | 221.77 |
| 212        | 2.36 | 221.77 |
| 213        | 2.36 | 221.77 |
| 214        | 2.36 | 221.77 |
| 215        | 2.36 | 221.77 |
| 216        | 2.36 | 221.77 |
| 217        | 2.36 | 221.78 |
| 218        | 2.35 | 221.78 |
| 219        | 2.35 | 221.78 |
| 220        | 2.35 | 221.78 |
| 220        | 2.35 | 221.78 |
| 221        | 2.35 | 221.78 |
|            | 2.36 | 221.77 |
| 223<br>224 | 2.35 |        |
|            |      | 221.78 |
| 225        | 2.35 | 221.78 |
| 226        | 2.35 | 221.78 |
| 227        | 2.35 | 221.78 |
| 228        | 2.35 | 221.78 |
| 229        | 2.35 | 221.78 |
| 230        | 2.35 | 221.78 |
| 231        | 2.35 | 221.78 |
| 232        | 2.35 | 221.78 |
| 233        | 2.35 | 221.78 |
| 234        | 2.35 | 221.78 |
| 235        | 2.35 | 221.78 |
| 236        | 2.35 | 221.78 |
| 237        | 2.35 | 221.78 |
| 238        | 2.35 | 221.78 |
| 239        | 2.36 | 221.77 |
| 240        | 2.35 | 221.78 |
| 241        | 2.36 | 221.78 |
| 242        | 2.36 | 221.77 |
| 243        | 2.36 | 221.77 |
| 244        | 2.35 | 221.78 |
| 245        | 2.35 | 221.78 |
| 246        | 2.40 | 221.73 |
| 247        | 2.50 | 221.63 |
| 248        | 2.51 | 221.62 |
| 249        | 2.51 | 221.62 |
| 250        | 2.50 | 221.63 |
| 251        | 2.44 | 221.70 |
| 252        | 2.34 | 221.79 |
| 253        | 2.34 | 221.79 |
| 254        | 2.34 | 221.79 |
| 255        | 2.34 | 221.79 |
| 256        | 2.34 | 221.79 |
| 257        | 2.34 | 221.79 |
| 258        | 2.34 | 221.79 |
| 259        | 2.34 | 221.79 |
| 260        | 2.34 | 221.79 |
| 261        | 2.34 | 221.79 |
| 262        | 2.34 | 221.79 |
| L          |      |        |

| 205 | 0.217 | 0.242 | 0.895 |
|-----|-------|-------|-------|
| 206 | 0.216 | 0.242 | 0.894 |
| 207 | 0.217 | 0.242 | 0.896 |
| 208 | 0.216 | 0.242 | 0.894 |
| 209 | 0.216 | 0.242 | 0.893 |
| 210 | 0.216 | 0.242 | 0.893 |
| 211 | 0.215 | 0.242 | 0.890 |
| 212 | 0.216 | 0.242 | 0.892 |
| 213 | 0.216 | 0.242 | 0.891 |
| 214 | 0.216 | 0.242 | 0.892 |
| 215 | 0.216 | 0.242 | 0.891 |
| 216 | 0.215 | 0.242 | 0.891 |
| 217 | 0.215 | 0.242 | 0.889 |
| 218 | 0.215 | 0.242 | 0.889 |
| 219 | 0.215 | 0.242 | 0.889 |
| 220 | 0.215 | 0.242 | 0.888 |
| 221 | 0.215 | 0.242 | 0.888 |
| 222 | 0.215 | 0.242 | 0.890 |
| 223 | 0.215 | 0.242 | 0.888 |
| 224 | 0.215 | 0.242 | 0.888 |
| 225 | 0.215 | 0.242 | 0.889 |
| 226 | 0.215 | 0.242 | 0.889 |
| 227 | 0.215 | 0.242 | 0.887 |
| 228 | 0.215 | 0.242 | 0.887 |
| 229 | 0.214 | 0.242 | 0.885 |
| 230 | 0.214 | 0.242 | 0.887 |
| 231 | 0.214 | 0.242 | 0.885 |
| 232 | 0.214 | 0.242 | 0.885 |
| 233 | 0.214 | 0.242 | 0.885 |
| 234 | 0.214 | 0.242 | 0.884 |
| 235 | 0.213 | 0.242 | 0.882 |
| 236 | 0.214 | 0.242 | 0.883 |
| 237 | 0.214 | 0.242 | 0.883 |
| 238 | 0.214 | 0.242 | 0.885 |
| 239 | 0.215 | 0.242 | 0.890 |
| 240 | 0.215 | 0.242 | 0.888 |
| 241 | 0.215 | 0.242 | 0.889 |
| 242 | 0.216 | 0.242 | 0.894 |
| 243 | 0.220 | 0.242 | 0.911 |
| 244 | 0.211 | 0.242 | 0.871 |
| 245 | 0.210 | 0.242 | 0.868 |
| 246 | 0.260 | 0.242 | 1.074 |
| 247 | 0.359 | 0.242 | 1.484 |
| 248 | 0.373 | 0.242 | 1.541 |
| 249 | 0.368 | 0.242 | 1.520 |
| 250 | 0.357 | 0.242 | 1.478 |
| 251 | 0.295 | 0.242 | 1.220 |
| 252 | 0.202 | 0.242 | 0.834 |
| 253 | 0.202 | 0.242 | 0.837 |
| 254 | 0.202 | 0.242 | 0.837 |
| 255 | 0.202 | 0.242 | 0.836 |
| 256 | 0.202 | 0.242 | 0.836 |
| 257 | 0.202 | 0.242 | 0.835 |
| 258 | 0.202 | 0.242 | 0.836 |
| 259 | 0.202 | 0.242 | 0.836 |
| 260 | 0.202 | 0.242 | 0.833 |
| 261 | 0.202 | 0.242 | 0.836 |
| 262 | 0.201 | 0.242 | 0.833 |



| Estimation of K by Slug Test, based o | on Hvorslev equation |      |                                       |                   |         |
|---------------------------------------|----------------------|------|---------------------------------------|-------------------|---------|
| Date:                                 | February 11, 2022    |      | Static water depth, H:                | 3.22              | mbgs    |
| Conducted by:                         | J. N.                |      | Water depth at time t = 0, Ho:        | 3.45              | mbgs    |
| Project Number:                       | 21BF049              |      | Water depth at time t, h:             | see below         | mbgs    |
| Well Number:                          | BH 5                 |      | Basic time lag, To:                   | 326,000           | sec     |
| Well Screen Bottom:                   |                      | mbgs | Length of well screen, L:             | 150               | cm      |
| Top of Pipe:                          |                      | mags | Diameter of the borehole, 2R:         | 15.2              | cm      |
| Well Casing Diameter:                 |                      | cm   | Diameter of the well casing, 2r:      | 5.1               | cm      |
| Well Elevation:                       | 224.15               | masl | Estimated Sy of sand pack:            | 0.25              |         |
| Static Water Level:                   | 3.22                 | mbgs | Estimated effective 2r <sub>e</sub> : | 8.8               | cm      |
| Ground Elevation:                     | 224.15               | masl | $K^* = r_e 2 \ln(L/R) / (2LTo) =$     | 5.9E-07           | cm/s    |
| WATER LEVEL BEFORE TEST = H =         | 3.22                 | mbgs | Modified to accou                     | int for sand pacl | YES</td |

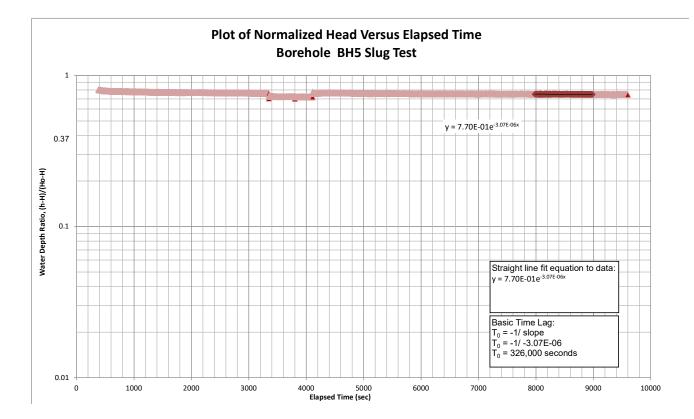
|              | h           |                  |
|--------------|-------------|------------------|
|              | Water Level | Water Level      |
| Time t (sec) | (mbgs)      | Elevation (masl) |
| 0            | 3.45        | 220.70           |
| 1            | 3.45        | 220.70           |
| 2            | 3.45        | 220.70           |
| 3            | 3.45        | 220.70           |
| 4            | 3.45        | 220.70           |
| 5            | 3.45        | 220.70           |
| 6            | 3.45        | 220.70           |
| 7            | 3.45        | 220.70           |
| 8            | 3.44        | 220.71           |
| 9            | 3.45        | 220.70           |
| 10           | 3.44        | 220.71           |
| 11           | 3.45        | 220.70           |
| 12<br>13     | 3.44        | 220.71           |
| 13           | 3.44        | 220.71<br>220.71 |
|              |             |                  |
| 15           | 3.32        | 220.83           |
| 16           | 3.41        | 220.74           |
| 17           | 3.42        | 220.73           |
| 18           | 3.42        | 220.73           |
| 19           | 3.42        | 220.73           |
| 20           | 3.42        | 220.73           |
| 21           | 3.54        | 220.61           |
| 22           | 3.50        | 220.65           |
| 23           | 3.49        | 220.66           |
| 24           | 3.49        | 220.66           |
| 25           | 3.48        | 220.67           |
| 26           | 3.48        | 220.67           |
| 27           | 3.48        | 220.67           |
| 28           | 3.48        | 220.67           |
| 29           | 3.48        | 220.67           |
| 30           | 3.47        | 220.68           |
| 31           | 3.47        | 220.68           |
| 32           | 3.47        | 220.68           |

| Time t (sec) | h - H | Ho - H | (h-H)/(Ho-H) |
|--------------|-------|--------|--------------|
| 0            | 0.234 | 0.234  | 1.000        |
| 1            | 0.232 | 0.234  | 0.990        |
| 2            | 0.230 | 0.234  | 0.983        |
| 3            | 0.229 | 0.234  | 0.977        |
| 4            | 0.228 | 0.234  | 0.973        |
| 5            | 0.227 | 0.234  | 0.968        |
| 6            | 0.226 | 0.234  | 0.964        |
| 7            | 0.225 | 0.234  | 0.962        |
| 8            | 0.222 | 0.234  | 0.948        |
| 9            | 0.226 | 0.234  | 0.966        |
| 10           | 0.224 | 0.234  | 0.955        |
| 11           | 0.225 | 0.234  | 0.961        |
| 12           | 0.221 | 0.234  | 0.944        |
| 13           | 0.224 | 0.234  | 0.955        |
| 14           | 0.222 | 0.234  | 0.949        |
| 15           | 0.104 | 0.234  | 0.443        |
| 16           | 0.194 | 0.234  | 0.828        |
| 17           | 0.196 | 0.234  | 0.835        |
| 18           | 0.196 | 0.234  | 0.836        |
| 19           | 0.196 | 0.234  | 0.838        |
| 20           | 0.196 | 0.234  | 0.838        |
| 21           | 0.318 | 0.234  | 1.357        |
| 22           | 0.283 | 0.234  | 1.207        |
| 23           | 0.271 | 0.234  | 1.155        |
| 24           | 0.266 | 0.234  | 1.134        |
| 25           | 0.263 | 0.234  | 1.121        |
| 26           | 0.260 | 0.234  | 1.109        |
| 27           | 0.258 | 0.234  | 1.102        |
| 28           | 0.257 | 0.234  | 1.096        |
| 29           | 0.256 | 0.234  | 1.093        |
| 30           | 0.255 | 0.234  | 1.087        |
| 31           | 0.254 | 0.234  | 1.085        |
| 32           | 0.253 | 0.234  | 1.079        |

| 33       | 3.47         | 220.68           |
|----------|--------------|------------------|
| 34       | 3.47         | 220.68           |
| 35       | 3.47         | 220.68           |
| 36       | 3.47         | 220.68           |
|          |              |                  |
| 37       | 3.47         | 220.68           |
| 38       | 3.47         | 220.68           |
| 39       | 3.47         | 220.68           |
| 40       | 3.47         | 220.68           |
| 41       | 3.47         | 220.68           |
| 42       | 3.47         | 220.68           |
| 43       | 3.47         | 220.68           |
| 44       | 3.47         | 220.68           |
| 45       | 3.47         | 220.68           |
| 46       | 3.47         | 220.68           |
| 47       | 3.47         | 220.68           |
| 48       | 3.47         | 220.68           |
| 49       | 3.47         | 220.68           |
| 50       | 3.47         | 220.68           |
| 51       | 3.47         | 220.68           |
| 52       | 3.47         | 220.68           |
| 53       | 3.47         | 220.68           |
| 54       | 3.47         | 220.68           |
| 55       | 3.47         | 220.68           |
| 56       | 3.47         | 220.68           |
| 57       | 3.47         | 220.68           |
| 58       | 3.47         | 220.68           |
| 59<br>60 | 3.47<br>3.47 | 220.68<br>220.68 |
| 61       | 3.46         | 220.68           |
| 62       | 3.46         | 220.69           |
| 63       | 3.46         | 220.69           |
| 64       | 3.46         | 220.69           |
| 65       | 3.46         | 220.69           |
| 66       | 3.46         | 220.69           |
| 67       | 3.46         | 220.69           |
| 68       | 3.46         | 220.69           |
| 69       | 3.46         | 220.69           |
| 70       | 3.46         | 220.69           |
| 71       | 3.46         | 220.69           |
| 72       | 3.46         | 220.69           |
| 73       | 3.46         | 220.69           |
| 74       | 3.46         | 220.69           |
| 75       | 3.46         | 220.69           |
| 76       | 3.46         | 220.69           |
| 77       | 3.46         | 220.69           |
| 78       | 3.46         | 220.69           |
| 79       | 3.46         | 220.69           |
| 80<br>81 | 3.46<br>3.46 | 220.69<br>220.69 |
| 81       | 3.46         | 220.69           |
| 83       | 3.46         | 220.69           |
| 84       | 3.46         | 220.69           |
| 85       | 3.46         | 220.69           |
| 86       | 3.46         | 220.69           |
| 87       | 3.46         | 220.69           |
| 88       | 3.46         | 220.69           |
|          |              | 120.05           |

| 33         0.253         0.234         1.079           34         0.252         0.234         1.074           35         0.252         0.234         1.071           36         0.252         0.234         1.071           37         0.251         0.234         1.069           39         0.250         0.234         1.066           41         0.250         0.234         1.065           42         0.249         0.234         1.053           43         0.249         0.234         1.053           44         0.247         0.234         1.053           45         0.248         0.234         1.054           46         0.248         0.234         1.053           47         0.247         0.234         1.054           48         0.246         0.234         1.055           50         0.246         0.234         1.055           51         0.245         0.234         1.046           52         0.246         0.234         1.048           57         0.245         0.234         1.049           56         0.246         0.234         1.048 |    | I     | 1     | 1     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------|-------|
| 35         0.252         0.234         1.074           36         0.252         0.234         1.075           37         0.251         0.234         1.069           39         0.250         0.234         1.067           40         0.250         0.234         1.066           41         0.250         0.234         1.062           42         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.054           46         0.248         0.234         1.054           47         0.234         1.054         1.052           47         0.234         1.054         1.052           48         0.246         0.234         1.055           50         0.246         0.234         1.052           51         0.246         0.234         1.046           52         0.246         0.234         1.046           53         0.246         0.234         1.049           54         0.246         0.234         1.047           60         0.245         0.234         1.046 | 33 | 0.253 | 0.234 | 1.079 |
| 36         0.252         0.234         1.075           37         0.251         0.234         1.069           39         0.250         0.234         1.066           40         0.250         0.234         1.065           42         0.249         0.234         1.065           42         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.053           45         0.248         0.234         1.053           46         0.248         0.234         1.053           47         0.247         0.234         1.053           50         0.246         0.234         1.053           50         0.246         0.234         1.053           51         0.245         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.048           57         0.245         0.234         1.048           59         0.245         0.234         1.044 | 34 | 0.252 | 0.234 | 1.076 |
| 37         0.251         0.234         1.071           38         0.251         0.234         1.069           39         0.250         0.234         1.067           40         0.250         0.234         1.065           41         0.250         0.234         1.065           42         0.249         0.234         1.063           43         0.249         0.234         1.053           44         0.247         0.234         1.059           45         0.248         0.234         1.059           47         0.247         0.234         1.053           48         0.247         0.234         1.053           50         0.246         0.234         1.053           50         0.246         0.234         1.053           51         0.245         0.234         1.055           53         0.246         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           55         0.246         0.234         1.048           59         0.245         0.234         1.044 | 35 | 0.252 | 0.234 | 1.074 |
| 38         0.251         0.234         1.069           39         0.250         0.234         1.067           40         0.250         0.234         1.065           41         0.250         0.234         1.065           42         0.249         0.234         1.063           43         0.249         0.234         1.053           44         0.247         0.234         1.059           45         0.248         0.234         1.059           47         0.247         0.234         1.051           48         0.247         0.234         1.052           50         0.246         0.234         1.052           51         0.245         0.234         1.052           53         0.246         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.048           59         0.245         0.234         1.044           61         0.245         0.234         1.044 | 36 | 0.252 | 0.234 | 1.075 |
| 38         0.251         0.234         1.069           39         0.250         0.234         1.067           40         0.250         0.234         1.065           41         0.250         0.234         1.065           42         0.249         0.234         1.063           43         0.249         0.234         1.053           44         0.247         0.234         1.059           45         0.248         0.234         1.059           47         0.247         0.234         1.051           48         0.247         0.234         1.052           50         0.246         0.234         1.052           51         0.245         0.234         1.052           53         0.246         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.048           59         0.245         0.234         1.044           61         0.245         0.234         1.044 |    | 0.251 |       |       |
| 39         0.250         0.234         1.067           40         0.250         0.234         1.066           41         0.250         0.234         1.065           42         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.059           45         0.248         0.234         1.059           47         0.247         0.234         1.059           47         0.247         0.234         1.059           47         0.247         0.234         1.051           50         0.246         0.234         1.052           51         0.245         0.234         1.055           53         0.246         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.046           58         0.246         0.234         1.046           59         0.245         0.234         1.041 |    |       |       |       |
| 40         0.250         0.234         1.066           41         0.250         0.234         1.065           42         0.249         0.234         1.062           43         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.059           47         0.247         0.234         1.054           48         0.247         0.234         1.058           49         0.247         0.234         1.055           50         0.246         0.234         1.055           51         0.245         0.234         1.055           53         0.246         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.046           58         0.246         0.234         1.046           58         0.245         0.234         1.046           59         0.245         0.234         1.044           61         0.245         0.234         1.044 |    |       |       |       |
| 41         0.250         0.234         1.065           42         0.249         0.234         1.062           43         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.050           46         0.248         0.234         1.054           47         0.247         0.234         1.058           49         0.247         0.234         1.055           50         0.246         0.234         1.052           51         0.245         0.234         1.055           53         0.246         0.234         1.055           53         0.246         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.046           57         0.245         0.234         1.046           58         0.246         0.234         1.046           59         0.245         0.234         1.044           61         0.245         0.234         1.044           63         0.245         0.234         1.044 |    |       |       |       |
| 42         0.249         0.234         1.062           43         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.059           47         0.247         0.234         1.059           47         0.247         0.234         1.058           48         0.247         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.055           53         0.246         0.234         1.050           54         0.246         0.234         1.050           55         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.047           60         0.245         0.234         1.046           58         0.246         0.234         1.047           60         0.245         0.234         1.047           60         0.245         0.234         1.046           61         0.245         0.234         1.044 | 40 | 0.250 | 0.234 | 1.066 |
| 43         0.249         0.234         1.063           44         0.247         0.234         1.053           45         0.248         0.234         1.060           46         0.248         0.234         1.059           47         0.247         0.234         1.058           48         0.247         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.055           52         0.247         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.046           61         0.245         0.234         1.047           60         0.245         0.234         1.044           63         0.245         0.234         1.044 | 41 | 0.250 | 0.234 | 1.065 |
| 44         0.247         0.234         1.053           45         0.248         0.234         1.060           46         0.248         0.234         1.059           47         0.247         0.234         1.053           48         0.248         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.055           53         0.246         0.234         1.050           54         0.246         0.234         1.046           55         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.044           61         0.245         0.234         1.044           62         0.245         0.234         1.044           63         0.245         0.234         1.044 | 42 | 0.249 | 0.234 | 1.062 |
| 45         0.248         0.234         1.060           46         0.248         0.234         1.059           47         0.247         0.234         1.054           48         0.247         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.052           51         0.245         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.046           62         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.244         0.234         1.043 | 43 | 0.249 | 0.234 | 1.063 |
| 46 $0.248$ $0.234$ $1.059$ $47$ $0.247$ $0.234$ $1.054$ $48$ $0.248$ $0.234$ $1.058$ $49$ $0.247$ $0.234$ $1.053$ $50$ $0.246$ $0.234$ $1.052$ $51$ $0.245$ $0.234$ $1.046$ $52$ $0.247$ $0.234$ $1.049$ $54$ $0.246$ $0.234$ $1.049$ $54$ $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.048$ $57$ $0.245$ $0.234$ $1.046$ $58$ $0.246$ $0.234$ $1.048$ $59$ $0.245$ $0.234$ $1.046$ $60$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $69$ $0.244$ $0.234$ $1.040$ $72$ $0.243$ $0.234$ $1.040$ $72$ $0.243$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ <td< td=""><td>44</td><td>0.247</td><td>0.234</td><td>1.053</td></td<>                                                                                                                              | 44 | 0.247 | 0.234 | 1.053 |
| 47 $0.247$ $0.234$ $1.054$ $48$ $0.248$ $0.234$ $1.058$ $49$ $0.247$ $0.234$ $1.053$ $50$ $0.246$ $0.234$ $1.052$ $51$ $0.245$ $0.234$ $1.046$ $52$ $0.247$ $0.234$ $1.049$ $54$ $0.246$ $0.234$ $1.049$ $54$ $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.048$ $57$ $0.245$ $0.234$ $1.046$ $58$ $0.246$ $0.234$ $1.046$ $60$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $67$ $0.244$ $0.234$ $1.043$ $69$ $0.244$ $0.234$ $1.043$ $70$ $0.244$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ <td< td=""><td>45</td><td>0.248</td><td>0.234</td><td>1.060</td></td<>                                                                                                                              | 45 | 0.248 | 0.234 | 1.060 |
| 48         0.248         0.234         1.058           49         0.247         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.048           59         0.245         0.234         1.046           61         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.042           66         0.244         0.234         1.042           66         0.244         0.234         1.042 | 46 | 0.248 | 0.234 | 1.059 |
| 49         0.247         0.234         1.053           50         0.246         0.234         1.052           51         0.245         0.234         1.046           52         0.247         0.234         1.049           54         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.048           59         0.245         0.234         1.046           60         0.245         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.043           66         0.244         0.234         1.043           66         0.244         0.234         1.043           69         0.244         0.234         1.043 | 47 | 0.247 | 0.234 | 1.054 |
| 50         0.246         0.234         1.052           51         0.245         0.234         1.046           52         0.247         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.048           59         0.245         0.234         1.046           60         0.245         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.043           66         0.244         0.234         1.042           68         0.244         0.234         1.042           70         0.244         0.234         1.043 |    |       |       |       |
| 51         0.245         0.234         1.046           52         0.247         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.049           55         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.047           60         0.245         0.234         1.045           61         0.245         0.234         1.045           62         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.043           66         0.244         0.234         1.042           68         0.244         0.234         1.043           69         0.244         0.234         1.041           71         0.244         0.234         1.038 |    |       |       |       |
| 52         0.247         0.234         1.055           53         0.246         0.234         1.049           54         0.246         0.234         1.050           55         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.048           58         0.246         0.234         1.046           58         0.245         0.234         1.047           60         0.245         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.043           66         0.244         0.234         1.043           67         0.244         0.234         1.042           68         0.244         0.234         1.042           70         0.244         0.234         1.042           71         0.243         0.234         1.038 |    |       |       |       |
| 53         0.246         0.234         1.049           54         0.246         0.234         1.050           55         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.048           59         0.245         0.234         1.047           60         0.245         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.046           61         0.245         0.234         1.046           62         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.043           66         0.244         0.234         1.042           68         0.244         0.234         1.042           70         0.244         0.234         1.042           71         0.244         0.234         1.042           72         0.243         0.234         1.038 |    |       |       |       |
| 54         0.246         0.234         1.050           55         0.246         0.234         1.049           56         0.246         0.234         1.048           57         0.245         0.234         1.046           58         0.246         0.234         1.048           59         0.245         0.234         1.047           60         0.245         0.234         1.046           61         0.245         0.234         1.045           62         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.043           66         0.244         0.234         1.042           68         0.244         0.234         1.042           68         0.244         0.234         1.042           70         0.244         0.234         1.043           71         0.244         0.234         1.041           71         0.243         0.234         1.038 |    |       |       |       |
| 55 $0.246$ $0.234$ $1.049$ $56$ $0.246$ $0.234$ $1.048$ $57$ $0.245$ $0.234$ $1.046$ $58$ $0.246$ $0.234$ $1.048$ $59$ $0.245$ $0.234$ $1.047$ $60$ $0.245$ $0.234$ $1.045$ $61$ $0.245$ $0.234$ $1.045$ $62$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.042$ $68$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.043$ $71$ $0.244$ $0.234$ $1.043$ $73$ $0.243$ $0.234$ $1.038$ $74$ $0.244$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.038$ $82$ $0.243$ $0.234$ $1.038$ $84$ $0.242$ $0.234$ $1.035$ $86$ $0.242$ $0.234$ $1.035$ $86$ $0.242$ $0.234$ $1.035$                                                                                                                                                                                                                                  |    |       |       |       |
| 56 $0.246$ $0.234$ $1.048$ $57$ $0.245$ $0.234$ $1.046$ $58$ $0.246$ $0.234$ $1.048$ $59$ $0.245$ $0.234$ $1.047$ $60$ $0.245$ $0.234$ $1.045$ $61$ $0.245$ $0.234$ $1.045$ $62$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.042$ $68$ $0.244$ $0.234$ $1.042$ $68$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.043$ $71$ $0.243$ $0.234$ $1.040$ $72$ $0.243$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $77$ $0.243$ $0.234$ $1.038$ $79$ $0.242$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.038$ $82$ $0.243$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.038$ $82$ $0.243$ $0.234$ $1.035$ $84$ $0.242$ $0.234$ $1.035$ $86$ $0.242$ $0.234$ $1.035$ $87$ $0.242$ $0.234$ $1.035$ <td></td> <td></td> <td></td> <td></td>                                                                                                                                                             |    |       |       |       |
| 57 $0.245$ $0.234$ $1.046$ $58$ $0.246$ $0.234$ $1.048$ $59$ $0.245$ $0.234$ $1.047$ $60$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.045$ $62$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $67$ $0.244$ $0.234$ $1.042$ $68$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.042$ $71$ $0.243$ $0.234$ $1.040$ $72$ $0.243$ $0.234$ $1.038$ $73$ $0.243$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $79$ $0.243$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.038$ $82$ $0.243$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.035$ $84$ $0.242$ $0.234$ $1.035$ $86$ $0.242$ $0.234$ $1.035$ $87$ $0.242$ $0.234$ $1.035$                                                                                                                                                                                                                                  |    |       |       |       |
| 58         0.246         0.234         1.048           59         0.245         0.234         1.047           60         0.245         0.234         1.046           61         0.245         0.234         1.045           62         0.245         0.234         1.044           63         0.245         0.234         1.044           63         0.245         0.234         1.044           64         0.245         0.234         1.044           65         0.244         0.234         1.043           66         0.244         0.234         1.043           66         0.244         0.234         1.043           67         0.244         0.234         1.042           68         0.244         0.234         1.042           70         0.244         0.234         1.042           70         0.244         0.234         1.041           71         0.243         0.234         1.038           73         0.243         0.234         1.038           74         0.243         0.234         1.038           75         0.243         0.234         1.038 |    |       |       |       |
| 59 $0.245$ $0.234$ $1.047$ $60$ $0.245$ $0.234$ $1.046$ $61$ $0.245$ $0.234$ $1.044$ $63$ $0.245$ $0.234$ $1.044$ $64$ $0.245$ $0.234$ $1.044$ $65$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $66$ $0.244$ $0.234$ $1.043$ $67$ $0.244$ $0.234$ $1.043$ $68$ $0.244$ $0.234$ $1.042$ $68$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.042$ $70$ $0.244$ $0.234$ $1.043$ $71$ $0.244$ $0.234$ $1.041$ $71$ $0.244$ $0.234$ $1.041$ $71$ $0.243$ $0.234$ $1.038$ $73$ $0.243$ $0.234$ $1.038$ $74$ $0.243$ $0.234$ $1.038$ $76$ $0.243$ $0.234$ $1.038$ $77$ $0.243$ $0.234$ $1.038$ $79$ $0.242$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.038$ $82$ $0.243$ $0.234$ $1.038$ $81$ $0.243$ $0.234$ $1.035$ $84$ $0.242$ $0.234$ $1.035$ $86$ $0.242$ $0.234$ $1.035$ $87$ $0.242$ $0.234$ $1.035$                                                                                                                                                                                                                                                               | -  |       |       |       |
| 600.2450.2341.046610.2450.2341.045620.2450.2341.044630.2450.2341.044640.2450.2341.043650.2440.2341.043660.2440.2341.043670.2440.2341.042680.2440.2341.042690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.038750.2430.2341.038760.2430.2341.038790.2430.2341.038800.2430.2341.038810.2430.2341.038820.2430.2341.038830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |       |       |       |
| 610.2450.2341.045620.2450.2341.044630.2450.2341.044640.2450.2341.043650.2440.2341.043660.2440.2341.042680.2440.2341.042680.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2430.2341.038750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.035800.2430.2341.035810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2430.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |       |       |
| 630.2450.2341.044640.2450.2341.043650.2440.2341.043660.2440.2341.043670.2440.2341.042680.2440.2341.042690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.038750.2430.2341.038760.2430.2341.038770.2430.2341.038790.2420.2341.035800.2430.2341.035810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |
| 640.2450.2341.044650.2440.2341.043660.2440.2341.043670.2440.2341.042680.2440.2341.043690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.038750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.038790.2420.2341.035800.2430.2341.035810.2430.2341.035820.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62 | 0.245 | 0.234 | 1.044 |
| 650.2440.2341.043660.2440.2341.043670.2440.2341.042680.2440.2341.043690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038790.2420.2341.035800.2430.2341.035810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 | 0.245 | 0.234 | 1.044 |
| 660.2440.2341.043670.2440.2341.042680.2440.2341.043690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.038750.2430.2341.038760.2430.2341.038770.2430.2341.038790.2430.2341.038800.2430.2341.035810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 | 0.245 | 0.234 | 1.044 |
| 670.2440.2341.042680.2440.2341.043690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.038790.2430.2341.038800.2430.2341.035810.2430.2341.035820.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65 | 0.244 | 0.234 | 1.043 |
| 680.2440.2341.043690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.038790.2430.2341.035800.2430.2341.035810.2430.2341.035820.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 | 0.244 | 0.234 | 1.043 |
| 690.2440.2341.042700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.037780.2430.2341.035800.2430.2341.035810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       |       |       |
| 700.2440.2341.041710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.037780.2430.2341.035800.2430.2341.035810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68 |       |       |       |
| 710.2440.2341.040720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.038780.2430.2341.038790.2430.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |       |       |
| 720.2430.2341.038730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.037780.2430.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       |       |       |
| 730.2430.2341.038740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.037780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       |       |       |
| 740.2440.2341.040750.2430.2341.038760.2430.2341.038770.2430.2341.037780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.035820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |       |       |       |
| 750.2430.2341.038760.2430.2341.038770.2430.2341.037780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |       |       |
| 760.2430.2341.038770.2430.2341.037780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.033850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |       |       |       |
| 770.2430.2341.037780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.033850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |       |       |
| 780.2430.2341.038790.2420.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.035850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |       |       |       |
| 790.2420.2341.035800.2430.2341.038810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.033850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |       |       |
| 80         0.243         0.234         1.038           81         0.243         0.234         1.038           82         0.243         0.234         1.035           83         0.243         0.234         1.035           84         0.242         0.234         1.035           85         0.242         0.234         1.035           86         0.242         0.234         1.035           87         0.242         0.234         1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |       |       |
| 810.2430.2341.038820.2430.2341.035830.2430.2341.035840.2420.2341.033850.2420.2341.035860.2420.2341.035870.2420.2341.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       |       |       |
| 83         0.243         0.234         1.035           84         0.242         0.234         1.033           85         0.242         0.234         1.035           86         0.242         0.234         1.035           87         0.242         0.234         1.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |       |       |
| 84         0.242         0.234         1.033           85         0.242         0.234         1.035           86         0.242         0.234         1.035           87         0.242         0.234         1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82 | 0.243 | 0.234 | 1.035 |
| 85         0.242         0.234         1.035           86         0.242         0.234         1.035           87         0.242         0.234         1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83 | 0.243 | 0.234 | 1.035 |
| 86         0.242         0.234         1.035           87         0.242         0.234         1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84 | 0.242 | 0.234 | 1.033 |
| 87 0.242 0.234 1.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85 | 0.242 | 0.234 | 1.035 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86 | 0.242 | 0.234 | 1.035 |
| 88 0.242 0.234 1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |       |       |       |
| 0.201 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 | 0.242 | 0.234 | 1.032 |

| 89  | 3.46 | 220.69 |
|-----|------|--------|
| 90  | 3.46 | 220.69 |
| 91  | 3.46 | 220.69 |
| 92  | 3.46 | 220.69 |
| 93  | 3.46 | 220.69 |
| 94  | 3.46 | 220.69 |
| 95  | 3.46 | 220.69 |
| 96  | 3.46 | 220.69 |
|     |      |        |
| 97  | 3.46 | 220.69 |
| 98  | 3.46 | 220.69 |
| 99  | 3.46 | 220.69 |
| 100 | 3.46 | 220.69 |
| 101 | 3.46 | 220.69 |
| 102 | 3.46 | 220.69 |
| 103 | 3.46 | 220.69 |
| 104 | 3.46 | 220.69 |
| 105 | 3.46 | 220.69 |
| 106 | 3.46 | 220.69 |
| 107 | 3.46 | 220.69 |
| 108 | 3.46 | 220.69 |
| 109 | 3.46 | 220.69 |
| 110 | 3.46 | 220.69 |
| 111 | 3.46 | 220.69 |
| 112 | 3.46 | 220.69 |
| 113 | 3.46 | 220.69 |
| 113 | 3.46 | 220.69 |
| 114 | 3.46 | 220.69 |
|     |      |        |
| 116 | 3.46 | 220.69 |
| 117 | 3.46 | 220.69 |
| 118 | 3.46 | 220.69 |
| 119 | 3.46 | 220.69 |
| 120 | 3.46 | 220.69 |
| 121 | 3.46 | 220.69 |
| 122 | 3.46 | 220.69 |
| 123 | 3.46 | 220.69 |
| 124 | 3.46 | 220.69 |
| 125 | 3.46 | 220.69 |
| 126 | 3.46 | 220.69 |
| 127 | 3.46 | 220.69 |
| 128 | 3.46 | 220.69 |
| 129 | 3.46 | 220.69 |
| 130 | 3.46 | 220.69 |
| 131 | 3.46 | 220.69 |
| 132 | 3.46 | 220.69 |
| 133 | 3.46 | 220.69 |
| 134 | 3.46 | 220.69 |
| 135 | 3.46 | 220.69 |
| 135 | 3.46 | 220.69 |
| 130 | 3.46 | 220.69 |
|     |      |        |
| 138 | 3.46 | 220.69 |
| 139 | 3.46 | 220.69 |
| 140 | 3.46 | 220.69 |
| 141 | 3.46 | 220.69 |
| 142 | 3.46 | 220.69 |
| 143 | 3.46 | 220.69 |
| 144 | 3.46 | 220.69 |
| 145 | 3.46 | 220.69 |
| 146 | 3.46 | 220.69 |
|     |      |        |


| rr  |       | 1     | 1     |
|-----|-------|-------|-------|
| 89  | 0.242 | 0.234 | 1.033 |
| 90  | 0.242 | 0.234 | 1.035 |
| 91  | 0.242 | 0.234 | 1.032 |
| 92  | 0.242 | 0.234 | 1.035 |
| 93  | 0.242 | 0.234 | 1.031 |
| 94  | 0.242 | 0.234 | 1.031 |
| 95  | 0.242 | 0.234 | 1.032 |
| 96  | 0.242 | 0.234 | 1.031 |
| 97  | 0.242 | 0.234 | 1.032 |
| 98  | 0.242 | 0.234 | 1.031 |
| 99  | 0.242 | 0.234 | 1.031 |
| 100 | 0.238 | 0.234 | 1.014 |
| 101 | 0.241 | 0.234 | 1.030 |
| 102 | 0.241 | 0.234 | 1.029 |
| 103 | 0.242 | 0.234 | 1.031 |
| 104 | 0.241 | 0.234 | 1.030 |
| 105 | 0.241 | 0.234 | 1.030 |
| 106 | 0.241 | 0.234 | 1.029 |
| 107 | 0.241 | 0.234 | 1.030 |
| 108 | 0.241 | 0.234 | 1.028 |
| 109 | 0.241 | 0.234 | 1.029 |
| 110 | 0.241 | 0.234 | 1.029 |
| 111 | 0.241 | 0.234 | 1.029 |
| 112 | 0.241 | 0.234 | 1.026 |
| 113 | 0.241 | 0.234 | 1.027 |
| 114 | 0.241 | 0.234 | 1.028 |
| 115 | 0.241 | 0.234 | 1.026 |
| 116 | 0.240 | 0.234 | 1.026 |
| 117 | 0.240 | 0.234 | 1.026 |
| 118 | 0.240 | 0.234 | 1.023 |
| 119 | 0.240 | 0.234 | 1.023 |
| 120 | 0.240 | 0.234 | 1.024 |
| 121 | 0.240 | 0.234 | 1.026 |
| 122 | 0.240 | 0.234 | 1.024 |
| 123 | 0.240 | 0.234 | 1.023 |
| 124 | 0.240 | 0.234 | 1.023 |
| 125 | 0.240 | 0.234 | 1.023 |
| 125 | 0.239 | 0.234 | 1.023 |
| 127 | 0.240 | 0.234 | 1.023 |
| 127 | 0.240 | 0.234 | 1.023 |
| 129 | 0.240 | 0.234 | 1.023 |
| 129 | 0.239 | 0.234 | 1.023 |
| 130 | 0.239 | 0.234 | 1.022 |
| 131 | 0.239 | 0.234 | 1.022 |
| 132 | 0.239 | 0.234 | 1.022 |
| 133 | 0.239 | 0.234 | 1.022 |
| 134 | 0.240 | 0.234 | 1.022 |
|     |       |       |       |
| 136 | 0.239 | 0.234 | 1.021 |
| 137 | 0.239 | 0.234 | 1.020 |
| 138 | 0.240 | 0.234 | 1.025 |
| 139 | 0.239 | 0.234 | 1.021 |
| 140 | 0.239 | 0.234 | 1.021 |
| 141 | 0.240 | 0.234 | 1.022 |
| 142 | 0.239 | 0.234 | 1.021 |
| 143 | 0.239 | 0.234 | 1.022 |
| 144 | 0.239 | 0.234 | 1.020 |
| 145 | 0.239 | 0.234 | 1.018 |
| 146 | 0.238 | 0.234 | 1.015 |

| 147         3.46         220.69           148         3.46         220.69           150         3.46         220.69           151         3.46         220.69           152         3.46         220.69           153         3.46         220.69           154         3.46         220.69           155         3.46         220.69           155         3.46         220.69           155         3.46         220.69           155         3.46         220.69           157         3.46         220.69           160         3.46         220.69           161         3.46         220.69           162         3.46         220.69           163         3.46         220.69           164         3.46         220.69           165         3.46         220.69           166         3.46         220.69           167         3.46         220.69           167         3.46         220.69           170         3.46         220.69           171         3.46         220.69           172         3.46         22 |     |      |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|
| 149 $3.46$ $220.69$ 150 $3.46$ $220.69$ 151 $3.46$ $220.69$ 152 $3.46$ $220.69$ 153 $3.46$ $220.69$ 154 $3.46$ $220.69$ 155 $3.46$ $220.69$ 156 $3.46$ $220.69$ 157 $3.46$ $220.69$ 158 $3.46$ $220.69$ 159 $3.46$ $220.69$ 160 $3.46$ $220.69$ 161 $3.46$ $220.69$ 162 $3.46$ $220.69$ 163 $3.46$ $220.69$ 164 $3.46$ $220.69$ 165 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 170 $3.46$ $220.69$ 171 $3.46$ $220.69$ 172 $3.46$ $220.69$ 173 $3.46$ $220.69$ 174 $3.46$ $220.69$ 175 $3.46$ $220.69$ 176 $3.46$ $220.69$ 177 $3.46$ $220.69$ 178 $3.46$ $220.69$ 180 $3.46$ $220.69$ 181 $3.46$ $220.69$ 182 $3.46$ $220.69$ 183 $3.46$ $220.69$ 184 $3.46$ $220.69$ 185 $3.46$ $220.69$ 186 $3.46$ $220.69$ 187 $3.46$ $220.69$ 188 $3.46$ $220.69$ 191 $3.$                                                                                                                                                                                                                                  | 147 | 3.46 | 220.69 |
| 150 $3.46$ $220.69$ $151$ $3.46$ $220.69$ $152$ $3.46$ $220.69$ $153$ $3.46$ $220.69$ $155$ $3.46$ $220.69$ $155$ $3.46$ $220.69$ $155$ $3.46$ $220.69$ $157$ $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ <t< td=""><td>148</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 148 | 3.46 | 220.69 |
| 151 $3.46$ $220.69$ 152 $3.46$ $220.69$ 153 $3.46$ $220.69$ 154 $3.46$ $220.69$ 155 $3.46$ $220.69$ 157 $3.46$ $220.69$ 158 $3.46$ $220.69$ 159 $3.46$ $220.69$ 160 $3.46$ $220.69$ 161 $3.46$ $220.69$ 162 $3.46$ $220.69$ 163 $3.46$ $220.69$ 164 $3.46$ $220.69$ 165 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 169 $3.46$ $220.69$ 170 $3.46$ $220.69$ 171 $3.46$ $220.69$ 172 $3.46$ $220.69$ 173 $3.46$ $220.69$ 174 $3.46$ $220.69$ 175 $3.46$ $220.69$ 176 $3.46$ $220.69$ 177 $3.46$ $220.69$ 180 $3.46$ $220.69$ 181 $3.46$ $220.69$ 182 $3.46$ $220.69$ 183 $3.46$ $220.69$ 184 $3.46$ $220.69$ 185 $3.46$ $220.69$ 186 $3.46$ $220.69$ 187 $3.46$ $220.69$ 188 $3.46$ $220.69$ 190 $3.$                                                                                                                                                                                                                                  | 149 | 3.46 | 220.69 |
| 151 $3.46$ $220.69$ 152 $3.46$ $220.69$ 153 $3.46$ $220.69$ 154 $3.46$ $220.69$ 155 $3.46$ $220.69$ 157 $3.46$ $220.69$ 158 $3.46$ $220.69$ 159 $3.46$ $220.69$ 160 $3.46$ $220.69$ 161 $3.46$ $220.69$ 162 $3.46$ $220.69$ 163 $3.46$ $220.69$ 164 $3.46$ $220.69$ 165 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 169 $3.46$ $220.69$ 170 $3.46$ $220.69$ 171 $3.46$ $220.69$ 172 $3.46$ $220.69$ 173 $3.46$ $220.69$ 174 $3.46$ $220.69$ 175 $3.46$ $220.69$ 176 $3.46$ $220.69$ 177 $3.46$ $220.69$ 180 $3.46$ $220.69$ 181 $3.46$ $220.69$ 182 $3.46$ $220.69$ 183 $3.46$ $220.69$ 184 $3.46$ $220.69$ 185 $3.46$ $220.69$ 186 $3.46$ $220.69$ 187 $3.46$ $220.69$ 188 $3.46$ $220.69$ 190 $3.$                                                                                                                                                                                                                                  | 150 | 3.46 | 220.69 |
| 152 $3.46$ $220.69$ $153$ $3.46$ $220.69$ $154$ $3.46$ $220.69$ $155$ $3.46$ $220.69$ $156$ $3.46$ $220.69$ $157$ $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ <t< td=""><td>151</td><td>3.46</td><td></td></t<>                                                                                                                                     | 151 | 3.46 |        |
| 153 $3.46$ $220.69$ 154 $3.46$ $220.69$ 155 $3.46$ $220.69$ 156 $3.46$ $220.69$ 157 $3.46$ $220.69$ 158 $3.46$ $220.69$ 159 $3.46$ $220.69$ 160 $3.46$ $220.69$ 161 $3.46$ $220.69$ 162 $3.46$ $220.69$ 163 $3.46$ $220.69$ 164 $3.46$ $220.69$ 165 $3.46$ $220.69$ 166 $3.46$ $220.69$ 166 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 169 $3.46$ $220.69$ 170 $3.46$ $220.69$ 171 $3.46$ $220.69$ 172 $3.46$ $220.69$ 173 $3.46$ $220.69$ 174 $3.46$ $220.69$ 175 $3.46$ $220.69$ 176 $3.46$ $220.69$ 177 $3.46$ $220.69$ 180 $3.46$ $220.69$ 181 $3.46$ $220.69$ 182 $3.46$ $220.69$ 183 $3.46$ $220.69$ 184 $3.46$ $220.69$ 185 $3.46$ $220.69$ 186 $3.46$ $220.69$ 187 $3.46$ $220.69$ 188 $3.46$ $220.69$ 191 $3.46$ $220.69$ 192 $3.46$ $220.69$ 193 $3.$                                                                                                                                                                                                                                  |     |      |        |
| 154 $3.46$ $220.69$ $155$ $3.46$ $220.69$ $156$ $3.46$ $220.69$ $157$ $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 155 $3.46$ $220.69$ $156$ $3.46$ $220.69$ $157$ $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 156 $3.46$ $220.69$ $157$ $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 157 $3.46$ $220.69$ $158$ $3.46$ $220.69$ $159$ $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 158 $3.46$ $220.69$ 159 $3.46$ $220.69$ 160 $3.46$ $220.69$ 161 $3.46$ $220.69$ 162 $3.46$ $220.69$ 163 $3.46$ $220.69$ 164 $3.46$ $220.69$ 165 $3.46$ $220.69$ 166 $3.46$ $220.69$ 167 $3.46$ $220.69$ 168 $3.46$ $220.69$ 169 $3.46$ $220.69$ 170 $3.46$ $220.69$ 171 $3.46$ $220.69$ 172 $3.46$ $220.69$ 173 $3.46$ $220.69$ 174 $3.46$ $220.69$ 175 $3.46$ $220.69$ 176 $3.46$ $220.69$ 177 $3.46$ $220.69$ 178 $3.46$ $220.69$ 177 $3.46$ $220.69$ 178 $3.46$ $220.69$ 178 $3.46$ $220.69$ 180 $3.46$ $220.69$ 181 $3.46$ $220.69$ 182 $3.46$ $220.69$ 183 $3.46$ $220.69$ 184 $3.46$ $220.69$ 185 $3.46$ $220.69$ 186 $3.46$ $220.69$ 187 $3.46$ $220.69$ 188 $3.46$ $220.69$ 190 $3.46$ $220.69$ 191 $3.46$ $220.69$ 192 $3.46$ $220.69$ 193 $3.46$ $220.69$ 194 $3.46$ $220.69$ 195 $3.$                                                                                                                                                                                                                                  |     |      |        |
| 159 $3.46$ $220.69$ $160$ $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 160 $3.46$ $220.69$ $161$ $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 161 $3.46$ $220.69$ $162$ $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 162 $3.46$ $220.69$ $163$ $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 163 $3.46$ $220.69$ $164$ $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td>161</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 161 | 3.46 | 220.69 |
| 164 $3.46$ $220.69$ $165$ $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td>162</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 162 | 3.46 | 220.69 |
| 165 $3.46$ $220.69$ $166$ $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td>163</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 163 | 3.46 | 220.69 |
| 166 $3.46$ $220.69$ $167$ $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td>164</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 164 | 3.46 | 220.69 |
| 167 $3.46$ $220.69$ $168$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$                                                                                                                                                                                                             | 165 | 3.46 | 220.69 |
| 168 $3.46$ $220.69$ $169$ $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ <t< td=""><td>166</td><td>3.46</td><td>220.69</td></t<>                                                                                                                               | 166 | 3.46 | 220.69 |
| 169 $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                             | 167 | 3.46 | 220.69 |
| 169 $3.46$ $220.69$ $170$ $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                             | 168 | 3.46 | 220.69 |
| 170 $3.46$ $220.69$ $171$ $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                   |     |      |        |
| 171 $3.46$ $220.69$ $172$ $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                            |     |      |        |
| 172 $3.46$ $220.69$ $173$ $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$ </td <td></td> <td></td> <td></td>                                                                                                                                                    |     |      |        |
| 173 $3.46$ $220.69$ $174$ $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                     |     |      |        |
| 174 $3.46$ $220.69$ $175$ $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                           |     |      |        |
| 175 $3.46$ $220.69$ $176$ $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                   |     |      |        |
| 176 $3.46$ $220.69$ $177$ $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
| 177 $3.46$ $220.69$ $178$ $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
| 178 $3.46$ $220.69$ $179$ $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |
| 179 $3.46$ $220.69$ $180$ $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |
| 180 $3.46$ $220.69$ $181$ $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |
| 181 $3.46$ $220.69$ $182$ $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |
| 182 $3.46$ $220.69$ $183$ $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |
| 183 $3.46$ $220.69$ $184$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |
| 184 $3.46$ $220.69$ $185$ $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 182 |      |        |
| 185 $3.46$ $220.69$ $186$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $187$ $3.46$ $220.69$ $188$ $3.46$ $220.69$ $189$ $3.46$ $220.69$ $190$ $3.46$ $220.69$ $191$ $3.46$ $220.69$ $192$ $3.46$ $220.69$ $193$ $3.46$ $220.69$ $194$ $3.46$ $220.69$ $195$ $3.46$ $220.69$ $196$ $3.46$ $220.69$ $197$ $3.46$ $220.69$ $198$ $3.46$ $220.69$ $199$ $3.46$ $220.69$ $200$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $201$ $3.46$ $220.69$ $202$ $3.46$ $220.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 183 | 3.46 |        |
| 1863.46220.691873.46220.691883.46220.691893.46220.691903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 184 | 3.46 | 220.69 |
| 1873.46220.691883.46220.691893.46220.691903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.691923.46220.691953.46220.691963.46220.691973.46220.691983.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 185 | 3.46 | 220.69 |
| 1883.46220.691893.46220.691903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 186 | 3.46 | 220.69 |
| 1893.46220.691903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 187 | 3.46 | 220.69 |
| 1903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 188 | 3.46 | 220.69 |
| 1903.46220.691913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 189 | 3.46 | 220.69 |
| 1913.46220.691923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |
| 1923.46220.691933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
| 1933.46220.691943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |        |
| 1943.46220.691953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |
| 1953.46220.691963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |
| 1963.46220.691973.46220.691983.46220.691993.46220.692003.46220.692013.46220.692023.46220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |
| 197         3.46         220.69           198         3.46         220.69           199         3.46         220.69           200         3.46         220.69           201         3.46         220.69           202         3.46         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |
| 198         3.46         220.69           199         3.46         220.69           200         3.46         220.69           201         3.46         220.69           202         3.46         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |
| 199         3.46         220.69           200         3.46         220.69           201         3.46         220.69           202         3.46         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |        |
| 200         3.46         220.69           201         3.46         220.69           202         3.46         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |
| 201         3.46         220.69           202         3.46         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |
| 202 3.46 220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202 |      | 220.69 |
| 200 3.40 220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 203 | 3.46 | 220.69 |
| 204 3.46 220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204 | 3.46 | 220.69 |

|       |       |       | -       |
|-------|-------|-------|---------|
| 147   | 0.239 | 0.234 | 1.019   |
| 148   | 0.239 | 0.234 | 1.020   |
| 149   | 0.239 | 0.234 | 1.019   |
| 150   | 0.238 | 0.234 | 1.017   |
| 151   | 0.239 | 0.234 | 1.019   |
| 152   | 0.239 | 0.234 | 1.020   |
| 153   | 0.239 | 0.234 | 1.018   |
| 154   | 0.238 | 0.234 | 1.015   |
| 155   | 0.239 | 0.234 | 1.018   |
| 156   | 0.239 | 0.234 | 1.018   |
| 157   | 0.238 | 0.234 | 1.016   |
| 158   | 0.238 | 0.234 | 1.016   |
| 159   | 0.238 | 0.234 | 1.015   |
| 160   | 0.238 | 0.234 | 1.017   |
| 161   | 0.238 | 0.234 | 1.017   |
| 162   | 0.239 | 0.234 | 1.018   |
| 163   | 0.238 | 0.234 | 1.017   |
| 164   | 0.238 | 0.234 | 1.017   |
| 165   | 0.238 | 0.234 | 1.016   |
| 166   | 0.238 | 0.234 | 1.017   |
| 167   | 0.238 | 0.234 | 1.016   |
| 168   | 0.238 | 0.234 | 1.015   |
| 169   | 0.238 | 0.234 | 1.013   |
| 109   | 0.237 | 0.234 | 1.013   |
|       |       |       |         |
| 171   | 0.238 | 0.234 | 1.017   |
| 172   | 0.238 | 0.234 | 1.015   |
| 173   | 0.238 | 0.234 | 1.017   |
| 174   | 0.238 | 0.234 | 1.016   |
| 175   | 0.238 | 0.234 | 1.017   |
| 176   | 0.238 | 0.234 | 1.015   |
| 177   | 0.238 | 0.234 | 1.017   |
| 178   | 0.238 | 0.234 | 1.015   |
| 179   | 0.238 | 0.234 | 1.017   |
| 180   | 0.238 | 0.234 | 1.017   |
| 181   | 0.238 | 0.234 | 1.016   |
| 182   | 0.238 | 0.234 | 1.014   |
| 183   | 0.238 | 0.234 | 1.015   |
| 184   | 0.238 | 0.234 | 1.015   |
| 185   | 0.238 | 0.234 | 1.015   |
| 186   | 0.238 | 0.234 | 1.016   |
| 187   | 0.238 | 0.234 | 1.015   |
| 188   | 0.238 | 0.234 | 1.017   |
| 189   | 0.238 | 0.234 | 1.015   |
| 190   | 0.238 | 0.234 | 1.015   |
| 191   | 0.238 | 0.234 | 1.016   |
| 192   | 0.238 | 0.234 | 1.014   |
| 193   | 0.238 | 0.234 | 1.015   |
| 194   | 0.238 | 0.234 | 1.015   |
| 195   | 0.238 | 0.234 | 1.016   |
| 196   | 0.238 | 0.234 | 1.015   |
| 197   | 0.238 | 0.234 | 1.015   |
| 198   | 0.237 | 0.234 | 1.012   |
| 199   | 0.237 | 0.234 | 1.012   |
| 200   | 0.237 | 0.234 | 1.015   |
| 200   | 0.238 | 0.234 | 1.015   |
| 201   | 0.238 | 0.234 | 1.013   |
| 202   | 0.237 | 0.234 | 1.012   |
| 203   | 0.237 | 0.234 | 1.012   |
| 204 I | 0.757 | 0.254 | 1 1.012 |

| 205 | 3.46 | 220.69 |
|-----|------|--------|
| 206 | 3.46 | 220.69 |
| 207 | 3.46 | 220.69 |
| 208 | 3.46 | 220.69 |
| 209 | 3.46 | 220.69 |
| 210 | 3.46 | 220.69 |
| 211 | 3.46 | 220.69 |
| 212 | 3.46 | 220.69 |
| 213 | 3.46 | 220.69 |
| 214 | 3.46 | 220.69 |
| 215 | 3.46 | 220.69 |
| 216 | 3.46 | 220.69 |
| 217 | 3.46 | 220.69 |
| 218 | 3.46 | 220.69 |
| 219 | 3.46 | 220.69 |
| 220 | 3.46 | 220.69 |
| 221 | 3.46 | 220.69 |
| 222 | 3.46 | 220.69 |
| 223 | 3.46 | 220.69 |
| 223 | 3.46 | 220.69 |
| 225 | 3.46 | 220.69 |
| 225 | 3.40 | 220.69 |
| 227 | 3.46 | 220.69 |
| 228 | 3.46 | 220.69 |
| 229 | 3.46 | 220.69 |
| 230 | 3.40 | 220.69 |
| 230 | 3.40 | 220.69 |
| 231 | 3.40 | 220.69 |
| 232 | 3.40 | 220.69 |
| 233 | 3.40 | 220.69 |
| 234 | 3.40 | 220.69 |
| 235 | 3.40 | 220.69 |
| 230 | 3.40 | 220.69 |
| 237 | 3.40 | 220.69 |
| 238 | 3.40 | 220.69 |
| 240 | 3.46 | 220.69 |
| 240 | 3.40 | 220.69 |
| 241 | 3.40 | 220.69 |
| 242 | 3.40 | 220.69 |
|     |      |        |
| 244 | 3.46 | 220.69 |
| 245 | 3.46 | 220.69 |
| 246 | 3.46 | 220.69 |
| 247 | 3.46 | 220.69 |
| 248 | 3.46 | 220.69 |
| 249 | 3.46 | 220.69 |
| 250 | 3.46 | 220.69 |
| 251 | 3.46 | 220.69 |
| 252 | 3.46 | 220.69 |
| 253 | 3.46 | 220.69 |
| 254 | 3.46 | 220.69 |
| 255 | 3.46 | 220.69 |
| 256 | 3.46 | 220.69 |
| 257 | 3.46 | 220.69 |
| 258 | 3.46 | 220.69 |
| 259 | 3.46 | 220.69 |
| 260 | 3.46 | 220.69 |
| 261 | 3.46 | 220.69 |
| 262 | 3.46 | 220.69 |

|     |       | 1     |       |
|-----|-------|-------|-------|
| 205 | 0.238 | 0.234 | 1.014 |
| 206 | 0.238 | 0.234 | 1.014 |
| 207 | 0.238 | 0.234 | 1.014 |
| 208 | 0.237 | 0.234 | 1.012 |
| 209 | 0.238 | 0.234 | 1.014 |
| 210 | 0.238 | 0.234 | 1.014 |
| 211 | 0.237 | 0.234 | 1.013 |
| 212 | 0.237 | 0.234 | 1.013 |
| 213 | 0.237 | 0.234 | 1.013 |
| 214 | 0.238 | 0.234 | 1.014 |
| 215 | 0.237 | 0.234 | 1.013 |
| 216 | 0.237 | 0.234 | 1.012 |
| 217 | 0.237 | 0.234 | 1.012 |
| 218 | 0.237 | 0.234 | 1.012 |
| 219 | 0.237 | 0.234 | 1.013 |
| 220 | 0.237 | 0.234 | 1.012 |
| 221 | 0.237 | 0.234 | 1.010 |
| 222 | 0.237 | 0.234 | 1.012 |
| 223 | 0.237 | 0.234 | 1.009 |
| 224 | 0.236 | 0.234 | 1.009 |
| 225 | 0.237 | 0.234 | 1.012 |
| 226 | 0.236 | 0.234 | 1.009 |
| 227 | 0.237 | 0.234 | 1.010 |
| 228 | 0.237 | 0.234 | 1.012 |
| 229 | 0.238 | 0.234 | 1.014 |
| 230 | 0.237 | 0.234 | 1.012 |
| 231 | 0.238 | 0.234 | 1.014 |
| 232 | 0.237 | 0.234 | 1.013 |
| 233 | 0.237 | 0.234 | 1.012 |
| 234 | 0.237 | 0.234 | 1.011 |
| 235 | 0.237 | 0.234 | 1.011 |
| 236 | 0.237 | 0.234 | 1.012 |
| 237 | 0.237 | 0.234 | 1.011 |
| 238 | 0.236 | 0.234 | 1.009 |
| 239 | 0.237 | 0.234 | 1.010 |
| 240 | 0.236 | 0.234 | 1.009 |
| 241 | 0.236 | 0.234 | 1.008 |
| 242 | 0.236 | 0.234 | 1.007 |
| 243 | 0.237 | 0.234 | 1.009 |
| 244 | 0.236 | 0.234 | 1.009 |
| 245 | 0.236 | 0.234 | 1.008 |
| 246 | 0.236 | 0.234 | 1.007 |
| 247 | 0.236 | 0.234 | 1.008 |
| 248 | 0.236 | 0.234 | 1.008 |
| 249 | 0.236 | 0.234 | 1.009 |
| 250 | 0.237 | 0.234 | 1.009 |
| 251 | 0.236 | 0.234 | 1.009 |
| 252 | 0.236 | 0.234 | 1.009 |
| 253 | 0.237 | 0.234 | 1.011 |
| 254 | 0.237 | 0.234 | 1.010 |
| 255 | 0.237 | 0.234 | 1.009 |
| 256 | 0.237 | 0.234 | 1.012 |
| 257 | 0.237 | 0.234 | 1.009 |
| 258 | 0.237 | 0.234 | 1.010 |
| 259 | 0.237 | 0.234 | 1.009 |
| 260 | 0.237 | 0.234 | 1.010 |
| 261 | 0.237 | 0.234 | 1.010 |
| 262 | 0.237 | 0.234 | 1.010 |
|     |       |       |       |



| Estimation of K by Slug Test, based o | on Hvorslev equation |      |                                           |           |        |
|---------------------------------------|----------------------|------|-------------------------------------------|-----------|--------|
| Date:                                 | February 11, 2022    |      | Static water depth, H:                    | 2.28      | mbgs   |
| Conducted by:                         | J. N.                |      | Water depth at time t = 0, Ho:            | 2.58      | mbgs   |
| Project Number:                       | 21BF049              |      | Water depth at time t, h:                 | see below | mbgs   |
| Well Number:                          | BH 7                 |      | Basic time lag, To:                       | 5,405     | sec    |
| Well Screen Bottom:                   |                      | mbgs | Length of well screen, L:                 | 150       | cm     |
| Top of Pipe:                          |                      | mags | Diameter of the borehole, 2R:             | 15.2      | cm     |
| Well Casing Diameter:                 |                      | cm   | Diameter of the well casing, 2r:          | 5.1       | cm     |
| Well Elevation:                       | 223.25               | masl | Estimated Sy of sand pack:                | 0.25      |        |
| Static Water Level:                   | 2.28                 | mbgs | Estimated effective 2r <sub>e</sub> :     | 8.8       | cm     |
| Ground Elevation:                     | 223.25               | masl | $K^* = r_e 2 \ln(L/R) / (2LTo) =$         | 3.6E-05   | cm/s   |
| WATER LEVEL BEFORE TEST = H =         | 2.28                 | mbgs | gs Modified to account for sand pack? YES |           | k? YES |

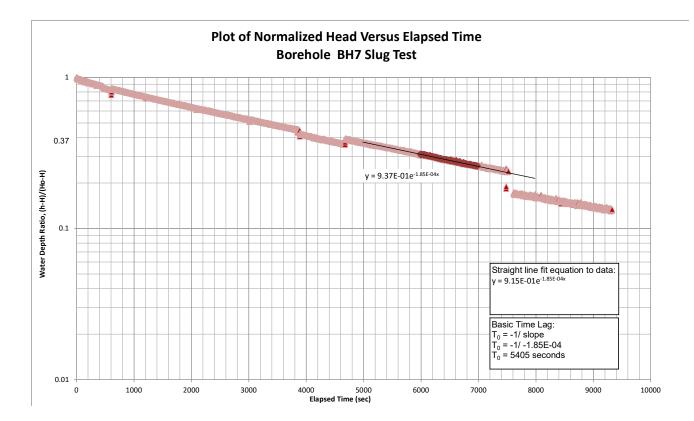
|              | h                                                 |                  |
|--------------|---------------------------------------------------|------------------|
|              | Water Level                                       | Water Level      |
| Time t (sec) | (mbgs)                                            | Elevation (masl) |
| 0            | 2.58                                              | 220.67           |
| 1            | 2.58                                              | 220.67           |
| 2            | 2.58                                              | 220.67           |
| 3            | 2.58                                              | 220.67           |
| 4            | 2.58                                              | 220.67           |
| 5            | 2.58                                              | 220.67           |
| 6            | 2.58                                              | 220.67           |
| 7            | 2.58                                              | 220.67           |
| 8            | 2.58                                              | 220.67           |
| 9            | 2.58                                              | 220.67           |
| 10<br>11     | 2.58<br>2.58                                      | 220.67<br>220.67 |
| 11           | 2.58                                              |                  |
| 12           | 2.58                                              | 220.67<br>220.67 |
| 13           | 2.58                                              | 220.67           |
|              |                                                   |                  |
| 15           | 2.57                                              | 220.68           |
| 16           | 2.57                                              | 220.68           |
| 17           | 2.57                                              | 220.68           |
| 18           | 2.57                                              | 220.68           |
| 19           | 2.57                                              | 220.68           |
| 20           | 2.57                                              | 220.68           |
| 21           | 2.57                                              | 220.68           |
| 22           | 2.57                                              | 220.68           |
| 23           | 2.57                                              | 220.68           |
| 24           | 2.57                                              | 220.68           |
| 25           | 2.57                                              | 220.68           |
| 26           | 2.57                                              | 220.68           |
| 27           | 2.57                                              | 220.68           |
| 28           | 2.57                                              | 220.68           |
| 29           | 2.57         220.68           2.57         220.68 |                  |
| 30           | 2.57                                              | 220.68           |
| 31           | 2.57                                              | 220.68           |
| 32           | 2.57                                              | 220.68           |

| Time t (sec) | h - H | Ho - H | (h-H)/(Ho-H) |
|--------------|-------|--------|--------------|
| 0            | 0.299 | 0.299  | 1.000        |
| 1            | 0.298 | 0.299  | 0.998        |
| 2            | 0.298 | 0.299  | 0.998        |
| 3            | 0.297 | 0.299  | 0.996        |
| 4            | 0.298 | 0.299  | 0.997        |
| 5            | 0.297 | 0.299  | 0.996        |
| 6            | 0.297 | 0.299  | 0.995        |
| 7            | 0.297 | 0.299  | 0.995        |
| 8            | 0.296 | 0.299  | 0.991        |
| 9            | 0.296 | 0.299  | 0.990        |
| 10           | 0.296 | 0.299  | 0.990        |
| 11           | 0.296 | 0.299  | 0.991        |
| 12           | 0.295 | 0.299  | 0.989        |
| 13           | 0.295 | 0.299  | 0.989        |
| 14           | 0.295 | 0.299  | 0.989        |
| 15           | 0.295 | 0.299  | 0.987        |
| 16           | 0.295 | 0.299  | 0.987        |
| 17           | 0.290 | 0.299  | 0.970        |
| 18           | 0.290 | 0.299  | 0.970        |
| 19           | 0.290 | 0.299  | 0.971        |
| 20           | 0.291 | 0.299  | 0.973        |
| 21           | 0.295 | 0.299  | 0.987        |
| 22           | 0.295 | 0.299  | 0.987        |
| 23           | 0.294 | 0.299  | 0.983        |
| 24           | 0.294 | 0.299  | 0.983        |
| 25           | 0.293 | 0.299  | 0.980        |
| 26           | 0.293 | 0.299  | 0.980        |
| 27           | 0.292 | 0.299  | 0.979        |
| 28           | 0.292 | 0.299  | 0.979        |
| 29           | 0.292 | 0.299  | 0.979        |
| 30           | 0.293 | 0.299  | 0.981        |
| 31           | 0.292 | 0.299  | 0.979        |
| 32           | 0.293 | 0.299  | 0.980        |

| 33<br>34 | 2.57<br>2.57 | 220.68           |
|----------|--------------|------------------|
|          | 2 57         | I                |
| 25       |              | 220.68           |
| 35       | 2.57         | 220.68           |
| 36       | 2.57         | 220.68           |
|          |              |                  |
| 37       | 2.57         | 220.68           |
| 38       | 2.57         | 220.68           |
| 39       | 2.57         | 220.68           |
| 40       | 2.57         | 220.68           |
| 41       | 2.57         | 220.68           |
| 42       | 2.57         | 220.68           |
| 43       | 2.57         | 220.68           |
| 44       | 2.57         | 220.68           |
| 45       | 2.57         | 220.68           |
| 46       | 2.57         | 220.68           |
| 47       | 2.57         | 220.68           |
| 48       | 2.57         | 220.68           |
| 49       | 2.57         | 220.68           |
| 50       | 2.57         | 220.68           |
| 51       | 2.57         | 220.68           |
| 52       | 2.57         | 220.68           |
| 53       | 2.57         | 220.68           |
| 54       | 2.57         | 220.68           |
| 55       | 2.57         | 220.68           |
| 56       | 2.57         | 220.68           |
| 57       | 2.57         | 220.68           |
| 58       | 2.57         | 220.68           |
| 59       | 2.57         | 220.68           |
| 60       | 2.57         | 220.68           |
| 61<br>62 | 2.57<br>2.57 | 220.68<br>220.68 |
| 63       | 2.57         | 220.68           |
| 64       | 2.57         | 220.68           |
| 65       | 2.57         | 220.68           |
| 66       | 2.57         | 220.68           |
| 67       | 2.57         | 220.68           |
| 68       | 2.57         | 220.68           |
| 69       | 2.57         | 220.68           |
| 70       | 2.57         | 220.68           |
| 71       | 2.57         | 220.68           |
| 72       | 2.57         | 220.68           |
| 73       | 2.57         | 220.68           |
| 74       | 2.57         | 220.68           |
| 75       | 2.57         | 220.68           |
| 76       | 2.57         | 220.68           |
| 77       | 2.57         | 220.68           |
| 78       | 2.57         | 220.68           |
| 79       | 2.57         | 220.68           |
| 80<br>81 | 2.57<br>2.57 | 220.68           |
| 81       | 2.57         | 220.68<br>220.69 |
| 83       | 2.56         | 220.69           |
| 84       | 2.56         | 220.69           |
| 85       | 2.56         | 220.69           |
| 86       | 2.56         | 220.69           |
| 87       | 2.57         | 220.68           |
| 88       | 2.57         | 220.68           |

| 33       | 0.292          | 0.299 | 0.979 |
|----------|----------------|-------|-------|
| 34       | 0.292          | 0.299 | 0.979 |
| 35       | 0.292          | 0.299 | 0.978 |
| 36       | 0.292          | 0.299 | 0.978 |
| 37       | 0.292          | 0.299 | 0.979 |
| -        |                |       |       |
| 38       | 0.292          | 0.299 | 0.978 |
| 39       | 0.292          | 0.299 | 0.977 |
| 40       | 0.292          | 0.299 | 0.978 |
| 41       | 0.292          | 0.299 | 0.977 |
| 42       | 0.291          | 0.299 | 0.975 |
| 43       | 0.292          | 0.299 | 0.978 |
| 44       | 0.291          | 0.299 | 0.975 |
| 45       | 0.291          | 0.299 | 0.975 |
| 46       | 0.291          | 0.299 | 0.974 |
| 47       | 0.291          | 0.299 | 0.974 |
| 48       | 0.290          | 0.299 | 0.972 |
| 49       | 0.290          | 0.299 | 0.972 |
| 50       | 0.291          | 0.299 | 0.973 |
| 51       | 0.290          | 0.299 | 0.971 |
| 52       | 0.290          | 0.299 | 0.970 |
| 53       | 0.290          | 0.299 | 0.970 |
| 54       | 0.290          | 0.299 | 0.971 |
| 55       | 0.290          | 0.299 | 0.971 |
| 56       | 0.290          | 0.299 | 0.970 |
| 57       | 0.290          | 0.299 | 0.971 |
| 58       | 0.289          | 0.299 | 0.968 |
| 59       | 0.290          | 0.299 | 0.972 |
| 60       | 0.290          | 0.299 | 0.970 |
| 61       | 0.289          | 0.299 | 0.968 |
| 62       | 0.289          | 0.299 | 0.967 |
| 63       | 0.290          | 0.299 | 0.970 |
| 64       | 0.290          | 0.299 | 0.970 |
| 65       | 0.291          | 0.299 | 0.973 |
| 66       | 0.290          | 0.299 | 0.970 |
| 67       | 0.290          | 0.299 | 0.973 |
| 68       | 0.290          | 0.299 | 0.972 |
| 69       | 0.291          | 0.299 | 0.974 |
| 70       | 0.289          | 0.299 | 0.969 |
| 71       | 0.289          | 0.299 | 0.969 |
| 72       | 0.288          | 0.299 | 0.965 |
| 73       | 0.289          | 0.299 | 0.968 |
| 74       | 0.289          | 0.299 | 0.966 |
| 75       | 0.290          | 0.299 | 0.970 |
| 76       | 0.289          | 0.299 | 0.969 |
| 77       | 0.288          | 0.299 | 0.964 |
| 78       | 0.287          | 0.299 | 0.962 |
| 79       | 0.288          | 0.299 | 0.964 |
| 80       | 0.288          | 0.299 | 0.963 |
| 81       | 0.287          | 0.299 | 0.960 |
| 82       | 0.283          | 0.299 | 0.947 |
| 83       | 0.283          | 0.299 | 0.948 |
| 84       | 0.283          | 0.299 | 0.947 |
| 85       | 0.283          | 0.299 | 0.948 |
| 86       | 0.283          | 0.299 | 0.946 |
| 87<br>88 | 0.287<br>0.287 | 0.299 | 0.960 |
| 00       | 0.207          | 0.239 | 0.902 |

| 89  | 2.57 | 220.68 |
|-----|------|--------|
| 90  | 2.57 | 220.68 |
| 91  | 2.57 | 220.68 |
| 92  | 2.57 | 220.68 |
| 93  | 2.57 | 220.68 |
| 94  | 2.57 | 220.68 |
| 95  | 2.57 | 220.68 |
| 96  | 2.57 | 220.68 |
| 97  | 2.57 | 220.68 |
| 98  | 2.57 | 220.68 |
| 98  |      |        |
|     | 2.57 | 220.68 |
| 100 | 2.57 | 220.68 |
| 101 | 2.57 | 220.68 |
| 102 | 2.57 | 220.68 |
| 103 | 2.57 | 220.68 |
| 104 | 2.57 | 220.68 |
| 105 | 2.57 | 220.68 |
| 106 | 2.56 | 220.69 |
| 107 | 2.57 | 220.68 |
| 108 | 2.56 | 220.69 |
| 109 | 2.56 | 220.69 |
| 110 | 2.56 | 220.69 |
| 111 | 2.57 | 220.68 |
| 112 | 2.57 | 220.69 |
| 113 | 2.56 | 220.69 |
| 114 | 2.56 | 220.69 |
| 115 | 2.56 | 220.69 |
| 116 | 2.56 | 220.69 |
| 117 | 2.56 | 220.69 |
| 118 | 2.56 | 220.69 |
| 110 | 2.56 | 220.69 |
| 119 | 2.56 | 220.69 |
| 120 | 2.56 | 220.69 |
| 121 | 2.56 |        |
| 122 |      | 220.69 |
|     | 2.56 | 220.69 |
| 124 | 2.56 | 220.69 |
| 125 | 2.56 | 220.69 |
| 126 | 2.57 | 220.68 |
| 127 | 2.56 | 220.69 |
| 128 | 2.56 | 220.69 |
| 129 | 2.56 | 220.69 |
| 130 | 2.56 | 220.69 |
| 131 | 2.56 | 220.69 |
| 132 | 2.56 | 220.69 |
| 133 | 2.56 | 220.69 |
| 134 | 2.56 | 220.69 |
| 135 | 2.56 | 220.69 |
| 136 | 2.56 | 220.69 |
| 137 | 2.56 | 220.69 |
| 138 | 2.56 | 220.69 |
| 139 | 2.56 | 220.69 |
| 140 | 2.56 | 220.69 |
| 140 | 2.56 | 220.69 |
| 141 | 2.56 | 220.69 |
| 142 | 2.56 | 220.69 |
| 143 | 2.56 | 220.69 |
|     |      |        |
| 145 | 2.56 | 220.69 |
| 146 | 2.56 | 220.69 |


| 89  | 0.287 | 0.299 | 0.960 |
|-----|-------|-------|-------|
| 90  | 0.287 | 0.299 | 0.961 |
| 91  | 0.286 | 0.299 | 0.959 |
| 92  | 0.287 | 0.299 | 0.959 |
| 93  | 0.287 | 0.299 | 0.960 |
| 94  | 0.287 | 0.299 | 0.960 |
| 95  | 0.287 | 0.299 | 0.960 |
| 96  | 0.287 | 0.299 | 0.960 |
| 90  | 0.287 |       | 0.959 |
| 97  | 0.286 | 0.299 | 0.959 |
| 98  | 0.286 |       |       |
|     |       | 0.299 | 0.958 |
| 100 | 0.286 | 0.299 | 0.958 |
| 101 | 0.286 | 0.299 | 0.957 |
| 102 | 0.286 | 0.299 | 0.956 |
| 103 | 0.286 | 0.299 | 0.957 |
| 104 | 0.286 | 0.299 | 0.957 |
| 105 | 0.285 | 0.299 | 0.955 |
| 106 | 0.285 | 0.299 | 0.954 |
| 107 | 0.285 | 0.299 | 0.955 |
| 108 | 0.285 | 0.299 | 0.954 |
| 109 | 0.285 | 0.299 | 0.953 |
| 110 | 0.284 | 0.299 | 0.952 |
| 111 | 0.285 | 0.299 | 0.955 |
| 112 | 0.285 | 0.299 | 0.954 |
| 113 | 0.284 | 0.299 | 0.951 |
| 114 | 0.284 | 0.299 | 0.950 |
| 115 | 0.283 | 0.299 | 0.947 |
| 116 | 0.284 | 0.299 | 0.952 |
| 117 | 0.283 | 0.299 | 0.949 |
| 118 | 0.284 | 0.299 | 0.949 |
| 119 | 0.284 | 0.299 | 0.950 |
| 120 | 0.284 | 0.299 | 0.949 |
| 121 | 0.285 | 0.299 | 0.953 |
| 122 | 0.284 | 0.299 | 0.951 |
| 123 | 0.284 | 0.299 | 0.951 |
| 124 | 0.283 | 0.299 | 0.947 |
| 125 | 0.285 | 0.299 | 0.953 |
| 126 | 0.286 | 0.299 | 0.956 |
| 127 | 0.284 | 0.299 | 0.951 |
| 128 | 0.284 | 0.299 | 0.951 |
| 120 | 0.284 | 0.299 | 0.952 |
| 129 | 0.284 | 0.299 | 0.950 |
| 130 | 0.283 | 0.299 | 0.949 |
| 131 | 0.283 | 0.299 | 0.949 |
|     |       |       |       |
| 133 | 0.283 | 0.299 | 0.946 |
| 134 | 0.283 | 0.299 | 0.948 |
| 135 | 0.283 | 0.299 | 0.948 |
| 136 | 0.284 | 0.299 | 0.949 |
| 137 | 0.283 | 0.299 | 0.947 |
| 138 | 0.283 | 0.299 | 0.947 |
| 139 | 0.282 | 0.299 | 0.945 |
| 140 | 0.282 | 0.299 | 0.945 |
| 141 | 0.282 | 0.299 | 0.944 |
| 142 | 0.279 | 0.299 | 0.933 |
| 143 | 0.277 | 0.299 | 0.929 |
| 144 | 0.278 | 0.299 | 0.930 |
| 145 | 0.278 | 0.299 | 0.929 |
| 146 | 0.277 | 0.299 | 0.928 |

| 147         2.56         220.69           148         2.56         220.69           150         2.56         220.69           151         2.56         220.69           152         2.56         220.69           153         2.56         220.69           154         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         22 |     |      |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------|
| 149         2.56         220.69           150         2.56         220.69           151         2.56         220.69           153         2.56         220.69           153         2.56         220.69           154         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           167         2.56         220.69           170         2.56         220.69           171         2.56         220.69           173         2.56         220.69           174         2.56         22 | 147 | 2.56 | 220.69 |
| 150         2.56         220.69           151         2.56         220.69           153         2.56         220.69           153         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         22 | 148 | 2.56 | 220.69 |
| 151         2.56         220.69           152         2.56         220.69           153         2.56         220.69           154         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         22 | 149 | 2.56 | 220.69 |
| 152         2.56         220.69           153         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           178         2.56         22 | 150 | 2.56 | 220.69 |
| 152         2.56         220.69           153         2.56         220.69           155         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           178         2.56         22 | 151 | 2.56 | 220.69 |
| 153         2.56         220.69           154         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           166         2.56         220.69           167         2.56         220.69           170         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           178         2.56         22 |     |      |        |
| 154         2.56         220.69           155         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           178         2.56         22 |     |      |        |
| 155         2.56         220.69           157         2.56         220.69           157         2.56         220.69           158         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           175         2.56         220.69           175         2.56         220.69           177         2.56         220.69           178         2.56         22 |     |      |        |
| 156         2.56         220.69           157         2.56         220.69           158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         22 |     |      |        |
| 157         2.56         220.69           158         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           165         2.56         220.69           165         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           180         2.56         220.69           181         2.56         22 |     |      |        |
| 158         2.56         220.69           159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         22 |     |      |        |
| 159         2.56         220.69           160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           178         2.56         220.69           177         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         22 | -   |      |        |
| 160         2.56         220.69           161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         22 |     |      |        |
| 161         2.56         220.69           162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         22 |     |      |        |
| 162         2.56         220.69           163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         22 |     |      |        |
| 163         2.56         220.69           164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           177         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         22 |     |      |        |
| 164         2.56         220.69           165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           178         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         22 |     |      |        |
| 165         2.56         220.69           166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           179         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         22 |     |      |        |
| 166         2.56         220.69           167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           184         2.56         220.69           185         2.56         220.69           186         2.56         22 |     |      |        |
| 167         2.56         220.69           168         2.56         220.69           170         2.56         220.69           171         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           178         2.56         220.69           179         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         220.69           190         2.56         22 |     |      |        |
| 168         2.56         220.69           169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           179         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         220.69           186         2.56         220.69           187         2.56         220.69           190         2.56         22 |     |      |        |
| 169         2.56         220.69           170         2.56         220.69           171         2.56         220.69           172         2.56         220.69           173         2.56         220.69           174         2.56         220.69           175         2.56         220.69           176         2.56         220.69           177         2.56         220.69           177         2.56         220.69           177         2.56         220.69           177         2.56         220.69           178         2.56         220.69           179         2.56         220.69           180         2.56         220.69           181         2.56         220.69           182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           186         2.56         220.69           187         2.56         220.69           190         2.56         220.69           191         2.56         22 |     |      |        |
| 1702.56220.691712.56220.691722.56220.691732.56220.691742.56220.691752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691992.56220.691992.56220.691992.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.692002.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |
| 1712.56220.691722.56220.691732.56220.691742.56220.691752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691972.56220.691982.56220.691992.56220.691992.56220.691992.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.692002.56220.692012.56220.692022.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169 | 2.56 |        |
| 1722.56220.691732.56220.691742.56220.691752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691972.56220.691972.56220.691982.56220.691992.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170 | 2.56 | 220.69 |
| 1732.56220.691742.56220.691752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691972.56220.691972.56220.691982.56220.691992.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171 | 2.56 | 220.69 |
| 1742.56220.691752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691952.56220.691972.56220.691972.56220.691982.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172 | 2.56 | 220.69 |
| 1752.56220.691762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691972.56220.691932.56220.691942.56220.691952.56220.691972.56220.691982.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 173 | 2.56 | 220.69 |
| 1762.56220.691772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691972.56220.691972.56220.691982.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174 | 2.56 | 220.69 |
| 1772.56220.691782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175 | 2.56 | 220.69 |
| 1782.56220.691792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.691972.56220.691932.56220.692002.56220.692012.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176 | 2.56 | 220.69 |
| 1792.56220.691802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177 | 2.56 | 220.69 |
| 1802.56220.691812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178 | 2.56 | 220.69 |
| 1812.56220.691822.56220.691832.56220.691842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.692002.56220.692012.56220.692032.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179 | 2.56 | 220.69 |
| 182         2.56         220.69           183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         220.69           185         2.56         220.69           186         2.56         220.69           187         2.56         220.69           188         2.56         220.69           189         2.56         220.69           190         2.56         220.69           191         2.56         220.69           192         2.56         220.69           193         2.56         220.69           193         2.56         220.69           194         2.56         220.69           195         2.56         220.69           195         2.56         220.69           197         2.56         220.69           198         2.56         220.69           199         2.56         220.69           200         2.56         220.69           201         2.56         220.69           201         2.56         22 | 180 | 2.56 | 220.69 |
| 183         2.56         220.69           184         2.56         220.69           185         2.56         220.69           185         2.56         220.69           186         2.56         220.69           187         2.56         220.69           188         2.56         220.69           189         2.56         220.69           189         2.56         220.69           190         2.56         220.69           191         2.56         220.69           192         2.56         220.69           193         2.56         220.69           193         2.56         220.69           194         2.56         220.69           195         2.56         220.69           195         2.56         220.69           196         2.56         220.69           197         2.56         220.69           198         2.56         220.69           200         2.56         220.69           201         2.56         220.69           201         2.56         220.69           202         2.56         22 | 181 | 2.56 | 220.69 |
| 1842.56220.691852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 182 | 2.56 | 220.69 |
| 1852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 183 | 2.56 | 220.69 |
| 1852.56220.691862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 184 | 2.56 | 220.69 |
| 1862.56220.691872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 185 |      |        |
| 1872.56220.691882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186 | 2.56 |        |
| 1882.56220.691892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      | 220.69 |
| 1892.56220.691902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.692002.56220.692012.56220.692032.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |      |        |
| 1902.56220.691912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |        |
| 1912.56220.691922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |
| 1922.56220.691932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |        |
| 1932.56220.691942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
| 1942.56220.691952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |        |
| 1952.56220.691962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |        |
| 1962.56220.691972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |        |
| 1972.56220.691982.56220.691992.56220.692002.56220.692012.56220.692022.56220.692032.56220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |        |
| 198         2.56         220.69           199         2.56         220.69           200         2.56         220.69           201         2.56         220.69           202         2.56         220.69           203         2.56         220.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |        |
| 199         2.56         220.69           200         2.56         220.69           201         2.56         220.69           202         2.56         220.69           203         2.56         220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |        |
| 200         2.56         220.69           201         2.56         220.69           202         2.56         220.69           203         2.56         220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |      |        |
| 201         2.56         220.69           202         2.56         220.69           203         2.56         220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |        |
| 202         2.56         220.69           203         2.56         220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |        |
| 203 2.56 220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |        |
| 204 2.55 220.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204 | 2.55 | 220.70 |

| 147 | 0.281 | 0.299 | 0.940 |
|-----|-------|-------|-------|
| 148 | 0.281 | 0.299 | 0.942 |
| 149 | 0.282 | 0.299 | 0.943 |
| 150 | 0.282 | 0.299 | 0.943 |
| 151 | 0.281 | 0.299 | 0.940 |
| 152 | 0.281 | 0.299 | 0.940 |
| 153 | 0.280 | 0.299 | 0.939 |
| 154 | 0.281 | 0.299 | 0.941 |
| 155 | 0.281 | 0.299 | 0.942 |
| 156 | 0.281 | 0.299 | 0.942 |
| 157 | 0.281 | 0.299 | 0.940 |
| 158 | 0.281 | 0.299 | 0.941 |
| 159 | 0.281 | 0.299 | 0.942 |
| 160 | 0.281 | 0.299 | 0.940 |
| 161 | 0.281 | 0.299 | 0.940 |
| 162 | 0.281 | 0.299 | 0.940 |
| 163 | 0.281 | 0.299 | 0.939 |
| 164 | 0.280 | 0.299 | 0.939 |
| 165 | 0.281 | 0.299 | 0.940 |
| 166 | 0.280 | 0.299 | 0.939 |
| 167 | 0.281 | 0.299 | 0.942 |
| 168 | 0.281 | 0.299 | 0.940 |
| 169 | 0.281 | 0.299 | 0.940 |
| 170 | 0.280 | 0.299 | 0.938 |
| 171 | 0.280 | 0.299 | 0.938 |
| 172 | 0.280 | 0.299 | 0.939 |
| 173 | 0.280 | 0.299 | 0.939 |
| 174 | 0.281 | 0.299 | 0.942 |
| 175 | 0.279 | 0.299 | 0.935 |
| 176 | 0.280 | 0.299 | 0.937 |
| 177 | 0.280 | 0.299 | 0.938 |
| 178 | 0.281 | 0.299 | 0.940 |
| 179 | 0.280 | 0.299 | 0.936 |
| 180 | 0.280 | 0.299 | 0.936 |
| 181 | 0.280 | 0.299 | 0.938 |
| 182 | 0.280 | 0.299 | 0.939 |
| 183 | 0.280 | 0.299 | 0.938 |
| 184 | 0.279 | 0.299 | 0.934 |
| 185 | 0.279 | 0.299 | 0.934 |
| 186 | 0.280 | 0.299 | 0.937 |
| 187 | 0.278 | 0.299 | 0.931 |
| 188 | 0.278 | 0.299 | 0.931 |
| 189 | 0.279 | 0.299 | 0.935 |
| 190 | 0.279 | 0.299 | 0.936 |
| 191 | 0.279 | 0.299 | 0.935 |
| 192 | 0.279 | 0.299 | 0.933 |
| 193 | 0.278 | 0.299 | 0.930 |
| 194 | 0.278 | 0.299 | 0.930 |
| 195 | 0.277 | 0.299 | 0.927 |
| 196 | 0.278 | 0.299 | 0.931 |
| 197 | 0.278 | 0.299 | 0.931 |
| 198 | 0.278 | 0.299 | 0.931 |
| 199 | 0.278 | 0.299 | 0.931 |
| 200 | 0.278 | 0.299 | 0.931 |
| 201 | 0.278 | 0.299 | 0.932 |
| 202 | 0.278 | 0.299 | 0.930 |
| 202 | 0.275 | 0.299 | 0.921 |
|     | 0.273 | 0.299 | 0.915 |

| 205 | 2.55         | 220.70 |
|-----|--------------|--------|
| 206 | 2.55         | 220.70 |
| 207 | 2.55         | 220.70 |
| 208 | 2.55         | 220.70 |
| 209 | 2.56         | 220.69 |
| 210 | 2.56         | 220.69 |
| 211 | 2.56         | 220.69 |
| 212 | 2.56         | 220.69 |
| 213 | 2.56         | 220.69 |
| 214 | 2.56         | 220.69 |
| 215 | 2.56         | 220.69 |
| 216 | 2.56         | 220.69 |
| 217 | 2.56         | 220.69 |
| 218 | 2.56         | 220.69 |
| 218 | 2.56         | 220.69 |
| 220 | 2.56         | 220.69 |
|     |              |        |
| 221 | 2.56         | 220.69 |
| 222 | 2.56<br>2.56 | 220.69 |
| 223 |              | 220.69 |
| 224 | 2.56         | 220.69 |
| 225 | 2.56         | 220.69 |
| 226 | 2.56         | 220.69 |
| 227 | 2.56         | 220.69 |
| 228 | 2.56         | 220.69 |
| 229 | 2.56         | 220.69 |
| 230 | 2.56         | 220.69 |
| 231 | 2.56         | 220.69 |
| 232 | 2.56         | 220.69 |
| 233 | 2.56         | 220.69 |
| 234 | 2.56         | 220.69 |
| 235 | 2.55         | 220.70 |
| 236 | 2.56         | 220.69 |
| 237 | 2.56         | 220.69 |
| 238 | 2.56         | 220.69 |
| 239 | 2.56         | 220.70 |
| 240 | 2.56         | 220.69 |
| 241 | 2.56         | 220.69 |
| 242 | 2.56         | 220.69 |
| 243 | 2.56         | 220.69 |
| 244 | 2.56         | 220.69 |
| 245 | 2.56         | 220.69 |
| 246 | 2.55         | 220.70 |
| 247 | 2.56         | 220.69 |
| 248 | 2.55         | 220.70 |
| 249 | 2.55         | 220.70 |
| 250 | 2.55         | 220.70 |
| 251 | 2.55         | 220.70 |
| 252 | 2.55         | 220.70 |
| 253 | 2.55         | 220.70 |
| 254 | 2.55         | 220.70 |
| 255 | 2.55         | 220.70 |
| 256 | 2.55         | 220.70 |
| 257 | 2.55         | 220.70 |
| 258 | 2.55         | 220.70 |
| 259 | 2.55         | 220.70 |
| 260 | 2.55         | 220.70 |
| 261 | 2.55         | 220.70 |
| 262 | 2.55         | 220.70 |
| -   |              |        |

| <u> </u> |       |       | -     |
|----------|-------|-------|-------|
| 205      | 0.274 | 0.299 | 0.918 |
| 206      | 0.274 | 0.299 | 0.916 |
| 207      | 0.274 | 0.299 | 0.916 |
| 208      | 0.273 | 0.299 | 0.916 |
| 209      | 0.277 | 0.299 | 0.928 |
| 210      | 0.278 | 0.299 | 0.931 |
| 211      | 0.278 | 0.299 | 0.930 |
| 212      | 0.278 | 0.299 | 0.930 |
| 213      | 0.278 | 0.299 | 0.929 |
| 214      | 0.277 | 0.299 | 0.929 |
| 215      | 0.277 | 0.299 | 0.929 |
| 216      | 0.277 | 0.299 | 0.929 |
| 217      | 0.277 | 0.299 | 0.928 |
| 218      | 0.277 | 0.299 | 0.926 |
| 219      | 0.277 | 0.299 | 0.926 |
| 220      | 0.277 | 0.299 | 0.927 |
| 221      | 0.277 | 0.299 | 0.926 |
| 222      | 0.276 | 0.299 | 0.925 |
| 223      | 0.277 | 0.299 | 0.928 |
| 224      | 0.277 | 0.299 | 0.926 |
| 225      | 0.276 | 0.299 | 0.925 |
| 226      | 0.276 | 0.299 | 0.926 |
| 227      | 0.276 | 0.299 | 0.925 |
| 228      | 0.276 | 0.299 | 0.924 |
| 229      | 0.276 | 0.299 | 0.923 |
| 230      | 0.275 | 0.299 | 0.922 |
| 231      | 0.276 | 0.299 | 0.923 |
| 232      | 0.276 | 0.299 | 0.923 |
| 233      | 0.276 | 0.299 | 0.924 |
| 234      | 0.276 | 0.299 | 0.923 |
| 235      | 0.275 | 0.299 | 0.921 |
| 236      | 0.275 | 0.299 | 0.922 |
| 237      | 0.275 | 0.299 | 0.921 |
| 238      | 0.275 | 0.299 | 0.921 |
| 239      | 0.275 | 0.299 | 0.921 |
| 240      | 0.275 | 0.299 | 0.922 |
| 241      | 0.275 | 0.299 | 0.922 |
| 242      | 0.276 | 0.299 | 0.923 |
| 243      | 0.275 | 0.299 | 0.922 |
| 244      | 0.276 | 0.299 | 0.925 |
| 245      | 0.275 | 0.299 | 0.922 |
| 246      | 0.275 | 0.299 | 0.920 |
| 247      | 0.275 | 0.299 | 0.922 |
| 248      | 0.275 | 0.299 | 0.920 |
| 249      | 0.275 | 0.299 | 0.921 |
| 250      | 0.275 | 0.299 | 0.920 |
| 251      | 0.274 | 0.299 | 0.919 |
| 252      | 0.275 | 0.299 | 0.920 |
| 253      | 0.274 | 0.299 | 0.918 |
| 254      | 0.275 | 0.299 | 0.920 |
| 255      | 0.274 | 0.299 | 0.918 |
| 256      | 0.274 | 0.299 | 0.918 |
| 257      | 0.275 | 0.299 | 0.920 |
| 258      | 0.275 | 0.299 | 0.919 |
| 259      | 0.274 | 0.299 | 0.919 |
| 260      | 0.274 | 0.299 | 0.918 |
| 261      | 0.274 | 0.299 | 0.917 |
| 262      | 0.274 | 0.299 | 0.918 |



| Estimation of K by Slug Test, based o | on Hvorslev equation |      |                                       |                   |          |
|---------------------------------------|----------------------|------|---------------------------------------|-------------------|----------|
| Date:                                 | February 11, 2022    |      | Static water depth, H:                | 0.86              | mbgs     |
| Conducted by:                         | J. N.                |      | Water depth at time t = 0, Ho:        | 1.24              | mbgs     |
| Project Number:                       | 21BF049              |      | Water depth at time t, h:             | see below         | mbgs     |
| Well Number:                          | BH 20                |      | Basic time lag, To:                   | 5,556             | sec      |
| Well Screen Bottom:                   |                      | mbgs | Length of well screen, L:             | 150               | cm       |
| Top of Pipe:                          |                      | mags | Diameter of the borehole, 2R:         | 15.2              | cm       |
| Well Casing Diameter:                 |                      | cm   | Diameter of the well casing, 2r:      | 5.1               | cm       |
| Well Elevation:                       | 220.82               | masl | Estimated Sy of sand pack:            | 0.00              | 0 for No |
| Static Water Level:                   | 0.86                 | mbgs | Estimated effective 2r <sub>e</sub> : | 5.1               | cm       |
| Ground Elevation:                     | 220.82               | masl | $K^* = r_e 2 \ln(L/R) / (2LTo) =$     | 1.2E-05           | cm/s     |
| WATER LEVEL BEFORE TEST = H =         | 0.86                 | mbgs | Modified to accou                     | unt for sand pack | ? NO     |

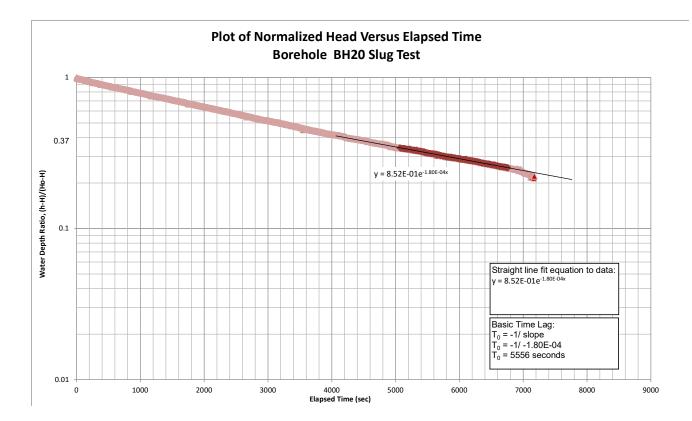
|              | h           |                  |
|--------------|-------------|------------------|
|              | Water Level | Water Level      |
| Time t (sec) | (mbgs)      | Elevation (masl) |
| 0            | 1.24        | 219.58           |
| 1            | 1.24        | 219.58           |
| 2            | 1.24        | 219.58           |
| 3            | 1.24        | 219.58           |
| 4            | 1.24        | 219.58           |
| 5            | 1.24        | 219.58           |
| 6            | 1.24        | 219.58           |
| 7            | 1.24        | 219.58           |
| 8            | 1.23        | 219.59           |
| 9            | 1.24        | 219.58           |
| 10           | 1.23        | 219.59           |
| 11           | 1.23        | 219.59           |
| 12           | 1.23        | 219.59           |
| 13           | 1.24        | 219.58           |
| 14           | 1.24        | 219.58           |
| 15           | 1.24        | 219.58           |
| 16           | 1.24        | 219.58           |
| 17           | 1.24        | 219.58           |
| 18           | 1.24        | 219.58           |
| 19           | 1.23        | 219.59           |
| 20           | 1.24        | 219.58           |
| 21           | 1.23        | 219.59           |
| 22           | 1.23        | 219.59           |
| 23           | 1.23        | 219.59           |
| 24           | 1.23        | 219.59           |
| 25           | 1.23        | 219.59           |
| 26           | 1.23        | 219.59           |
| 27           | 1.23        | 219.59           |
| 28           | 1.23        | 219.59           |
| 29           | 1.23        | 219.59           |
| 30           | 1.23        | 219.59           |
| 31           | 1.23        | 219.59           |
| 32           | 1.23        | 219.59           |

| Time t (sec) | h - H | Ho - H | (h-H)/(Ho-H) |
|--------------|-------|--------|--------------|
| 0            | 0.381 | 0.381  | 1.000        |
| 1            | 0.380 | 0.381  | 0.998        |
| 2            | 0.380 | 0.381  | 0.998        |
| 3            | 0.379 | 0.381  | 0.997        |
| 4            | 0.379 | 0.381  | 0.996        |
| 5            | 0.378 | 0.381  | 0.994        |
| 6            | 0.379 | 0.381  | 0.996        |
| 7            | 0.378 | 0.381  | 0.994        |
| 8            | 0.374 | 0.381  | 0.982        |
| 9            | 0.376 | 0.381  | 0.987        |
| 10           | 0.375 | 0.381  | 0.984        |
| 11           | 0.373 | 0.381  | 0.981        |
| 12           | 0.373 | 0.381  | 0.981        |
| 13           | 0.376 | 0.381  | 0.988        |
| 14           | 0.376 | 0.381  | 0.988        |
| 15           | 0.376 | 0.381  | 0.988        |
| 16           | 0.376 | 0.381  | 0.987        |
| 17           | 0.375 | 0.381  | 0.986        |
| 18           | 0.375 | 0.381  | 0.986        |
| 19           | 0.375 | 0.381  | 0.984        |
| 20           | 0.375 | 0.381  | 0.986        |
| 21           | 0.375 | 0.381  | 0.984        |
| 22           | 0.375 | 0.381  | 0.985        |
| 23           | 0.374 | 0.381  | 0.983        |
| 24           | 0.374 | 0.381  | 0.984        |
| 25           | 0.375 | 0.381  | 0.984        |
| 26           | 0.374 | 0.381  | 0.983        |
| 27           | 0.374 | 0.381  | 0.982        |
| 28           | 0.374 | 0.381  | 0.984        |
| 29           | 0.374 | 0.381  | 0.982        |
| 30           | 0.374 | 0.381  | 0.983        |
| 31           | 0.374 | 0.381  | 0.982        |
| 32           | 0.374 | 0.381  | 0.983        |

| 33       | 1.23         | 219.59           |
|----------|--------------|------------------|
| 34       | 1.23         | 219.59           |
| 35       | 1.23         | 219.59           |
| 36       | 1.23         | 219.59           |
|          |              |                  |
| 37       | 1.23         | 219.59           |
| 38       | 1.23         | 219.59           |
| 39       | 1.23         | 219.59           |
| 40       | 1.23         | 219.59           |
| 41       | 1.23         | 219.59           |
| 42       | 1.23         | 219.59           |
| 43       | 1.23         | 219.59           |
| 44       | 1.23         | 219.59           |
| 45       | 1.23         | 219.59           |
| 46       | 1.23         | 219.59           |
| 47       | 1.23         | 219.59           |
| 48       | 1.23         | 219.59           |
| 49       | 1.23         | 219.59           |
| 50       | 1.23         | 219.59           |
| 51       | 1.23         | 219.59           |
| 52       | 1.23         | 219.59           |
| 53       | 1.23         | 219.59           |
| 54       | 1.23         | 219.59           |
| 55       | 1.23         | 219.59           |
| 56       | 1.23         | 219.59           |
| 57       | 1.23         | 219.59           |
| 58       | 1.23         | 219.59           |
| 59       | 1.23         | 219.59           |
| 60       | 1.23         | 219.59           |
| 61<br>62 | 1.23<br>1.23 | 219.59<br>219.59 |
| 63       | 1.23         | 219.59           |
| 64       | 1.23         | 219.59           |
| 65       | 1.23         | 219.59           |
| 66       | 1.23         | 219.59           |
| 67       | 1.23         | 219.59           |
| 68       | 1.23         | 219.59           |
| 69       | 1.23         | 219.59           |
| 70       | 1.23         | 219.59           |
| 71       | 1.23         | 219.59           |
| 72       | 1.23         | 219.59           |
| 73       | 1.23         | 219.59           |
| 74       | 1.23         | 219.59           |
| 75       | 1.23         | 219.59           |
| 76       | 1.23         | 219.59           |
| 77       | 1.23         | 219.59           |
| 78       | 1.23         | 219.59           |
| 79       | 1.23         | 219.59           |
| 80<br>81 | 1.23<br>1.23 | 219.59<br>219.59 |
| 81       | 1.23         | 219.59           |
| 83       | 1.23         | 219.59           |
| 84       | 1.23         | 219.59           |
| 85       | 1.23         | 219.59           |
| 86       | 1.23         | 219.59           |
| 87       | 1.23         | 219.59           |
| 88       | 1.23         | 219.59           |
|          | 1.25         |                  |

|       |       | 1     |       |
|-------|-------|-------|-------|
| 33    | 0.374 | 0.381 | 0.981 |
| 34    | 0.373 | 0.381 | 0.981 |
| 35    | 0.370 | 0.381 | 0.972 |
| 36    | 0.370 | 0.381 | 0.972 |
| 37    | 0.371 | 0.381 | 0.973 |
| 38    | 0.373 | 0.381 | 0.981 |
|       |       |       |       |
| 39    | 0.373 | 0.381 | 0.979 |
| 40    | 0.373 | 0.381 | 0.980 |
| 41    | 0.372 | 0.381 | 0.978 |
| 42    | 0.373 | 0.381 | 0.980 |
| 43    | 0.373 | 0.381 | 0.980 |
| 44    | 0.372 | 0.381 | 0.978 |
| 45    | 0.372 | 0.381 | 0.978 |
| 46    | 0.373 | 0.381 | 0.979 |
| 47    | 0.373 | 0.381 | 0.979 |
| 48    | 0.372 | 0.381 | 0.978 |
| 49    | 0.372 | 0.381 | 0.977 |
| 50    | 0.372 | 0.381 | 0.977 |
| 51    | 0.372 | 0.381 | 0.977 |
| 52    | 0.372 | 0.381 | 0.977 |
| 53    | 0.371 | 0.381 | 0.976 |
| 54    | 0.372 | 0.381 | 0.977 |
| 55    | 0.371 | 0.381 | 0.975 |
| 56    | 0.372 | 0.381 | 0.977 |
| 57    | 0.372 | 0.381 | 0.977 |
| 58    | 0.371 | 0.381 | 0.975 |
| 59    | 0.371 | 0.381 | 0.974 |
| 60    | 0.371 | 0.381 | 0.975 |
| 61    | 0.372 | 0.381 | 0.977 |
| 62    | 0.371 | 0.381 | 0.975 |
| 63    | 0.371 | 0.381 | 0.976 |
| 64    | 0.371 | 0.381 | 0.974 |
| 65    | 0.370 | 0.381 | 0.973 |
| 66    | 0.370 | 0.381 | 0.973 |
| 67    | 0.371 |       | 0.974 |
| 68    | 0.371 | 0.381 | 0.973 |
| 69    | 0.371 | 0.381 | 0.973 |
| 70 71 | 0.370 | 0.381 | 0.973 |
| 71    | 0.370 | 0.381 | 0.973 |
| 72    | 0.370 | 0.381 | 0.973 |
| 73    | 0.367 | 0.381 | 0.964 |
| 75    | 0.367 | 0.381 | 0.965 |
| 75    | 0.366 | 0.381 | 0.963 |
| 70    | 0.367 | 0.381 | 0.965 |
| 78    | 0.368 | 0.381 | 0.967 |
| 70    | 0.369 | 0.381 | 0.971 |
| 80    | 0.369 | 0.381 | 0.970 |
| 81    | 0.369 | 0.381 | 0.969 |
| 82    | 0.369 | 0.381 | 0.968 |
| 83    | 0.368 | 0.381 | 0.968 |
| 84    | 0.368 | 0.381 | 0.968 |
| 85    | 0.368 | 0.381 | 0.968 |
| 86    | 0.368 | 0.381 | 0.967 |
| ~~ /  |       |       |       |
| 87    | 0.368 | 0.381 | 0.967 |

| 89  | 1.23 | 219.59 |
|-----|------|--------|
| 90  | 1.23 | 219.59 |
| 91  | 1.23 | 219.59 |
| 92  | 1.23 | 219.59 |
| 93  | 1.23 | 219.59 |
| 94  | 1.23 | 219.59 |
| 95  | 1.23 | 219.59 |
| 96  | 1.23 | 219.59 |
|     |      |        |
| 97  | 1.23 | 219.59 |
| 98  | 1.23 | 219.59 |
| 99  | 1.23 | 219.59 |
| 100 | 1.23 | 219.59 |
| 101 | 1.23 | 219.59 |
| 102 | 1.23 | 219.59 |
| 103 | 1.23 | 219.59 |
| 104 | 1.23 | 219.59 |
| 105 | 1.23 | 219.59 |
| 106 | 1.23 | 219.59 |
| 107 | 1.23 | 219.59 |
| 108 | 1.23 | 219.59 |
| 109 | 1.23 | 219.59 |
| 110 | 1.23 | 219.59 |
| 111 | 1.23 | 219.59 |
| 112 | 1.23 | 219.59 |
| 113 | 1.23 | 219.59 |
| 113 | 1.23 | 219.59 |
| 114 | 1.23 | 219.59 |
|     |      |        |
| 116 | 1.23 | 219.59 |
| 117 | 1.23 | 219.59 |
| 118 | 1.23 | 219.59 |
| 119 | 1.23 | 219.59 |
| 120 | 1.23 | 219.59 |
| 121 | 1.23 | 219.59 |
| 122 | 1.23 | 219.59 |
| 123 | 1.23 | 219.59 |
| 124 | 1.23 | 219.59 |
| 125 | 1.23 | 219.59 |
| 126 | 1.23 | 219.59 |
| 127 | 1.23 | 219.59 |
| 128 | 1.23 | 219.59 |
| 129 | 1.23 | 219.59 |
| 130 | 1.23 | 219.59 |
| 131 | 1.22 | 219.60 |
| 132 | 1.22 | 219.60 |
| 133 | 1.22 | 219.60 |
| 133 | 1.22 | 219.60 |
| 134 | 1.22 | 219.60 |
| 135 | 1.22 | 219.60 |
| 130 | 1.22 |        |
|     |      | 219.60 |
| 138 | 1.22 | 219.60 |
| 139 | 1.22 | 219.60 |
| 140 | 1.22 | 219.60 |
| 141 | 1.22 | 219.60 |
| 142 | 1.22 | 219.60 |
| 143 | 1.22 | 219.60 |
| 144 | 1.22 | 219.60 |
| 145 | 1.22 | 219.60 |
| 146 | 1.22 | 219.60 |
|     |      |        |


| 89<br>90 | 0.368 | 0.381 | 0.967 |
|----------|-------|-------|-------|
|          |       | 0.381 | 0.967 |
| 91       | 0.368 | 0.381 | 0.967 |
| 92       | 0.367 | 0.381 | 0.965 |
| 93       | 0.368 | 0.381 | 0.966 |
| 94       | 0.368 | 0.381 | 0.968 |
| 95       | 0.368 | 0.381 | 0.968 |
| 96       | 0.368 | 0.381 | 0.967 |
| 97       | 0.368 | 0.381 | 0.967 |
| 98       | 0.368 | 0.381 | 0.966 |
| 99       | 0.368 | 0.381 | 0.967 |
| 100      | 0.368 | 0.381 | 0.967 |
| 101      | 0.368 | 0.381 | 0.966 |
| 102      | 0.367 | 0.381 | 0.965 |
| 102      | 0.367 | 0.381 | 0.965 |
| 103      | 0.367 | 0.381 | 0.965 |
| 105      | 0.368 | 0.381 | 0.966 |
| 105      | 0.366 | 0.381 | 0.962 |
| 100      | 0.367 | 0.381 | 0.963 |
| 107      | 0.367 | 0.381 | 0.965 |
| 103      | 0.367 | 0.381 | 0.964 |
| 109      | 0.367 | 0.381 | 0.964 |
| 110      | 0.367 | 0.381 | 0.964 |
| 111      | 0.366 | 0.381 | 0.963 |
| 112      | 0.367 | 0.381 | 0.963 |
| 113      | 0.367 | 0.381 | 0.963 |
| 114      | 0.367 | 0.381 | 0.963 |
| 115      | 0.367 | 0.381 | 0.963 |
| 110      | 0.366 | 0.381 | 0.963 |
| 117      | 0.366 | 0.381 | 0.963 |
| 118      | 0.366 | 0.381 | 0.962 |
| 119      | 0.366 | 0.381 | 0.962 |
| 120      | 0.366 | 0.381 | 0.961 |
| 121      |       | 0.381 |       |
| 122      | 0.366 | 0.381 | 0.961 |
| 123      |       |       |       |
|          | 0.365 | 0.381 | 0.960 |
| 125      | 0.366 | 0.381 | 0.960 |
| 126      |       | 0.381 | 0.961 |
| 127      | 0.366 | 0.381 | 0.961 |
| 128      | 0.365 | 0.381 | 0.960 |
| 129      | 0.365 | 0.381 | 0.960 |
| 130      | 0.365 | 0.381 | 0.960 |
| 131      | 0.365 | 0.381 | 0.959 |
| 132      | 0.365 | 0.381 | 0.958 |
| 133      | 0.362 | 0.381 | 0.952 |
| 134      | 0.362 | 0.381 | 0.951 |
| 135      | 0.363 | 0.381 | 0.953 |
| 136      | 0.365 | 0.381 | 0.958 |
| 137      | 0.364 | 0.381 | 0.957 |
| 138      | 0.365 | 0.381 | 0.958 |
| 139      | 0.364 | 0.381 | 0.957 |
| 140      | 0.365 | 0.381 | 0.958 |
| 141      | 0.364 | 0.381 | 0.956 |
| 142      | 0.364 | 0.381 | 0.955 |
| 143      | 0.363 | 0.381 | 0.955 |
| 144      | 0.364 | 0.381 | 0.956 |
| 145      | 0.363 | 0.381 | 0.953 |
| 146      | 0.364 | 0.381 | 0.955 |

| 147        | 1.22         | 219.60 |
|------------|--------------|--------|
| 148        | 1.22         | 219.60 |
| 149        | 1.22         | 219.60 |
| 150        | 1.22         | 219.60 |
| 151        | 1.22         | 219.60 |
| 152        | 1.22         | 219.60 |
| 153        | 1.22         | 219.60 |
| 155        | 1.22         | 219.60 |
| 154        | 1.22         | 219.60 |
| 155        | 1.22         | 219.60 |
|            |              |        |
| 157<br>158 | 1.22<br>1.22 | 219.60 |
|            |              | 219.60 |
| 159        | 1.22         | 219.60 |
| 160        | 1.22         | 219.60 |
| 161        | 1.22         | 219.60 |
| 162        | 1.22         | 219.60 |
| 163        | 1.22         | 219.60 |
| 164        | 1.22         | 219.60 |
| 165        | 1.22         | 219.60 |
| 166        | 1.22         | 219.60 |
| 167        | 1.22         | 219.60 |
| 168        | 1.22         | 219.60 |
| 169        | 1.22         | 219.60 |
| 170        | 1.22         | 219.60 |
| 171        | 1.22         | 219.60 |
| 172        | 1.22         | 219.60 |
| 173        | 1.22         | 219.60 |
| 174        | 1.22         | 219.60 |
| 175        | 1.22         | 219.60 |
| 176        | 1.22         | 219.60 |
| 170        | 1.22         | 219.60 |
| 177        | 1.22         | 219.60 |
| 178        | 1.22         | 219.60 |
|            |              |        |
| 180        | 1.22         | 219.60 |
| 181        | 1.22         | 219.60 |
| 182        | 1.22         | 219.60 |
| 183        | 1.22         | 219.60 |
| 184        | 1.22         | 219.60 |
| 185        | 1.22         | 219.60 |
| 186        | 1.22         | 219.60 |
| 187        | 1.22         | 219.60 |
| 188        | 1.22         | 219.60 |
| 189        | 1.22         | 219.60 |
| 190        | 1.22         | 219.60 |
| 191        | 1.22         | 219.60 |
| 192        | 1.22         | 219.60 |
| 193        | 1.22         | 219.60 |
| 194        | 1.22         | 219.60 |
| 195        | 1.22         | 219.60 |
| 196        | 1.22         | 219.60 |
| 197        | 1.22         | 219.60 |
| 198        | 1.22         | 219.60 |
| 190        | 1.22         | 219.60 |
| 200        | 1.22         | 219.60 |
| 200        | 1.22         | 219.60 |
| 201        | 1.22         | 219.60 |
|            |              |        |
| 203        | 1.22         | 219.60 |
| 204        | 1.22         | 219.60 |

| 147        | 0.363 | 0.381 | 0.954 |
|------------|-------|-------|-------|
| 148        | 0.363 | 0.381 | 0.952 |
| 149        | 0.364 | 0.381 | 0.955 |
| 150        | 0.363 | 0.381 | 0.955 |
| 150        | 0.363 | 0.381 | 0.953 |
| 151        | 0.363 | 0.381 | 0.953 |
| 152        | 0.363 | 0.381 | 0.954 |
| 155        | 0.364 | 0.381 | 0.955 |
| 154        | 0.363 | 0.381 | 0.955 |
| 155        | 0.363 | 0.381 | 0.954 |
| 150        | 0.363 | 0.381 | 0.954 |
| 157        | 0.363 | 0.381 | 0.953 |
| 150        | 0.363 | 0.381 | 0.953 |
| 160        | 0.363 | 0.381 | 0.954 |
| 161        | 0.363 | 0.381 | 0.953 |
| 161        | 0.363 | 0.381 | 0.953 |
| 162        | 0.363 | 0.381 | 0.953 |
| 164        | 0.363 | 0.381 | 0.953 |
| 165        | 0.362 | 0.381 | 0.952 |
| 165        | 0.362 | 0.381 | 0.951 |
| 167        | 0.362 | 0.381 | 0.951 |
| 167        |       | 0.381 | 0.950 |
| 168        | 0.362 | 0.381 | 0.950 |
|            |       |       |       |
| 170        | 0.362 | 0.381 | 0.950 |
| 171        | 0.361 | 0.381 | 0.950 |
| 172<br>173 | 0.361 | 0.381 | 0.950 |
|            |       |       |       |
| 174        | 0.361 | 0.381 | 0.950 |
| 175        | 0.361 | 0.381 | 0.948 |
| 176        | 0.361 | 0.381 | 0.948 |
| 177        | 0.361 | 0.381 | 0.948 |
| 178        | 0.361 | 0.381 | 0.949 |
| 179        | 0.361 | 0.381 | 0.948 |
| 180        | 0.360 | 0.381 | 0.946 |
| 181        | 0.361 | 0.381 | 0.947 |
| 182        | 0.361 | 0.381 | 0.947 |
| 183        | 0.361 | 0.381 | 0.948 |
| 184        | 0.361 | 0.381 | 0.948 |
| 185        | 0.360 | 0.381 | 0.947 |
| 186        | 0.360 | 0.381 | 0.947 |
| 187        | 0.360 | 0.381 | 0.947 |
| 188        | 0.360 | 0.381 | 0.946 |
| 189        | 0.360 | 0.381 | 0.946 |
| 190        | 0.360 | 0.381 | 0.946 |
| 191        | 0.360 | 0.381 | 0.946 |
| 192        | 0.360 | 0.381 | 0.946 |
| 193        | 0.358 | 0.381 | 0.940 |
| 194        | 0.357 | 0.381 | 0.937 |
| 195        | 0.357 | 0.381 | 0.937 |
| 196        | 0.356 | 0.381 | 0.936 |
| 197        | 0.359 | 0.381 | 0.944 |
| 198        | 0.359 | 0.381 | 0.942 |
| 199        | 0.359 | 0.381 | 0.942 |
| 200        | 0.358 | 0.381 | 0.942 |
| 201        | 0.358 | 0.381 | 0.941 |
| 202        | 0.358 | 0.381 | 0.941 |
| 203        | 0.358 | 0.381 | 0.941 |
| 204        | 0.358 | 0.381 | 0.940 |

| 205 | 1.22 | 219.60 |
|-----|------|--------|
| 206 | 1.22 | 219.60 |
| 207 | 1.22 | 219.60 |
| 208 | 1.22 | 219.60 |
| 209 | 1.22 | 219.60 |
| 210 | 1.22 | 219.60 |
| 211 | 1.22 | 219.60 |
| 212 | 1.22 | 219.60 |
| 213 | 1.22 | 219.60 |
| 214 | 1.22 | 219.60 |
| 215 | 1.22 | 219.60 |
| 215 | 1.22 | 219.60 |
| 210 | 1.22 | 219.60 |
| 217 | 1.22 | 219.60 |
| 218 | 1.22 | 219.60 |
|     |      | 219.60 |
| 220 | 1.22 |        |
| 221 | 1.22 | 219.60 |
| 222 | 1.22 | 219.60 |
| 223 | 1.22 | 219.60 |
| 224 | 1.22 | 219.60 |
| 225 | 1.22 | 219.60 |
| 226 | 1.22 | 219.60 |
| 227 | 1.22 | 219.60 |
| 228 | 1.22 | 219.60 |
| 229 | 1.22 | 219.60 |
| 230 | 1.22 | 219.60 |
| 231 | 1.22 | 219.60 |
| 232 | 1.22 | 219.60 |
| 233 | 1.22 | 219.60 |
| 234 | 1.22 | 219.60 |
| 235 | 1.22 | 219.60 |
| 236 | 1.21 | 219.61 |
| 237 | 1.21 | 219.61 |
| 238 | 1.21 | 219.61 |
| 239 | 1.21 | 219.61 |
| 240 | 1.21 | 219.61 |
| 241 | 1.21 | 219.61 |
| 242 | 1.21 | 219.61 |
| 243 | 1.21 | 219.61 |
| 244 | 1.21 | 219.61 |
| 245 | 1.21 | 219.61 |
| 246 | 1.21 | 219.61 |
| 247 | 1.21 | 219.61 |
| 248 | 1.21 | 219.61 |
| 249 | 1.21 | 219.61 |
| 250 | 1.21 | 219.61 |
| 251 | 1.21 | 219.61 |
| 252 | 1.21 | 219.61 |
| 253 | 1.21 | 219.61 |
| 254 | 1.21 | 219.61 |
| 255 | 1.21 | 219.61 |
| 256 | 1.21 | 219.61 |
| 257 | 1.21 | 219.61 |
| 258 | 1.21 | 219.61 |
| 259 | 1.21 | 219.61 |
| 260 | 1.21 | 219.61 |
| 261 | 1.21 | 219.61 |
| 261 | 1.21 | 219.61 |
| 202 | 1.21 | 213.01 |

| 205        | 0.358 | 0.381 | 0.942 |
|------------|-------|-------|-------|
| 206        | 0.358 | 0.381 | 0.940 |
| 207        | 0.358 | 0.381 | 0.941 |
| 208        | 0.358 | 0.381 | 0.941 |
| 209        | 0.358 | 0.381 | 0.940 |
| 210        | 0.358 | 0.381 | 0.939 |
| 211        | 0.357 | 0.381 | 0.939 |
| 212        | 0.357 | 0.381 | 0.939 |
| 213        | 0.358 | 0.381 | 0.939 |
| 214        | 0.357 | 0.381 | 0.939 |
| 215        | 0.357 | 0.381 | 0.937 |
| 216        | 0.357 | 0.381 | 0.937 |
| 217        | 0.357 | 0.381 | 0.939 |
| 218        | 0.357 | 0.381 | 0.939 |
| 219        | 0.357 | 0.381 | 0.938 |
| 210        | 0.357 | 0.381 | 0.937 |
| 220        | 0.357 | 0.381 | 0.938 |
| 221        | 0.357 | 0.381 | 0.937 |
| 222        | 0.357 | 0.381 | 0.937 |
| 223        | 0.356 | 0.381 | 0.936 |
| 224        | 0.356 | 0.381 | 0.936 |
| 225        | 0.356 | 0.381 | 0.935 |
| 220        | 0.356 | 0.381 | 0.935 |
| 227        | 0.356 | 0.381 | 0.935 |
| 228        | 0.356 | 0.381 | 0.935 |
| 229        | 0.356 |       |       |
| 230        | 0.355 | 0.381 | 0.934 |
| 231        | 0.356 | 0.381 | 0.935 |
| 232        | 0.356 | 0.381 | 0.934 |
|            |       |       |       |
| 234<br>235 | 0.355 | 0.381 | 0.934 |
| 235        | 0.355 | 0.381 | 0.935 |
|            |       |       |       |
| 237        | 0.355 | 0.381 | 0.932 |
| 238<br>239 | 0.355 | 0.381 | 0.932 |
|            |       | 0.381 |       |
| 240        | 0.355 |       | 0.932 |
| 241        | 0.354 | 0.381 | 0.931 |
| 242        | 0.354 | 0.381 | 0.931 |
| 243        | 0.354 | 0.381 | 0.930 |
| 244        | 0.355 | 0.381 | 0.932 |
| 245        | 0.354 | 0.381 | 0.931 |
| 246        | 0.354 | 0.381 | 0.930 |
| 247        | 0.353 | 0.381 | 0.927 |
| 248        | 0.353 | 0.381 | 0.927 |
| 249        | 0.353 | 0.381 | 0.926 |
| 250        | 0.353 | 0.381 | 0.928 |
| 251        | 0.353 | 0.381 | 0.927 |
| 252        | 0.352 | 0.381 | 0.926 |
| 253        | 0.353 | 0.381 | 0.926 |
| 254        | 0.351 | 0.381 | 0.921 |
| 255        | 0.350 | 0.381 | 0.919 |
| 256        | 0.350 | 0.381 | 0.919 |
| 257        | 0.350 | 0.381 | 0.920 |
| 258        | 0.350 | 0.381 | 0.919 |
| 259        | 0.352 | 0.381 | 0.925 |
| 260        | 0.352 | 0.381 | 0.925 |
| 261        | 0.352 | 0.381 | 0.924 |
| 262        | 0.352 | 0.381 | 0.924 |






## APPENDIX E

Ground Water Sample Laboratory Results







### CA40149-MAR22 R1

21BF049, Bradford

Prepared for

Peto MacCallum Ltd



#### First Page

| CLIENT DETAILS |                          | LABORATORY DETAILS |                                           |
|----------------|--------------------------|--------------------|-------------------------------------------|
| Client         | Peto MacCallum Ltd       | Project Specialist | Maarit Wolfe, Hon.B.Sc                    |
|                |                          | Laboratory         | SGS Canada Inc.                           |
| Address        | 165 Cartwright Ave       | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, ON              |                    |                                           |
|                | M6A 1V5. Canada          |                    |                                           |
| Contact        | Andrew Cooke             | Telephone          | 705-652-2000                              |
| Telephone      | 416-785-5110             | Facsimile          | 705-652-6365                              |
| Facsimile      | 416-785-5120             | Email              | Maarit.Wolfe@sgs.com                      |
| Email          | acooke@petomaccallum.com | SGS Reference      | CA40149-MAR22                             |
| Project        | 21BF049, Bradford        | Received           | 03/09/2022                                |
| Order Number   |                          | Approved           | 04/01/2022                                |
| Samples        | Ground Water (1)         | Report Number      | CA40149-MAR22 R1                          |
|                |                          | Date Reported      | 04/01/2022                                |

#### COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present:YES Custody Seal Present:YES

Chain of Custody Number:022947

SIGNATORIES

Maarit Wolfe, Hon.B.Sc HMWOYe



#### TABLE OF CONTENTS

| First Page         | 1    |
|--------------------|------|
| Index              | 2    |
| Results            | 3-6  |
| Exceedance Summary | 7    |
| QC Summary         | 8-16 |
| Legend             | 17   |
| Annexes            | 18   |



Client: Peto MacCallum Ltd

Project: 21BF049, Bradford

Project Manager: Andrew Cooke

|                                                            |           |            | Operate Manual | 0            |
|------------------------------------------------------------|-----------|------------|----------------|--------------|
| MATRIX: WATER                                              |           |            | Sample Number  | 8            |
|                                                            |           |            | Sample Name    | BH7          |
| L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3 | 3303E     |            | Sample Matrix  | Ground Water |
|                                                            |           | <b>D</b> I | Sample Date    | 09/03/2022   |
| Parameter                                                  | Units     | RL         | L1             | Result       |
| General Chemistry                                          |           |            |                |              |
| Biochemical Oxygen Demand (BOD5)                           | mg/L      | 2          |                | 6            |
| Total Suspended Solids                                     | mg/L      | 2          |                | 226          |
| Total Kjeldahl Nitrogen                                    | as N mg/L | 0.5        |                | < 0.5        |
| Metals and Inorganics                                      |           |            |                |              |
| Cyanide (total)                                            | mg/L      | 0.01       |                | < 0.01       |
| Fluoride                                                   | mg/L      | 0.06       |                | 0.07         |
| Sulphate                                                   | mg/L      | 0.2        |                | 66           |
| Aluminum (0.2µm)                                           | mg/L      | 0.001      | 0.075          | 0.001        |
| Aluminum (total)                                           | mg/L      | 0.001      |                | 0.468        |
| Boron (total)                                              | mg/L      | 0.002      | 0.2            | 0.059        |
| Antimony (total)                                           | mg/L      | 0.0009     | 0.02           | < 0.0009     |
| Arsenic (total)                                            | mg/L      | 0.0002     | 0.005          | 0.0005       |
| Cadmium (total)                                            | mg/L      | 0.000003   | 0.0001         | 0.000012     |
| Chromium (total)                                           | mg/L      | 0.00008    | 0.1            | 0.00119      |
| Cobalt (total)                                             | mg/L      | 0.000004   | 0.0009         | 0.000596     |
| Copper (total)                                             | mg/L      | 0.0002     | 0.001          | 0.0021       |
| Iron (total)                                               | mg/L      | 0.007      | 0.3            | 0.628        |
| Lead (total)                                               | mg/L      | 0.00009    | 0.005          | 0.00051      |
| Manganese (total)                                          | mg/L      | 0.00001    |                | 0.0646       |
| Molybdenum (total)                                         | mg/L      | 0.00004    | 0.04           | 0.00267      |
| Nickel (total)                                             | mg/L      | 0.0001     | 0.025          | 0.0034       |
| Phosphorus (total)                                         | mg/L      | 0.003      | 0.01           | 0.079        |



Client: Peto MacCallum Ltd

Project: 21BF049, Bradford

Project Manager: Andrew Cooke

| MATRIX: WATER                                                  |       |         | Sample Number | er 8      |
|----------------------------------------------------------------|-------|---------|---------------|-----------|
| MATRIA. WATER                                                  |       |         | Sample Name   |           |
| L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E |       |         | Sample Matrix |           |
|                                                                |       |         | Sample Date   |           |
| Parameter                                                      | Units | RL      | L1            | Result    |
| Metals and Inorganics (continued)                              |       |         |               |           |
| Selenium (total)                                               | mg/L  | 0.00004 | 0.1           | 0.00046   |
| Silver (total)                                                 | mg/L  | 0.00005 | 0.0001        | < 0.00005 |
| Tin (total)                                                    | mg/L  | 0.00006 |               | 0.00074   |
| Titanium (total)                                               | mg/L  | 0.00005 |               | 0.0283    |
| Vanadium (total)                                               | mg/L  | 0.00001 | 0.006         | 0.00149   |
| Zinc (total)                                                   | mg/L  | 0.002   | 0.02          | 0.005     |
| Nonylphenol and Ethoxylates                                    |       |         |               |           |
| Nonylphenol                                                    | mg/L  | 0.001   |               | < 0.001   |
| Nonylphenol Ethoxylates                                        | mg/L  | 0.01    |               | < 0.01    |
| Nonylphenol diethoxylate                                       | mg/L  | 0.01    |               | < 0.01    |
| Nonylphenol monoethoxylate                                     | mg/L  | 0.01    |               | < 0.01    |
| Oil and Grease                                                 |       |         |               |           |
| Oil & Grease (total)                                           | mg/L  | 2       |               | < 2       |
| Oil & Grease (animal/vegetable)                                | mg/L  | 4       |               | < 4       |
| Oil & Grease (mineral/synthetic)                               | mg/L  | 4       |               | < 4       |



Client: Peto MacCallum Ltd

Project: 21BF049, Bradford

Project Manager: Andrew Cooke

|                                                               |         |         | Comple Northan | 0            |
|---------------------------------------------------------------|---------|---------|----------------|--------------|
| MATRIX: WATER                                                 |         |         | Sample Number  | 8            |
|                                                               |         |         | Sample Name    | BH7          |
| L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303 | 3E      |         | Sample Matrix  | Ground Water |
|                                                               |         |         | Sample Date    | 09/03/2022   |
| Parameter                                                     | Units   | RL      | L1             | Result       |
| Other (ORP)                                                   |         |         | 1              |              |
| рН                                                            | No unit | 0.05    | 8.6            | 7.48         |
| Mercury (total)                                               | mg/L    | 0.00001 | 0.0002         | < 0.00001    |
| Mercury (dissolved)                                           | mg/L    | 0.00001 | 0.0002         | < 0.00001    |
| PCBs                                                          |         |         | · · · · ·      |              |
| Polychlorinated Biphenyls (PCBs) - Total                      | mg/L    | 0.0001  |                | < 0.0001     |
| Phenols                                                       |         |         | 1              |              |
| 4AAP-Phenolics                                                |         | 0.002   | 0.001          | < 0.002      |
|                                                               | mg/L    | 0.002   | 0.001          | < 0.002      |
| SVOCs                                                         |         |         | 1              |              |
| di-n-Butyl Phthalate                                          | mg/L    | 0.002   |                | < 0.002      |
| Bis(2-ethylhexyl)phthalate                                    | mg/L    | 0.002   |                | < 0.002      |
| VOCs                                                          |         |         |                |              |
| Chloroform                                                    | mg/L    | 0.0005  |                | < 0.0005     |
| 1,2-Dichlorobenzene                                           | mg/L    | 0.0005  |                | < 0.0005     |
| 1,4-Dichlorobenzene                                           | mg/L    | 0.0005  |                | < 0.0005     |
| cis-1,2-Dichloroethene                                        | mg/L    | 0.0005  |                | < 0.0005     |
| trans-1,3-Dichloropropene                                     | mg/L    | 0.0005  |                | < 0.0005     |
|                                                               |         |         | 0.1            |              |
| Methylene Chloride                                            | mg/L    | 0.0005  | 0.1            | < 0.0005     |
| 1,1,2,2-Tetrachloroethane                                     | mg/L    | 0.0005  | 0.07           | < 0.0005     |
| Tetrachloroethylene (perchloroethylene)                       | mg/L    | 0.0005  | 0.05           | < 0.0005     |
| Trichloroethylene                                             | mg/L    | 0.0005  | 0.02           | < 0.0005     |



Client: Peto MacCallum Ltd

Project: 21BF049, Bradford

Project Manager: Andrew Cooke

| MATRIX: WATER                                                  |       |        | Sample N | Number 8           |
|----------------------------------------------------------------|-------|--------|----------|--------------------|
|                                                                |       |        | Sample   | le Name BH7        |
| L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E |       |        | Sample   | le Matrix Ground V |
|                                                                |       |        | Samp     | ple Date 09/03/2   |
| Parameter                                                      | Units | RL     | L1       | Resu               |
| VOCs - BTEX                                                    |       |        |          |                    |
| Benzene                                                        | mg/L  | 0.0005 | 0.1      | < 0.00             |
| Ethylbenzene                                                   | mg/L  | 0.0005 | 0.008    | < 0.00             |
| Toluene                                                        | mg/L  | 0.0005 | 0.0008   | < 0.00             |
| Xylene (total)                                                 | mg/L  | 0.0005 |          | < 0.00             |
| m-p-xylene                                                     | mg/L  | 0.0005 | 0.002    | < 0.00             |
| o-xylene                                                       | mg/L  | 0.0005 | 0.04     | < 0.00             |



#### EXCEEDANCE SUMMARY

|                |                   |       |         | PWQO_L / WATER      |
|----------------|-------------------|-------|---------|---------------------|
|                |                   |       |         | / Table 2 -         |
|                |                   |       |         | General - July 1999 |
|                |                   |       |         | PIBS 3303E          |
| Parameter      | Method            | Units | Result  | L1                  |
| 7              |                   |       |         | _                   |
| Copper         | SM 3030/EPA 200.8 | mg/L  | 0.0021  | 0.001               |
| Iron           | SM 3030/EPA 200.8 | mg/L  | 0.628   | 0.3                 |
| Phosphorus     | SM 3030/EPA 200.8 | mg/L  | 0.079   | 0.01                |
| 4AAP-Phenolics | SM 5530B-D        | mg/L  | < 0.002 | 0.001               |



#### Anions by IC

# Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

| Parameter | QC batch      | Units | RL  | Method | Dup | licate | LC              | S/Spike Blank |                  | м                 | atrix Spike / Ref |                 |
|-----------|---------------|-------|-----|--------|-----|--------|-----------------|---------------|------------------|-------------------|-------------------|-----------------|
|           | Reference     | æ     |     | Blank  | RPD | AC     | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recover<br>(9     | ry Limits<br>%) |
|           |               |       |     |        |     | (%)    | Recovery<br>(%) | Low           | High             | (%)               | Low               | High            |
| Sulphate  | DIO0182-MAR22 | mg/L  | 0.2 | <0.2   | 0   | 20     | 108             | 90            | 110              | 96                | 75                | 125             |

# **Biochemical Oxygen Demand**

#### Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

| Parameter                        | QC batch      | Units | RL    | Method | Dup | olicate | LC              | S/Spike Blank    |                   | м   | latrix Spike / Ref | i.         |
|----------------------------------|---------------|-------|-------|--------|-----|---------|-----------------|------------------|-------------------|-----|--------------------|------------|
|                                  | Reference     |       | Blank | RPD    | AC  | Spike   |                 | ery Limits<br>%) | Spike<br>Recovery |     | ry Limits          |            |
|                                  |               |       |       |        |     | (%)     | Recovery<br>(%) | Low              | High              | (%) | Low                | %)<br>High |
| Biochemical Oxygen Demand (BOD5) | BOD0017-MAR22 | mg/L  | 2     | < 2    | 5   | 30      | 92              | 70               | 130               | 80  | 70                 | 130        |

# Cyanide by SFA

#### Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

| Parameter       | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank |                 | M                 | atrix Spike / Re | f.               |
|-----------------|---------------|-------|------|--------|-----|---------|-----------------|---------------|-----------------|-------------------|------------------|------------------|
|                 | Reference     |       |      | Blank  | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>%) |
|                 |               |       |      |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low              | High             |
| Cyanide (total) | SKA0122-MAR22 | mg/L  | 0.01 | <0.01  | ND  | 10      | 96              | 90            | 110             | NV                | 75               | 125              |



#### Fluoride by Specific Ion Electrode

# Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

| Parameter | QC batch      | Units | RL   | Method | Dup        | licate | LC              | S/Spike Blank |                 | м                 | atrix Spike / Re | əf.               |
|-----------|---------------|-------|------|--------|------------|--------|-----------------|---------------|-----------------|-------------------|------------------|-------------------|
|           | Reference     |       |      | Blank  | ank<br>RPD | AC     | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>(%) |
|           |               |       |      |        |            | (%)    | Recovery<br>(%) | Low           | High            | (%)               | Low              | High              |
| Fluoride  | EWL0209-MAR22 | mg/L  | 0.06 | <0.06  | ND         | 10     | 95              | 90            | 110             | 99                | 75               | 125               |

## Mercury by CVAAS

## Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

| Parameter       | QC batch      | Units | RL      | Method    | Du  | olicate | LC              | S/Spike Blank |                  | M                 | latrix Spike / Re | f.              |
|-----------------|---------------|-------|---------|-----------|-----|---------|-----------------|---------------|------------------|-------------------|-------------------|-----------------|
|                 | Reference     |       |         | Blank     | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|                 |               |       |         |           |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low               | High            |
| Mercury (total) | EHG0018-MAR22 | mg/L  | 0.00001 | < 0.00001 | ND  | 20      | 87              | 80            | 120              | 80                | 70                | 130             |



# Metals in aqueous samples - ICP-MS

# Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

| Parameter          | QC batch      | Units | RL       | Method    | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Ref |                 |
|--------------------|---------------|-------|----------|-----------|-----|-----------|-------------------|---------------|------|-------------------|-------------------|-----------------|
|                    | Reference     |       |          | Blank     | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | •    | Spike<br>Recovery | Recove            | ry Limits<br>%) |
|                    |               |       |          |           |     | (%)       | (%)               | Low           | High | (%)               | Low               | High            |
| Silver (total)     | EMS0095-MAR22 | mg/L  | 0.00005  | <0.00005  | ND  | 20        | 107               | 90            | 110  | 114               | 70                | 130             |
| Aluminum (total)   | EMS0095-MAR22 | mg/L  | 0.001    | <0.001    | 6   | 20        | 95                | 90            | 110  | 86                | 70                | 130             |
| Aluminum (0.2µm)   | EMS0095-MAR22 | mg/L  | 0.001    | <0.001    | 6   | 20        | 95                | 90            | 110  | 86                | 70                | 130             |
| Arsenic (total)    | EMS0095-MAR22 | mg/L  | 0.0002   | <0.0002   | 5   | 20        | 104               | 90            | 110  | 101               | 70                | 130             |
| Boron (total)      | EMS0095-MAR22 | mg/L  | 0.002    | <0.002    | 4   | 20        | 95                | 90            | 110  | 86                | 70                | 130             |
| Cadmium (total)    | EMS0095-MAR22 | mg/L  | 0.000003 | <0.000003 | ND  | 20        | 102               | 90            | 110  | 103               | 70                | 130             |
| Cobalt (total)     | EMS0095-MAR22 | mg/L  | 0.000004 | <0.000004 | 3   | 20        | 103               | 90            | 110  | 103               | 70                | 130             |
| Chromium (total)   | EMS0095-MAR22 | mg/L  | 0.00008  | <0.00008  | 13  | 20        | 106               | 90            | 110  | 105               | 70                | 130             |
| Copper (total)     | EMS0095-MAR22 | mg/L  | 0.0002   | <0.0002   | 1   | 20        | 102               | 90            | 110  | 110               | 70                | 130             |
| Iron (total)       | EMS0095-MAR22 | mg/L  | 0.007    | <0.007    | 7   | 20        | 97                | 90            | 110  | 75                | 70                | 130             |
| Manganese (total)  | EMS0095-MAR22 | mg/L  | 0.00001  | <0.00001  | ND  | 20        | 104               | 90            | 110  | 100               | 70                | 130             |
| Molybdenum (total) | EMS0095-MAR22 | mg/L  | 0.00004  | <0.00004  | 3   | 20        | 102               | 90            | 110  | 99                | 70                | 130             |
| Nickel (total)     | EMS0095-MAR22 | mg/L  | 0.0001   | <0.0001   | ND  | 20        | 108               | 90            | 110  | 107               | 70                | 130             |
| Lead (total)       | EMS0095-MAR22 | mg/L  | 0.00009  | <0.00001  | 6   | 20        | 97                | 90            | 110  | 85                | 70                | 130             |
| Phosphorus (total) | EMS0095-MAR22 | mg/L  | 0.003    | <0.003    | ND  | 20        | 98                | 90            | 110  | NV                | 70                | 130             |
| Antimony (total)   | EMS0095-MAR22 | mg/L  | 0.0009   | <0.0009   | ND  | 20        | 103               | 90            | 110  | 115               | 70                | 130             |
| Selenium (total)   | EMS0095-MAR22 | mg/L  | 0.00004  | <0.00004  | ND  | 20        | 97                | 90            | 110  | 81                | 70                | 130             |
| Tin (total)        | EMS0095-MAR22 | mg/L  | 0.00006  | <0.00006  | ND  | 20        | 106               | 90            | 110  | NV                | 70                | 130             |
| Titanium (total)   | EMS0095-MAR22 | mg/L  | 0.00005  | <0.00005  | 12  | 20        | 107               | 90            | 110  | NV                | 70                | 130             |
| Vanadium (total)   | EMS0095-MAR22 | mg/L  | 0.00001  | <0.00001  | 4   | 20        | 105               | 90            | 110  | 96                | 70                | 130             |



# Metals in aqueous samples - ICP-MS (continued)

# Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

| Parameter    | QC batch      | Units | RL    | Method | Dup | olicate | LC              | S/Spike Blank |                  | м                 | atrix Spike / Ref |                |
|--------------|---------------|-------|-------|--------|-----|---------|-----------------|---------------|------------------|-------------------|-------------------|----------------|
|              | Reference     |       |       | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recove            | y Limits<br>6) |
|              |               |       |       |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low               | High           |
| Zinc (total) | EMS0095-MAR22 | mg/L  | 0.002 | <0.002 | ND  | 20      | 102             | 90            | 110              | 85                | 70                | 130            |

# Nonylphenol and Ethoxylates

# Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

| Parameter                  | QC batch      | Units | RL    | Method | Dup | licate    | LC                | S/Spike Blank |                 | M                 | atrix Spike / Ref |                 |
|----------------------------|---------------|-------|-------|--------|-----|-----------|-------------------|---------------|-----------------|-------------------|-------------------|-----------------|
|                            | Reference     |       |       | Blank  | RPD | AC<br>(%) | Spike<br>Recovery |               | ry Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|                            |               |       |       |        |     | (70)      | (%)               | Low           | High            | (%)               | Low               | High            |
| Nonylphenol diethoxylate   | GCM0218-MAR22 | mg/L  | 0.01  | <0.01  |     |           | 91                | 55            | 120             |                   |                   |                 |
| Nonylphenol Ethoxylates    | GCM0218-MAR22 | mg/L  | 0.01  | < 0.01 |     |           |                   |               |                 |                   |                   |                 |
| Nonylphenol monoethoxylate | GCM0218-MAR22 | mg/L  | 0.01  | <0.01  |     |           | 92                | 55            | 120             |                   |                   |                 |
| Nonylphenol                | GCM0218-MAR22 | mg/L  | 0.001 | <0.001 |     |           | 65                | 55            | 120             |                   |                   |                 |



#### **Oil & Grease**

#### Method: MOE E3401 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-019

| Parameter            | QC batch      | Units     | RL | Method | Dup | olicate         | LC    | S/Spike Blank |                  | M                 | atrix Spike / Re | f.               |
|----------------------|---------------|-----------|----|--------|-----|-----------------|-------|---------------|------------------|-------------------|------------------|------------------|
|                      | Reference     | Reference |    | Blank  | RPD | AC              | Spike |               | ery Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>%) |
|                      |               |           |    |        | (%) | Recovery<br>(%) | Low   | High          | (%)              | Low               | High             |                  |
| Oil & Grease (total) | GCM0227-MAR22 | mg/L      | 2  | <2     | NSS | 20              | 106   | 75            | 125              |                   |                  |                  |

#### Oil & Grease-AV/MS

#### Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

| Parameter                        | QC batch      | Units | RL | Method | Dup | licate | LC              | S/Spike Blank |      | M                 | atrix Spike / Ref |      |
|----------------------------------|---------------|-------|----|--------|-----|--------|-----------------|---------------|------|-------------------|-------------------|------|
|                                  | Reference     |       |    | Blank  | RPD | AC     | Spike           | Recove        | •    | Spike<br>Recovery | Recover           | -    |
|                                  |               |       |    |        |     | (%)    | Recovery<br>(%) | Low           | High | (%)               | Low               | High |
| Oil & Grease (animal/vegetable)  | GCM0227-MAR22 | mg/L  | 4  | < 4    | NSS | 20     | NA              | 70            | 130  |                   |                   |      |
| Oil & Grease (mineral/synthetic) | GCM0227-MAR22 | mg/L  | 4  | < 4    | NSS | 20     | NA              | 70            | 130  |                   |                   |      |

#### рΗ

# Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| Parameter | QC batch      | Units   | RL                                         | Method | Dup               | olicate       | LC              | S/Spike Blank |      | м   | atrix Spike / Ref |      |
|-----------|---------------|---------|--------------------------------------------|--------|-------------------|---------------|-----------------|---------------|------|-----|-------------------|------|
|           | Reference     |         | Blank RPD AC Spike (%) Recovery Limits (%) |        | Spike<br>Recovery | Recover<br>(% | •               |               |      |     |                   |      |
|           |               |         |                                            |        |                   | (%)           | Recovery<br>(%) | Low           | High | (%) | Low               | High |
| рН        | EWL0189-MAR22 | No unit | 0.05                                       | NA     | 1                 |               | 101             |               |      | NA  |                   |      |



#### Phenols by SFA

## Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

| Parameter      | QC batch      | Units | RL    | Method | Dup | licate | LC              | S/Spike Blank |                 | Ma                | atrix Spike / Ret | F.              |
|----------------|---------------|-------|-------|--------|-----|--------|-----------------|---------------|-----------------|-------------------|-------------------|-----------------|
|                | Reference     |       |       | Blank  | RPD | AC     | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|                |               |       |       |        |     | (%)    | Recovery<br>(%) | Low           | High            | (%)               | Low               | High            |
| 4AAP-Phenolics | SKA0111-MAR22 | mg/L  | 0.002 | <0.002 | ND  | 10     | 107             | 80            | 120             | 89                | 75                | 125             |

# **Polychlorinated Biphenyls**

## Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

| Parameter                          | QC batch      | Units | RL     | Method  | Duj | olicate | LC              | S/Spike Blank |                  | M                 | latrix Spike / Ref | i.               |
|------------------------------------|---------------|-------|--------|---------|-----|---------|-----------------|---------------|------------------|-------------------|--------------------|------------------|
|                                    | Reference     |       |        | Blank   | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery |                    | ory Limits<br>%) |
|                                    |               |       |        |         |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low                | High             |
| Polychlorinated Biphenyls (PCBs) - | GCM0229-MAR22 | mg/L  | 0.0001 | <0.0001 | NSS | 30      | 97              | 60            | 140              | NSS               | 60                 | 140              |
| Total                              |               |       |        |         |     |         |                 |               |                  |                   |                    |                  |



## **Semi-Volatile Organics**

# Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

| Parameter                  | QC batch      | Units | RL    | Method  | Dup | licate | LC              | S/Spike Blank |      | м                 | atrix Spike / Re | ſ.               |
|----------------------------|---------------|-------|-------|---------|-----|--------|-----------------|---------------|------|-------------------|------------------|------------------|
|                            | Reference     |       |       | Blank   | RPD | AC     | Spike           | Recover<br>(% | •    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                            |               |       |       |         |     | (%)    | Recovery<br>(%) | Low           | High | (%)               | Low              | High             |
| Bis(2-ethylhexyl)phthalate | GCM0201-MAR22 | mg/L  | 0.002 | < 0.002 | NSS | 30     | 106             | 50            | 140  | NSS               | 50               | 140              |
| di-n-Butyl Phthalate       | GCM0201-MAR22 | mg/L  | 0.002 | < 0.002 | NSS | 30     | 106             | 50            | 140  | NSS               | 50               | 140              |

## **Suspended Solids**

#### Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

| Parameter              | QC batch      | Units | RL | Method | Duj | olicate | LC              | S/Spike Blank |                  | M                 | atrix Spike / Re | f.               |
|------------------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|------------------|-------------------|------------------|------------------|
|                        | Reference     |       |    | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>%) |
|                        |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low              | High             |
| Total Suspended Solids | EWL0197-MAR22 | mg/L  | 2  | < 2    | 5   | 10      | 103             | 90            | 110              | NA                |                  |                  |

# Total Nitrogen

#### Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-002

| Parameter               | QC batch      | Units     | RL  | Method | Dup | olicate | LC              | S/Spike Blank |                  | N                 | latrix Spike / Re |                 |
|-------------------------|---------------|-----------|-----|--------|-----|---------|-----------------|---------------|------------------|-------------------|-------------------|-----------------|
|                         | Reference     |           |     | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery |                   | ry Limits<br>%) |
|                         |               |           |     |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low               | High            |
| Total Kjeldahl Nitrogen | SKA0112-MAR22 | as N mg/L | 0.5 | <0.5   | 1   | 10      | 94              | 90            | 110              | NV                | 75                | 125             |



## Volatile Organics

# Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL     | Method  | Dup | licate    | LC    | S/Spike Blank |      | Ma                | atrix Spike / Ref |      |
|---------------------------|---------------|-------|--------|---------|-----|-----------|-------|---------------|------|-------------------|-------------------|------|
|                           | Reference     |       |        | Blank   | RPD | AC<br>(%) | Spike | Recover       | -    | Spike<br>Recovery | Recover<br>(9     | -    |
|                           |               |       |        |         |     | (70)      | (%)   | Low           | High | (%)               | Low               | High |
| 1,1,2,2-Tetrachloroethane | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91    | 60            | 130  | 98                | 50                | 140  |
| 1,2-Dichlorobenzene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92    | 60            | 130  | 99                | 50                | 140  |
| 1,4-Dichlorobenzene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93    | 60            | 130  | 99                | 50                | 140  |
| Benzene                   | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92    | 60            | 130  | 100               | 50                | 140  |
| Chloroform                | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91    | 60            | 130  | 100               | 50                | 140  |
| cis-1,2-Dichloroethene    | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92    | 60            | 130  | 101               | 50                | 140  |
| Ethylbenzene              | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93    | 60            | 130  | 101               | 50                | 140  |
| m-p-xylene                | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93    | 60            | 130  | 102               | 50                | 140  |
| Methylene Chloride        | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91    | 60            | 130  | 100               | 50                | 140  |
| o-xylene                  | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 95    | 60            | 130  | 103               | 50                | 140  |
| Tetrachloroethylene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92    | 60            | 130  | 100               | 50                | 140  |
| (perchloroethylene)       |               |       |        |         |     |           |       |               |      |                   |                   |      |
| Toluene                   | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91    | 60            | 130  | 100               | 50                | 140  |
| trans-1,3-Dichloropropene | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 95    | 60            | 130  | 103               | 50                | 140  |
| Trichloroethylene         | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93    | 60            | 130  | 101               | 50                | 140  |



#### QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

#### LEGEND

#### **FOOTNOTES**

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - ↑ Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
- ND Non Detect

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Received By:       Control of the minimulation       Received By (signature):       Labora         Received Date:       October (In: min)       Received By (signature):       Labora         Received Time:       I: 10       (m: min)       Custody Seal Present: Yes       No         Received Time:       I: 10       (m: min)       Custody Seal Present: Yes       No         Received Time:       I: 10       Invoince Information       Invoince Information       Invoince Information         Company:       Received Time:       Invoince Information       Invoince Information       Invoince Information         Company:       Received Time:       Invoince Information       Invoince Information       Information         Address:       Is Contract:       Contract:       Contract:       Address:       Received Time:         Phone:       All       Is Sever By-Law:       Informations:       Sever By-Law:       Sever By-Law:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received By (signature):<br>Custody Seal Present: Yes<br>Custody Seal Intact: Yes<br>INVOICE INFORMATION<br>(same as Report Information) | and I wanted          | Average service and service and                                                                                                     | ···· · · ·                                                                                   |                                                                                                                      |                                        |                         |                       |                                          | and the second se | Sector Sector               | NATING IN CONTRACTOR           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v. PML<br>Reborn INFORMATION<br>Reborn INFORMATION<br>A Coele<br>BS Carrung Let Ave<br>Contact<br>Alle 785 511 C<br>Phone:<br>Regulations<br>Regulations<br>Regulations<br>Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOICE INFORMATI<br>eport Information)                                                                                                    |                       |                                                                                                                                     | mation Section - Lab use<br>Cooling Agent Present: Yes<br>Temperature Upon Receipt (°C)      | Laboratory Information Section - Lab use only<br>V Cooling Agent Present: Yes Vo<br>No Temperature Upon Receipt (*C) | only C                                 | Type:                   | lee                   | ant                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AB LIMS #:                  | 0149                           | A40149-MA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| W. PML<br>A. Cecher<br>BS Cartury 64 Ave<br>A/6 7855120<br>A/16 7855120<br>A/16 7855120<br>A/16 7855120<br>REGUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eport Information)                                                                                                                       | N                     |                                                                                                                                     |                                                                                              |                                                                                                                      | •                                      | 0                       |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A Coole<br>BS Cartwork the o<br>Alle 785 5110 P<br>411 785 5120 P<br>22006 C Petto Inveled Jum 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       | Quotation #:                                                                                                                        | PAUL Rates                                                                                   | 24r                                                                                                                  | - *                                    |                         |                       | P.O.#:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . 155 Cartury 44 Ave Co<br>4/4 185 514 0 Ph<br>4/4 75 55120 Ph<br>2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       | Project #:                                                                                                                          | 2167099                                                                                      | 640                                                                                                                  |                                        |                         |                       | Site Location/ID:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brid tong                   | P                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alla 7855130 Ph<br>4167855120 Ph<br>2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        | TURNARO                 | UND TIN               | TURNAROUND TIME (TAT) REQUIRED           | ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/(27855120 Ph<br>4/127855120 Ph<br>020022020 Invited Jum 2012<br>REGULA<br>REGULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       | M Regul                                                                                                                             | K Regular TAT (5-7days)                                                                      | (sye                                                                                                                 |                                        |                         |                       | TAT's are quoted<br>Samples receive      | d in business<br>ed after 6pm c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | days (exclud<br>r on weeken | le statutory l<br>ids: TAT beg | TAT's are quoted in business days (exclude statutory holidays & weekends).<br>Samples received after 6pm or on weekends: TAT begins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1: ひどっとを C P 1: ひとっと Ph H 23 5120 Ph AT 1: ひどっとを C P C Ph Nucle allow AT 25 00.000 AT 25 00.0000 AT 25 00.0000 AT 25 00.0000 AT 25 00.000 AT 25 00 |                                                                                                                                          |                       | RUSH TAT (Additional Charges May Apply):                                                                                            | litional Char                                                                                | ges May Ap                                                                                                           | ply):                                  | 1 Day                   |                       | RUSH TAT (Additional Charges May Apply): | 4 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Email: ひどうしをでやむ Inuce いりいい (Email:<br>REGULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       | PLEASE CONFIN                                                                                                                       |                                                                                              |                                                                                                                      |                                        | DTE: DRIN               | VING (POI             | ABLE) WATER SAM                          | APLES FOR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IUMAN CON                   | ISUMPTION                      | 35 NET RECENTATIVE FROM TO SOCIED OF THE REPORT |
| C.Reg 153/04 O.Reg 406/19 Other Regulati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |                       |                                                                                                                                     | j.                                                                                           |                                                                                                                      |                                        | DIG DIG                 | OHEO                  | WITH SGS DRINK                           | ING WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHAIN OF C                  | CUSTODY                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.Reg 406/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              | -                                                                                                                    | ANALT                                  | DID RE                  | CC EV                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | Sewer By-Law:         | N &                                                                                                                                 | S                                                                                            | SVOC PCB                                                                                                             | BHC                                    | 202                     | Pest                  | Other (please specify)                   | ease specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPLP                        | TCLP                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Res/Park Soil Texture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reg 347/558 (3 Day min TAT)<br>Pewao I MMER<br>CCME Other:<br>MISA                                                                       | Municipality:         |                                                                                                                                     | ۱۷۱                                                                                          |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| olume 350m3 >350m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ODWS Not Reportable *See note                                                                                                            |                       | )<br><b>гся</b><br>яав,                                                                                                             |                                                                                              | 1                                                                                                                    |                                        |                         | ال                    | 5                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                | COMMENTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (RSC) TYES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO                                                                                                                                       |                       | vs),ec<br><b>gan</b>                                                                                                                | λ                                                                                            |                                                                                                                      |                                        |                         | ty othe               | 17                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pepuet                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLE IDENTIFICATION SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME # OF<br>SAMPLED BOTTLES                                                                                                             | JF<br>LES MATRIX      | ield Filtered (<br><b>آوtals &amp; Inor</b><br>(در), درر بهر به ۹۹, (ق(با<br>( در), درم), ومرابع<br>( در), درم)<br>( الالافر الالاخ | P metals plus B(HWS-s<br>P Metals plus B(HWS-s<br>A Ba, Ba, B, B, Cd, Cr, Co, d<br>A HS only | VOCS<br>VOCS<br>Ind PAHs, ABNs, CPs<br>CBS Total                                                                     | <b>1-F4 + BTEX</b><br><b>1-F4</b> only | BTEX only<br>OCS<br>OCS | ganochlorine or speci | sm allis                                 | eerefy pkg:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | 0                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 2H7 Murrhold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVV 10                                                                                                                                   | (r) S                 | L L                                                                                                                                 | as<br>DI                                                                                     | S<br>S                                                                                                               | 3                                      | V<br>Is                 | d                     | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | ┢                     | 1                                                                                                                                   |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        | n<br>n<br>Scientifi     |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                              |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Observations/Comments/Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                       |                                                                                                                                     | ar e                                                                                         |                                                                                                                      |                                        |                         |                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Ъсь.,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sampled By (NAME):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Signature:                                                                                                                               | ture: Calo            | 110201                                                                                                                              | 6 .                                                                                          |                                                                                                                      |                                        | Da                      | Date: S               | 121 41                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mm/dd/yy)                  |                                | Pink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Signature:                                                                                                                               | Inre:                 | PUN CAR                                                                                                                             | 2 mg                                                                                         |                                                                                                                      |                                        | Da                      | te:<br>S              | 1917                                     | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/dd/yy)                    |                                | Yellow & White Copy - SGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ote: Submission of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | that you have been provide                                                                                                               | d direction on sample | collection/handling and                                                                                                             | transportation of                                                                            | samples. {2} Sub                                                                                                     | mission of sam                         | ples to SGS is          | considered            | authorization for comple                 | etion of work. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnatures may                | appear on thi                  | vitation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Same in







# CA40149-MAR22 R1

21BF049

Prepared for

Peto MacCallum Ltd



#### First Page

| CLIENT DETAILS |                          | LABORATORY DETAILS |                                           |
|----------------|--------------------------|--------------------|-------------------------------------------|
| Client         | Peto MacCallum Ltd       | Project Specialist | Brad Moore Hon. B.Sc                      |
|                |                          | Laboratory         | SGS Canada Inc.                           |
| Address        | 165 Cartwright Ave       | Address            | 185 Concession St., Lakefield ON, K0L 2H0 |
|                | Toronto, ON              |                    |                                           |
|                | M6A 1V5. Canada          |                    |                                           |
| Contact        | Andrew Cooke             | Telephone          | 705-652-2143                              |
| Telephone      | 416-785-5110             | Facsimile          | 705-652-6365                              |
| Facsimile      | 416-785-5120             | Email              | brad.moore@sgs.com                        |
| Email          | acooke@petomaccallum.com | SGS Reference      | CA40149-MAR22                             |
| Project        | 21BF049                  | Received           | 03/09/2022                                |
| Order Number   |                          | Approved           | 03/16/2022                                |
| Samples        | Ground Water (1)         | Report Number      | CA40149-MAR22 R1                          |
|                |                          | Date Reported      | 03/16/2022                                |

## COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present:YES Custody Seal Present:YES

Chain of Custody Number:02294

SIGNATORIES





# TABLE OF CONTENTS

| First Page         | 1    |
|--------------------|------|
| Index              | 2    |
| Results            | 3-6  |
| Exceedance Summary | 7    |
| QC Summary         | 8-16 |
| Legend             | 17   |
| Annexes            | 18   |



Client: Peto MacCallum Ltd

Project: 21BF049

Project Manager: Andrew Cooke

| MATRIX: WATER                                                         |                        |                 | S    | ample Number  | 8            |
|-----------------------------------------------------------------------|------------------------|-----------------|------|---------------|--------------|
| WAIRIA. WAIER                                                         |                        |                 |      | Sample Name   | BH7          |
| L1 = SANSEW / WATER / Bradford West Gwillimbury Sewer U               | Jse ByLaw - Sanitary S | Sewer           |      | Sample Matrix | Ground Water |
| Discharge - BL_2013_68                                                |                        |                 |      |               |              |
| L2 = SANSEW / WATER / Bradford West Gwillimbury Sewer U<br>BL_2013_68 | Jse ByLaw - Storm Sev  | ver Discharge - |      | Sample Date   | 09/03/2022   |
| Parameter                                                             | Units                  | RL              | L1   | L2            | Result       |
| General Chemistry                                                     |                        |                 |      |               |              |
| Biochemical Oxygen Demand (BOD5)                                      | mg/L                   | 2               | 300  | 15            | 6            |
| Total Suspended Solids                                                | mg/L                   | 2               | 350  | 15            | 226          |
| Total Kjeldahl Nitrogen                                               | as N mg/L              | 0.5             | 100  | 1             | < 0.5        |
| Metals and Inorganics                                                 |                        |                 |      |               |              |
| Cyanide (total)                                                       | mg/L                   | 0.01            | 2    | 0.02          | < 0.01       |
| Fluoride                                                              | mg/L                   | 0.06            | 10   |               | 0.07         |
| Sulphate                                                              | mg/L                   | 0.2             | 1500 |               | 66           |
| Aluminum (0.2µm)                                                      | mg/L                   | 0.001           |      |               | 0.001        |
| Aluminum (total)                                                      | mg/L                   | 0.001           | 50   |               | 0.468        |
| Antimony (total)                                                      | mg/L                   | 0.0009          | 5    |               | < 0.0009     |
| Arsenic (total)                                                       | mg/L                   | 0.0002          | 1    | 0.02          | 0.0005       |
| Cadmium (total)                                                       | mg/L                   | 0.000003        | 0.7  | 0.008         | 0.000012     |
| Chromium (total)                                                      | mg/L                   | 0.00008         | 2    | 0.08          | 0.00119      |
| Cobalt (total)                                                        | mg/L                   | 0.000004        | 5    |               | 0.000596     |
| Copper (total)                                                        | mg/L                   | 0.0002          | 3    | 0.05          | 0.0021       |
| Lead (total)                                                          | mg/L                   | 0.00009         | 1    | 0.12          | 0.00051      |
| Manganese (total)                                                     | mg/L                   | 0.00001         | 5    | 0.15          | 0.0646       |
| Molybdenum (total)                                                    | mg/L                   | 0.00004         | 5    |               | 0.00267      |
| Nickel (total)                                                        | mg/L                   | 0.0001          | 2    | 0.08          | 0.0034       |
| Phosphorus (total)                                                    | mg/L                   | 0.003           | 10   | 0.4           | 0.079        |



Client: Peto MacCallum Ltd

Project: 21BF049

Project Manager: Andrew Cooke

| MATRIX: WATER                                                                       |                      |                 | S    | ample Number  | 8          |
|-------------------------------------------------------------------------------------|----------------------|-----------------|------|---------------|------------|
|                                                                                     |                      |                 |      | Sample Name   | BH7        |
| L1 = SANSEW / WATER / Bradford West Gwillimbury Sewer Use<br>Discharge - BL_2013_68 | e ByLaw - Sanitary S | iewer           |      | Sample Matrix |            |
| L2 = SANSEW / WATER / Bradford West Gwillimbury Sewer Use<br>BL_2013_68             | e ByLaw - Storm Sev  | ver Discharge - |      | Sample Date   | 09/03/2022 |
| Parameter                                                                           | Units                | RL              | L1   | L2            | Result     |
| Metals and Inorganics (continued)                                                   |                      |                 |      |               |            |
| Selenium (total)                                                                    | mg/L                 | 0.00004         | 1    | 0.02          | 0.00046    |
| Silver (total)                                                                      | mg/L                 | 0.00005         | 5    | 0.12          | < 0.00005  |
| Tin (total)                                                                         | mg/L                 | 0.00006         | 5    |               | 0.00074    |
| Titanium (total)                                                                    | mg/L                 | 0.00005         | 5    |               | 0.0283     |
| Zinc (total)                                                                        | mg/L                 | 0.002           | 2    | 0.04          | 0.005      |
| Nonylphenol and Ethoxylates                                                         |                      |                 |      |               |            |
| Nonylphenol                                                                         | mg/L                 | 0.001           | 0.02 |               | < 0.001    |
| Nonylphenol Ethoxylates                                                             | mg/L                 | 0.01            | 0.2  |               | < 0.01     |
| Nonylphenol diethoxylate                                                            | mg/L                 | 0.01            |      |               | < 0.01     |
| Nonylphenol monoethoxylate                                                          | mg/L                 | 0.01            |      |               | < 0.01     |
| Oil and Grease                                                                      |                      |                 |      |               |            |
| Oil & Grease (total)                                                                | mg/L                 | 2               |      |               | < 2        |
| Oil & Grease (animal/vegetable)                                                     | mg/L                 | 4               | 100  |               | < 4        |
| Oil & Grease (mineral/synthetic)                                                    | mg/L                 | 4               | 15   |               | < 4        |



Client: Peto MacCallum Ltd

Project: 21BF049

Project Manager: Andrew Cooke

| MATRIX: WATER                                                                  |                           |                 | S     | ample Number  | 8          |
|--------------------------------------------------------------------------------|---------------------------|-----------------|-------|---------------|------------|
|                                                                                |                           |                 |       | Sample Name   | BH7        |
| L1 = SANSEW / WATER / Bradford West Gwillimbury Sewe<br>Discharge - BL_2013_68 | er Use ByLaw - Sanitary S | ewer            |       | Sample Matrix |            |
| L2 = SANSEW / WATER / Bradford West Gwillimbury Sewe<br>BL_2013_68             | er Use ByLaw - Storm Sev  | ver Discharge - |       | Sample Date   | 09/03/2022 |
| Parameter                                                                      | Units                     | RL              | L1    | L2            | Result     |
| Other (ORP)                                                                    |                           |                 |       |               |            |
| рН                                                                             | No unit                   | 0.05            | 9.5   | 9.5           | 7.48       |
| Mercury (total)                                                                | mg/L                      | 0.00001         | 0.01  | 0.4           | < 0.00001  |
| Mercury (dissolved)                                                            | mg/L                      | 0.00001         |       |               | < 0.00001  |
| PCBs                                                                           |                           |                 |       |               |            |
| Polychlorinated Biphenyls (PCBs) - Total                                       | mg/L                      | 0.0001          | 0.001 | 0.0004        | < 0.0001   |
| Phenols                                                                        |                           |                 |       |               |            |
| 4AAP-Phenolics                                                                 | mg/L                      | 0.002           | 1     | 0.008         | < 0.002    |
| SVOCs                                                                          |                           |                 |       | 1             |            |
| di-n-Butyl Phthalate                                                           | mg/L                      | 0.002           | 0.08  | 0.015         | < 0.002    |
| Bis(2-ethylhexyl)phthalate                                                     | mg/L                      | 0.002           | 0.012 | 0.0088        | < 0.002    |
| VOCs                                                                           |                           |                 |       |               |            |
| Chloroform                                                                     | mg/L                      | 0.0005          | 0.04  | 0.002         | < 0.0005   |
| 1,2-Dichlorobenzene                                                            | mg/L                      | 0.0005          | 0.05  | 0.0056        | < 0.0005   |
| 1,4-Dichlorobenzene                                                            | mg/L                      | 0.0005          | 0.08  | 0.0068        | < 0.0005   |
| cis-1,2-Dichloroethene                                                         | mg/L                      | 0.0005          | 4     | 0.0056        | < 0.0005   |
| trans-1,3-Dichloropropene                                                      | mg/L                      | 0.0005          | 0.14  | 0.0056        | < 0.0005   |
| Methylene Chloride                                                             | mg/L                      | 0.0005          | 2     | 0.0052        | < 0.0005   |
| 1,1,2,2-Tetrachloroethane                                                      | mg/L                      | 0.0005          | 1.4   | 0.017         | < 0.0005   |
| Tetrachloroethylene (perchloroethylene)                                        | mg/L                      | 0.0005          | 1     | 0.0044        | < 0.0005   |
| Trichloroethylene                                                              | mg/L                      | 0.0005          | 0.4   | 0.008         | < 0.0005   |



Client: Peto MacCallum Ltd

Project: 21BF049

Project Manager: Andrew Cooke

| MATRIX: WATER                                                                           |                                 |                 | s    | ample Number  | 8            |
|-----------------------------------------------------------------------------------------|---------------------------------|-----------------|------|---------------|--------------|
|                                                                                         |                                 |                 |      | Sample Name   | BH7          |
| L1 = SANSEW / WATER / Bradford West Gwillimbury                                         | r Sewer Use ByLaw - Sanitary Se | ewer            |      | Sample Matrix | Ground Water |
| Discharge - BL_2013_68<br>L2 = SANSEW / WATER / Bradford West Gwillimbury<br>BL_2013_68 | r Sewer Use ByLaw - Storm Sew   | ver Discharge - |      | Sample Date   | 09/03/2022   |
| Parameter                                                                               | Units                           | RL              | L1   | L2            | Result       |
| VOCs - BTEX                                                                             |                                 |                 |      |               |              |
| Benzene                                                                                 | mg/L                            | 0.0005          | 0.01 | 0.002         | < 0.0005     |
| Ethylbenzene                                                                            | mg/L                            | 0.0005          | 0.16 | 0.002         | < 0.0005     |
| Toluene                                                                                 | mg/L                            | 0.0005          | 0.27 | 0.002         | < 0.0005     |
| Xylene (total)                                                                          | mg/L                            | 0.0005          |      |               | < 0.0005     |
| m-p-xylene                                                                              | mg/L                            | 0.0005          |      |               | < 0.0005     |
| o-xylene                                                                                | mg/L                            | 0.0005          |      |               | < 0.0005     |



#### EXCEEDANCE SUMMARY

|     |                        |          |       |        | SANSEW / WATER    | SANSEW / WATER    |
|-----|------------------------|----------|-------|--------|-------------------|-------------------|
|     |                        |          |       |        | / Bradford West   | / Bradford West   |
|     |                        |          |       |        | Gwillimbury Sewer | Gwillimbury Sewer |
|     |                        |          |       |        | Use ByLaw -       | Use ByLaw - Storm |
|     |                        |          |       |        | Sanitary Sewer    | Sewer Discharge - |
|     |                        |          |       |        | Discharge -       | BL_2013_68        |
|     |                        |          |       |        | BL_2013_68        |                   |
|     | Parameter              | Method   | Units | Result | L1                | L2                |
| ,   |                        |          |       |        |                   |                   |
| BH7 |                        |          |       |        |                   |                   |
|     | Total Suspended Solids | SM 2540D | mg/L  | 226    |                   | 15                |



#### Anions by IC

#### Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

| Parameter | QC batch      | Units | RL  | Method | Dup   | licate | LC               | S/Spike Blank     |               | м               | atrix Spike / Ref |      |
|-----------|---------------|-------|-----|--------|-------|--------|------------------|-------------------|---------------|-----------------|-------------------|------|
|           | Reference     | Blank | RPD | AC     | Spike |        | ery Limits<br>%) | Spike<br>Recovery | Recover<br>(9 | ry Limits<br>%) |                   |      |
|           |               |       |     |        |       | (%)    | Recovery<br>(%)  | Low               | High          | (%)             | Low               | High |
| Sulphate  | DIO0182-MAR22 | mg/L  | 0.2 | <0.2   | 0     | 20     | 108              | 90                | 110           | 96              | 75                | 125  |

# **Biochemical Oxygen Demand**

# Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

| Parameter                        | QC batch      | Units | RL | Method | Duj | olicate | LC              | S/Spike Blank |      | м                 | atrix Spike / Re | f.               |
|----------------------------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|------|-------------------|------------------|------------------|
|                                  | Reference     |       |    | Blank  | RPD | AC      | Spike           | Recove        | •    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                                  |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High | (%)               | Low              | High             |
| Biochemical Oxygen Demand (BOD5) | BOD0017-MAR22 | mg/L  | 2  | < 2    | 5   | 30      | 92              | 70            | 130  | 80                | 70               | 130              |

# Cyanide by SFA

#### Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

| Parameter       | QC batch      | Units | RL   | Method | Dup | olicate | LC              | S/Spike Blank |                 | M                 | atrix Spike / Re | f.               |
|-----------------|---------------|-------|------|--------|-----|---------|-----------------|---------------|-----------------|-------------------|------------------|------------------|
|                 | Reference     |       |      | Blank  | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>%) |
|                 |               |       |      |        |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low              | High             |
| Cyanide (total) | SKA0122-MAR22 | mg/L  | 0.01 | <0.01  | ND  | 10      | 96              | 90            | 110             | NV                | 75               | 125              |



#### Fluoride by Specific Ion Electrode

# Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

| Parameter | QC batch      | Units | RL   | Method | Dup | licate     | LC              | S/Spike Blank |                 | м                 | atrix Spike / Re | əf.               |
|-----------|---------------|-------|------|--------|-----|------------|-----------------|---------------|-----------------|-------------------|------------------|-------------------|
|           | Reference     |       |      | Blank  | RPD | RPD AC (%) | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                  | ery Limits<br>(%) |
|           |               |       |      |        |     | (%)        | Recovery<br>(%) | Low           | High            | (%)               | Low              | High              |
| Fluoride  | EWL0209-MAR22 | mg/L  | 0.06 | <0.06  | ND  | 10         | 95              | 90            | 110             | 99                | 75               | 125               |

## Mercury by CVAAS

## Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

| Parameter       | QC batch      | Units | RL      | Method    | Dup | licate          | LC    | S/Spike Blank |     | м                 | atrix Spike / Re | f.              |
|-----------------|---------------|-------|---------|-----------|-----|-----------------|-------|---------------|-----|-------------------|------------------|-----------------|
|                 | Reference     |       |         | Blank     | RPD | AC              | Spike | (%)           |     | Spike<br>Recovery |                  | ry Limits<br>%) |
|                 |               |       |         |           | (%) | Recovery<br>(%) | Low   | High          | (%) | Low               | High             |                 |
| Mercury (total) | EHG0018-MAR22 | mg/L  | 0.00001 | < 0.00001 | ND  | 20              | 87    | 80            | 120 | 80                | 70               | 130             |



# Metals in aqueous samples - ICP-MS

# Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

| Parameter          | QC batch      | Units | RL       | Method<br>Blank | Dup | licate    | LC                | S/Spike Blank |      | Ma                | atrix Spike / Ret | <i>i</i> .      |
|--------------------|---------------|-------|----------|-----------------|-----|-----------|-------------------|---------------|------|-------------------|-------------------|-----------------|
|                    | Reference     |       |          | Blank           | RPD | AC<br>(%) | Spike<br>Recovery | Recover<br>(% | •    | Spike<br>Recovery |                   | ry Limits<br>%) |
|                    |               |       |          |                 |     | (78)      | (%)               | Low           | High | (%)               | Low               | High            |
| Silver (total)     | EMS0095-MAR22 | mg/L  | 0.00005  | <0.00005        | ND  | 20        | 107               | 90            | 110  | 114               | 70                | 130             |
| Aluminum (total)   | EMS0095-MAR22 | mg/L  | 0.001    | <0.001          | 6   | 20        | 95                | 90            | 110  | 86                | 70                | 130             |
| Aluminum (0.2µm)   | EMS0095-MAR22 | mg/L  | 0.001    | <0.001          | 6   | 20        | 95                | 90            | 110  | 86                | 70                | 130             |
| Arsenic (total)    | EMS0095-MAR22 | mg/L  | 0.0002   | <0.0002         | 5   | 20        | 104               | 90            | 110  | 101               | 70                | 130             |
| Cadmium (total)    | EMS0095-MAR22 | mg/L  | 0.000003 | <0.000003       | ND  | 20        | 102               | 90            | 110  | 103               | 70                | 130             |
| Cobalt (total)     | EMS0095-MAR22 | mg/L  | 0.000004 | <0.000004       | 3   | 20        | 103               | 90            | 110  | 103               | 70                | 130             |
| Chromium (total)   | EMS0095-MAR22 | mg/L  | 0.00008  | <0.00008        | 13  | 20        | 106               | 90            | 110  | 105               | 70                | 130             |
| Copper (total)     | EMS0095-MAR22 | mg/L  | 0.0002   | <0.0002         | 1   | 20        | 102               | 90            | 110  | 110               | 70                | 130             |
| Manganese (total)  | EMS0095-MAR22 | mg/L  | 0.00001  | <0.00001        | ND  | 20        | 104               | 90            | 110  | 100               | 70                | 130             |
| Molybdenum (total) | EMS0095-MAR22 | mg/L  | 0.00004  | <0.00004        | 3   | 20        | 102               | 90            | 110  | 99                | 70                | 130             |
| Nickel (total)     | EMS0095-MAR22 | mg/L  | 0.0001   | <0.0001         | ND  | 20        | 108               | 90            | 110  | 107               | 70                | 130             |
| Lead (total)       | EMS0095-MAR22 | mg/L  | 0.00009  | <0.00001        | 6   | 20        | 97                | 90            | 110  | 85                | 70                | 130             |
| Phosphorus (total) | EMS0095-MAR22 | mg/L  | 0.003    | <0.003          | ND  | 20        | 98                | 90            | 110  | NV                | 70                | 130             |
| Antimony (total)   | EMS0095-MAR22 | mg/L  | 0.0009   | <0.0009         | ND  | 20        | 103               | 90            | 110  | 115               | 70                | 130             |
| Selenium (total)   | EMS0095-MAR22 | mg/L  | 0.00004  | <0.00004        | ND  | 20        | 97                | 90            | 110  | 81                | 70                | 130             |
| Tin (total)        | EMS0095-MAR22 | mg/L  | 0.00006  | <0.00006        | ND  | 20        | 106               | 90            | 110  | NV                | 70                | 130             |
| Titanium (total)   | EMS0095-MAR22 | mg/L  | 0.00005  | <0.00005        | 12  | 20        | 107               | 90            | 110  | NV                | 70                | 130             |
| Zinc (total)       | EMS0095-MAR22 | mg/L  | 0.002    | <0.002          | ND  | 20        | 102               | 90            | 110  | 85                | 70                | 130             |



## Nonylphenol and Ethoxylates

# Method: ASTM D7065-06 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-015

| Parameter                  | QC batch      | Units | RL    | Method | Dup | licate    | LC                | S/Spike Blank |                 | Ma                | atrix Spike / Ref | :    |
|----------------------------|---------------|-------|-------|--------|-----|-----------|-------------------|---------------|-----------------|-------------------|-------------------|------|
|                            | Reference     |       |       | Blank  | RPD | AC<br>(%) | Spike<br>Recovery | Recove        | ry Limits<br>%) | Spike<br>Recovery | Recover<br>(%     | •    |
|                            |               |       |       |        |     | (,,,)     | (%)               | Low           | High            | (%)               | Low               | High |
| Nonylphenol diethoxylate   | GCM0218-MAR22 | mg/L  | 0.01  | <0.01  |     |           | 91                | 55            | 120             |                   |                   |      |
| Nonylphenol Ethoxylates    | GCM0218-MAR22 | mg/L  | 0.01  | < 0.01 |     |           |                   |               |                 |                   |                   |      |
| Nonylphenol monoethoxylate | GCM0218-MAR22 | mg/L  | 0.01  | <0.01  |     |           | 92                | 55            | 120             |                   |                   |      |
| Nonylphenol                | GCM0218-MAR22 | mg/L  | 0.001 | <0.001 |     |           | 65                | 55            | 120             |                   |                   |      |

# Oil & Grease

#### Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

| Parameter            | QC batch      | Units | RL  | Method    | Dup               | licate | LC               | S/Spike Blank     |               | M               | atrix Spike / Ref |      |
|----------------------|---------------|-------|-----|-----------|-------------------|--------|------------------|-------------------|---------------|-----------------|-------------------|------|
|                      | Reference     | Blank | RPD | AC<br>(%) | Spike<br>Recovery |        | ery Limits<br>%) | Spike<br>Recovery | Recover<br>(9 | ry Limits<br>6) |                   |      |
|                      |               |       |     |           |                   |        | (%)              | Low               | High          | (%)             | Low               | High |
| Oil & Grease (total) | GCM0227-MAR22 | mg/L  | 2   | <2        | NSS               | 20     | 106              | 75                | 125           |                 |                   |      |



#### Oil & Grease-AV/MS

# Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

| Parameter                        | QC batch      | Units | RL | Method | Dup | licate | LC              | S/Spike Blank |      | M                 | atrix Spike / Re | əf.              |
|----------------------------------|---------------|-------|----|--------|-----|--------|-----------------|---------------|------|-------------------|------------------|------------------|
|                                  | Reference     |       |    | Blank  | RPD | AC     | Spike           | Recovei<br>(۹ | •    | Spike<br>Recovery |                  | ery Limits<br>%) |
|                                  |               |       |    |        |     | (%)    | Recovery<br>(%) | Low           | High | (%)               | Low              | High             |
| Oil & Grease (animal/vegetable)  | GCM0227-MAR22 | mg/L  | 4  | < 4    | NSS | 20     | NA              | 70            | 130  |                   |                  |                  |
| Oil & Grease (mineral/synthetic) | GCM0227-MAR22 | mg/L  | 4  | < 4    | NSS | 20     | NA              | 70            | 130  |                   |                  |                  |

# рΗ

#### Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

| Parameter | QC batch      | Units   | RL   | Method | Dup | olicate         | LC    | S/Spike Blank |     | м                 | atrix Spike / Ref |   |
|-----------|---------------|---------|------|--------|-----|-----------------|-------|---------------|-----|-------------------|-------------------|---|
|           | Reference     |         |      | Blank  | RPD | AC              | Spike | Recove        | -   | Spike<br>Recovery | Recover<br>(%     | - |
|           |               |         |      |        | (%) | Recovery<br>(%) | Low   | High          | (%) | Low               | High              |   |
| рН        | EWL0189-MAR22 | No unit | 0.05 | NA     | 1   |                 | 101   |               |     | NA                |                   |   |

# Phenols by SFA

# Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

| Parameter      | QC batch      | Units | RL    | Method | Duj | olicate | LC              | S/Spike Blank       |                   | N      | latrix Spike / Ref |      |
|----------------|---------------|-------|-------|--------|-----|---------|-----------------|---------------------|-------------------|--------|--------------------|------|
|                | Reference     |       |       | Blank  | RPD | AC      | Spike           | Recovery Limits (%) | Spike<br>Recovery | Recove | ry Limits<br>%)    |      |
|                |               |       |       |        |     | (%)     | Recovery<br>(%) | Low                 | High              | (%)    | Low                | High |
| 4AAP-Phenolics | SKA0111-MAR22 | mg/L  | 0.002 | <0.002 | ND  | 10      | 107             | 80                  | 120               | 89     | 75                 | 125  |



#### **Polychlorinated Biphenyls**

# Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

| Parameter                                   | QC batch      | Units | RL     | Method  | Dup | licate | LC              | S/Spike Blank |                 | м                 | atrix Spike / Re | f.              |
|---------------------------------------------|---------------|-------|--------|---------|-----|--------|-----------------|---------------|-----------------|-------------------|------------------|-----------------|
|                                             | Reference     |       |        | Blank   | RPD | AC     | Spike           | Recove        | ry Limits<br>%) | Spike<br>Recovery |                  | ry Limits<br>%) |
|                                             |               |       |        |         |     | (%)    | Recovery<br>(%) | Low           | High            | (%)               | Low              | High            |
| Polychlorinated Biphenyls (PCBs) -<br>Total | GCM0229-MAR22 | mg/L  | 0.0001 | <0.0001 | NSS | 30     | 97              | 60            | 140             | NSS               | 60               | 140             |

## **Semi-Volatile Organics**

#### Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

| Parameter                  | QC batch      | Units | RL    | Method  | Du  | olicate | LC              | S/Spike Blank |                 | M                 | latrix Spike / Re | f.               |
|----------------------------|---------------|-------|-------|---------|-----|---------|-----------------|---------------|-----------------|-------------------|-------------------|------------------|
|                            | Reference     |       |       | Blank   | RPD | AC      | Spike           |               | ry Limits<br>%) | Spike<br>Recovery |                   | ery Limits<br>%) |
|                            |               |       |       |         |     | (%)     | Recovery<br>(%) | Low           | High            | (%)               | Low               | High             |
| Bis(2-ethylhexyl)phthalate | GCM0201-MAR22 | mg/L  | 0.002 | < 0.002 | NSS | 30      | 106             | 50            | 140             | NSS               | 50                | 140              |
| di-n-Butyl Phthalate       | GCM0201-MAR22 | mg/L  | 0.002 | < 0.002 | NSS | 30      | 106             | 50            | 140             | NSS               | 50                | 140              |



#### Suspended Solids

## Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

| Parameter              | QC batch      | Units | RL | Method | Dup | olicate | LC              | S/Spike Blank |                  | м                 | latrix Spike / Ref | •               |
|------------------------|---------------|-------|----|--------|-----|---------|-----------------|---------------|------------------|-------------------|--------------------|-----------------|
|                        | Reference     |       |    | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recover            | ry Limits<br>6) |
|                        |               |       |    |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low                | High            |
| Total Suspended Solids | EWL0197-MAR22 | mg/L  | 2  | < 2    | 5   | 10      | 103             | 90            | 110              | NA                |                    |                 |

## Total Nitrogen

#### Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

| Parameter               | QC batch      | Units     | RL  | Method | Duj | olicate | LC              | S/Spike Blank |                  | M                 | atrix Spike / Ref | E.              |
|-------------------------|---------------|-----------|-----|--------|-----|---------|-----------------|---------------|------------------|-------------------|-------------------|-----------------|
|                         | Reference     |           |     | Blank  | RPD | AC      | Spike           |               | ery Limits<br>%) | Spike<br>Recovery | Recove            | ry Limits<br>%) |
|                         |               |           |     |        |     | (%)     | Recovery<br>(%) | Low           | High             | (%)               | Low               | High            |
| Total Kjeldahl Nitrogen | SKA0112-MAR22 | as N mg/L | 0.5 | <0.5   | 1   | 10      | 94              | 90            | 110              | NV                | 75                | 125             |



## Volatile Organics

# Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

| Parameter                 | QC batch      | Units | RL     | Method  | Dup | licate    | LC                | S/Spike Blank |      | Ma                | trix Spike / Ref |                 |
|---------------------------|---------------|-------|--------|---------|-----|-----------|-------------------|---------------|------|-------------------|------------------|-----------------|
|                           | Reference     |       |        | Blank   | RPD | AC<br>(%) | Spike<br>Recovery | Recover       | •    | Spike<br>Recovery | Recover<br>(%    | ry Limits<br>%) |
|                           |               |       |        |         |     | (70)      | (%)               | Low           | High | (%)               | Low              | High            |
| 1,1,2,2-Tetrachloroethane | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91                | 60            | 130  | 98                | 50               | 140             |
| 1,2-Dichlorobenzene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92                | 60            | 130  | 99                | 50               | 140             |
| 1,4-Dichlorobenzene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93                | 60            | 130  | 99                | 50               | 140             |
| Benzene                   | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92                | 60            | 130  | 100               | 50               | 140             |
| Chloroform                | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91                | 60            | 130  | 100               | 50               | 140             |
| cis-1,2-Dichloroethene    | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92                | 60            | 130  | 101               | 50               | 140             |
| Ethylbenzene              | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93                | 60            | 130  | 101               | 50               | 140             |
| m-p-xylene                | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93                | 60            | 130  | 102               | 50               | 140             |
| Methylene Chloride        | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91                | 60            | 130  | 100               | 50               | 140             |
| o-xylene                  | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 95                | 60            | 130  | 103               | 50               | 140             |
| Tetrachloroethylene       | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 92                | 60            | 130  | 100               | 50               | 140             |
| (perchloroethylene)       |               |       |        |         |     |           |                   |               |      |                   |                  |                 |
| Toluene                   | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 91                | 60            | 130  | 100               | 50               | 140             |
| trans-1,3-Dichloropropene | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 95                | 60            | 130  | 103               | 50               | 140             |
| Trichloroethylene         | GCM0214-MAR22 | mg/L  | 0.0005 | <0.0005 | ND  | 30        | 93                | 60            | 130  | 101               | 50               | 140             |



#### QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

#### LEGEND

#### FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
  - ↑ Reporting limit raised.
  - ↓ Reporting limit lowered.
  - NA The sample was not analysed for this analyte
- ND Non Detect

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

| Received By:       Control of the minimulation       Received By (signature):       Labora         Received Date:       October (In: min)       Received By (signature):       Labora         Received Time:       I: 10       (m: min)       Custody Seal Present: Yes       No         Received Time:       I: 10       (m: min)       Custody Seal Present: Yes       No         Received Time:       I: 10       Invoince Information       Invoince Information       Invoince Information         Company:       Received Time:       Invoince Information       Invoince Information       Invoince Information         Company:       Received Time:       Invoince Information       Invoince Information       Information         Address:       Is Contract:       Contract:       Contract:       Address:       Received Time:         Phone:       All       Is Sever By-Law:       Informations:       Sever By-Law:       Sever By-Law:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Received By (signature):<br>Custody Seal Present: Yes<br>Custody Seal Intact: Yes<br>INVOICE INFORMATION<br>(same as Report Information) | and I wanted          | Average service and service and                                                                                                     | ···· · · ·                                                                                    |                                                                                                                      |                                        |                         |                       |                                          |                                 | Sector Sector               | NATING IN CONTRACTOR           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------|------------------------------------------|---------------------------------|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v. PML<br>Reborn INFORMATION<br>Reborn INFORMATION<br>A Coele<br>BS Carrung Let Ave<br>Contact<br>Alle 785 511 C<br>Phone:<br>Regulations<br>Regulations<br>Regulations<br>Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOICE INFORMATI<br>eport Information)                                                                                                    |                       |                                                                                                                                     | mation Section - Lab use<br>Cooling Agent Present: Yes<br>Temperature Upon Receipt (°C)       | Laboratory Information Section - Lab use only<br>V Cooling Agent Present: Yes Vo<br>No Temperature Upon Receipt (*C) | only<br>C                              | Type:                   | lee                   | ant                                      | <u> </u>                        | AB LIMS #:                  | 0149                           | A40149-MA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| W. PML<br>A. Cecher<br>BS Cartury 64 Ave<br>A/6 7855120<br>A/16 7855120<br>A/16 7855120<br>A/16 7855120<br>REGUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eport Information)                                                                                                                       | N                     |                                                                                                                                     |                                                                                               |                                                                                                                      | •                                      | 0                       |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A Coole<br>BS Cartwork the o<br>Alle 785 5110 P<br>411 785 5120 P<br>22006 C Petto Inveled Jum 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                        |                       | Quotation #:                                                                                                                        | PAUL Rates                                                                                    | 24r                                                                                                                  | - *                                    |                         |                       | P.O.#:                                   |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . 155 Cartury 44 Ave Co<br>4/4 185 514 0 Ph<br>4/4 75 55120 Ph<br>2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       | Project #:                                                                                                                          | 2167099                                                                                       | 640                                                                                                                  |                                        |                         |                       | Site Location/ID:                        |                                 | Brid tong                   | P                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alla 7855130 Ph<br>4167855120 Ph<br>2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        | TURNARO                 | UND TIN               | TURNAROUND TIME (TAT) REQUIRED           | ED                              |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/(27855120 Ph<br>4/127855120 Ph<br>020022020 Invited Jum 2012<br>REGULA<br>REGULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       | M Regul                                                                                                                             | K Regular TAT (5-7days)                                                                       | (sye                                                                                                                 |                                        |                         |                       | TAT's are quoted<br>Samples receive      | d in business<br>ed after 6pm c | days (exclud<br>r on weeken | le statutory l<br>ids: TAT beg | TAT's are quoted in business days (exclude statutory holidays & weekends).<br>Samples received after 6pm or on weekends: TAT begins next business day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1: ひどっとを C P 1: ひとっと Ph H 23 5120 Ph AT 1: ひどっとを C P C Ph Nucle allow AT 25 00.000 AT 25 00.0000 AT 25 00.0000 AT 25 00.0000 AT 25 00.000 AT 25 00 |                                                                                                                                          |                       | RUSH TAT (Additional Charges May Apply):                                                                                            | litional Char                                                                                 | ges May Ap                                                                                                           | ply):                                  | 1 Day                   |                       | RUSH TAT (Additional Charges May Apply): | 4 Days                          |                             |                                | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Email: ひどうしをでやむ Inuce いりいい (Email:<br>REGULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       | PLEASE CONFIN                                                                                                                       |                                                                                               |                                                                                                                      |                                        | DTE: DRIN               | VING (POI             | ABLE) WATER SAM                          | APLES FOR I                     | IUMAN CON                   | ISUMPTION                      | 35 NET RECENTATIVE FROM TO SOCIED OF THE REPORT |
| C.Reg 153/04 O.Reg 406/19 Other Regulati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |                       |                                                                                                                                     | j.                                                                                            |                                                                                                                      |                                        | DIG DIG                 | OHEO                  | WITH SGS DRINK                           | ING WATER                       | CHAIN OF C                  | CUSTODY                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.Reg 406/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               | -                                                                                                                    | ANALT                                  | DID RE                  | CC EV                 |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | Sewer By-Law:         | N &                                                                                                                                 | S                                                                                             | SVOC PCB                                                                                                             | BHC                                    | 202                     | Pest                  | Other (please specify)                   | ease specify)                   | SPLP                        | TCLP                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Res/Park Soil Texture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reg 347/558 (3 Day min TAT)<br>Pewao I MMER<br>CCME Other:<br>MISA                                                                       | Municipality:         |                                                                                                                                     | ۱۷۱                                                                                           |                                                                                                                      |                                        |                         |                       |                                          |                                 | [                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| olume 350m3 >350m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ODWS Not Reportable *See note                                                                                                            |                       | )<br><b>гся</b><br>яае,с                                                                                                            |                                                                                               | 1                                                                                                                    |                                        |                         | ال                    | 5                                        | _                               |                             |                                | COMMENTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (RSC) TYES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO                                                                                                                                       |                       | vs),ec                                                                                                                              | λ                                                                                             |                                                                                                                      |                                        |                         | ty othe               | 17                                       |                                 | pepuet                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLE IDENTIFICATION SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME # OF<br>SAMPLED BOTTLES                                                                                                             | JF<br>LES MATRIX      | ield Filtered (<br><b>آوtals &amp; Inor</b><br>(در), درر بهر به ۹۹, (ق(با<br>( مر), درم), ومرابع<br>( مر), درم)<br>( الالافر الالاخ | P metals plus B(HWS-s<br>P Metals plus B(HWS-s<br>A, As, Ba, Ba, B, Cd, Cr, Co, d<br>AHS only | VOCS<br>VOCS<br>Ind PAHs, ABNs, CPs<br>CBS Total                                                                     | <b>1-F4 + BTEX</b><br><b>1-F4</b> only | BTEX only<br>OCS<br>OCS | ganochlorine or speci | sm allis                                 | eerefy pkg:                     |                             | 0                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 2H7 Murrhold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVV 10                                                                                                                                   | (r) S                 | L L                                                                                                                                 | as<br>DI                                                                                      | S<br>S                                                                                                               | 3                                      | V<br>Is                 | d                     | 1                                        |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | ┢                     | -                                                                                                                                   |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        | n<br>n<br>Scientifi     |                       |                                          |                                 | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 | -                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 | _                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                       |                                                                                                                                     |                                                                                               |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Observations/Comments/Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                       |                                                                                                                                     | ar e                                                                                          |                                                                                                                      |                                        |                         |                       |                                          |                                 |                             | Ъсь.,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sampled By (NAME):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Signature:                                                                                                                               | ture: Calo            | 110201                                                                                                                              | 6 .                                                                                           |                                                                                                                      |                                        | Da                      | Date: S               | 121 41                                   |                                 | (mm/dd/yy)                  |                                | Pink Copy - Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Signature:                                                                                                                               | Inre:                 | PUN CAR                                                                                                                             | 2 mg                                                                                          |                                                                                                                      |                                        | Da                      | te:<br>S              | 1917                                     | (m)                             | n/dd/yy)                    |                                | Yellow & White Copy - SGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ote: Submission of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | that you have been provide                                                                                                               | d direction on sample | collection/handling and                                                                                                             | transportation of                                                                             | samples. {2} Sub                                                                                                     | mission of sam                         | ples to SGS is          | considered            | authorization for comple                 | etion of work. S                | gnatures may                | appear on thi                  | vitation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Same in



# APPENDIX F

Water Balance

Table F-1: Water Balance Model InputProject No.: 21BF049Project: 125 Simcoe Road, Bradford

# Program: Thornthwaite Monthly Water Balance Citation: McCabe and Markstrom, 2007, USGS Input File:

|      |           | Temperature | Precipitation |
|------|-----------|-------------|---------------|
| Year | Month No. | (°C)        | (mm)          |
| 2010 | 1         | -7.4        | 51.7          |
| 2010 | 2         | -6.1        | 46            |
| 2010 | 3         | -1.5        | 51.2          |
| 2010 | 4         | 6           | 64.9          |
| 2010 | 5         | 12.5        | 87.1          |
| 2010 | 6         | 17.7        | 84.9          |
| 2010 | 7         | 20.5        | 86.4          |
| 2010 | 8         | 19.6        | 88.4          |
| 2010 | 9         | 15.3        | 84.2          |
| 2010 | 10        | 8.6         | 72.9          |
| 2010 | 11        | 2.2         | 84.6          |
| 2010 | 12        | -3.7        | 55.5          |

# Additional Input:

| Runoff Factor:                  | 40%    | (MECP Infiltration Factors)                     |
|---------------------------------|--------|-------------------------------------------------|
| Direct Runoff Factor:           | 5%     | (Recommended value)                             |
| Soil Moisture Storage Capacity: | 200    | (Moderately Rooted Crops/vegetation, silt loam) |
| Latitude of Site:               | 44     | (GoogleEarth)                                   |
| Rain - Temperature Theshold:    | 3.3 °c | (Recommended value)                             |
| Snow - Temperature Threshold:   | -10 °c | (Recommended value)                             |
| Maximum Melt Rate:              | 50%    | (Recommended value)                             |

| Weather station is at Latitude           | 44 deg 01 min                             |
|------------------------------------------|-------------------------------------------|
| Site is at Latitude                      | 44 deg 06 min                             |
| Source: Canadian Climate Normals, 1981 t | o 2010, "King Smoke Tree" weather station |

Table F-2: Water Balance Model OutputProject No.: 21BF049Project: 125 Simcoe Road, Bradford

# Program: Thornthwaite Monthly Water Balance Citation: McCabe and Markstrom, 2007, USGS Output File:

|          |         |                      |         | Soil     |         |         | Snow     |           |         |
|----------|---------|----------------------|---------|----------|---------|---------|----------|-----------|---------|
| Date     | PET     | Р                    | P-PET   | Moisture | AET     | PET-AET | Storage  | Surplus   | ROtotal |
| =======  | ======= | = =======            | ======= | ======== | ======= | ======= | ======== | ========= | ======= |
| Jan-2010 | 7.      | 3 51.7               | 5.9     | 155.9    | 7.8     | 0       | 37.5     | 0         | 10.7    |
| Feb-2010 | 9.      | 7 46                 | 13.4    | 169.2    | 9.7     | 0       | 59.8     | 0         | 6.8     |
| Mar-2010 | 18.     | 5 51.2               | 37.5    | 200      | 18.5    | 0       | 53.2     | 6.8       | 8       |
| Apr-2010 | 36.     | 64.9                 | 51.5    | 200      | 36.8    | 0       | 26.6     | 51.5      | 27.7    |
| May-2010 | 68.     | 5 87.1               | 27.5    | 200      | 68.6    | 0       | 13.3     | 27.5      | 30      |
| Jun-2010 | 100.4   | 4 84.9               | -13.1   | 186.9    | 100.4   | 0       | 6.7      | 0         | 19.6    |
| Jul-2010 | 118.    | 2 86.4               | -29.5   | 159.3    | 116.3   | 1.9     | 0        | 0         | 13.6    |
| Aug-2010 | 95.     | 1 88.4               | -11.1   | 150.5    | 92.8    | 2.3     | 0        | 0         | 10      |
| Sep-2010 | 55.     | 7 84.2               | 24.3    | 174.8    | 55.7    | 0       | 0        | 0         | 7.5     |
| Oct-2010 | 29.     | 1 72.9               | 40.1    | 200      | 29.1    | 0       | 0        | 15        | 11.6    |
| Nov-2010 | 14.     | 5 84.6               | 66.2    | 200      | 14.5    | 0       | 0        | 66.2      | 35.2    |
| Dec-2010 | 9.1     | 1 55.5               | 22.8    | 200      | 9.1     | 0       | 22.3     | 22.8      | 29.2    |
|          |         |                      |         |          |         |         |          |           |         |
| Total =  | 563.    | 5 <mark>857.8</mark> | 235.5   |          | 559.3   | 4.2     | 219.4    | 189.8     | 209.9   |

# Table F-3: Water Balance - Pre-DevelopmentProject No.: 21BF049Project: 125 Simcoe Road, Bradford

| Catchment Designation                      | Cultivated  | Paved        | Building | Open Water | Total  |                |
|--------------------------------------------|-------------|--------------|----------|------------|--------|----------------|
| Area (m²)                                  | 9,181       | -            | -        | -          | 9,181  |                |
| Pervious Area (m <sup>2</sup> )            | 9,181       | -            | -        | -          | 9,181  |                |
| Impervious Area (m <sup>2</sup> )          | -           | -            | -        | -          | -      |                |
|                                            | Infiltratio | n Factors    |          |            |        |                |
| Topography Infiltration Factor             | 0.3         | 0            | 0        | 0          |        |                |
| Soil Infiltration Factor                   | 0.2         | 0            | 0        | 0          |        |                |
| Land Cover Infiltration Factor             | 0.1         | 0            | 0        | 0          |        |                |
| MECP Infiltration Factor (Total)           | 0.6         | 0.0          | 0.0      | 0.0        |        |                |
| Actual Infiltration Factor (Total)         | 0.6         | 0.0          | 0.0      | 0.0        |        |                |
| Run-off Coefficient                        | 0.4         | 1            | 1        | 0          |        |                |
| Run-off from Impervious Surfaces           | 0.0         | 0.8          | 0.8      | 0          |        |                |
|                                            | Inputs (per | Unit Area)   |          |            |        |                |
| Precipitation (mm/yr)                      | 858         | -            | -        | -          |        |                |
| Run-On (mm/yr)                             | -           | -            | -        | -          |        |                |
| Other Inputs (mm/yr)                       | 22          | -            | -        | -          |        | (snow storage) |
| Total Inputs (mm/yr)                       | 880         | -            | -        | -          |        |                |
|                                            | Outputs (pe | r Unit Area) |          |            |        |                |
| Precipitation Surplus (mm/yr)              | 190         | -            | -        | -          |        |                |
| Net Surplus (mm/yr)                        | 190         | -            | -        | -          |        |                |
| Evapotranspiration (mm/yr)                 | 559         | -            | -        | -          |        |                |
| Infiltration (mm/yr)                       | 114         | -            | -        | -          |        |                |
| Rooftop Infiltration (mm/yr)               | -           | -            | -        | -          |        |                |
| Total Infiltration (mm/yr)                 | 114         | -            | -        | -          |        |                |
| Run-off Pervious Areas                     | 210         | -            | -        | -          |        |                |
| Run-off Impervious Areas                   | -           | -            | -        | -          |        |                |
| Total Runoff (mm/yr)                       | 210         | -            | -        | -          |        |                |
| Total Outputs (mm/yr)                      | 883         | -            | -        | -          |        |                |
| Difference (Inputs - Outputs)              | (3)         | -            | -        | -          |        |                |
| 2                                          | Inputs (by  | y Volume)    |          | [          |        |                |
| Precipitation (m <sup>3</sup> /yr)         | 7,877       | -            | -        | -          | 7,877  |                |
| Run-On (m³/yr)                             | -           | -            | -        | -          | -      |                |
| Other Inputs (m <sup>3</sup> /yr)          | 202.0       | -            | -        | -          | 202    |                |
| Total Inputs (m <sup>3</sup> /yr)          | 8,079       | -            | -        | -          | 8,079  |                |
|                                            | Outputs (b  | y Volume)    |          |            |        |                |
| Precipitation Surplus (m <sup>3</sup> /yr) | 1,744       | -            | -        | -          | 1,744  |                |
| Net Surplus (m³/yr)                        | 1,744       | -            | -        | -          | 1,744  |                |
| Evapotranspiration (m <sup>3</sup> /yr)    | 5,132       | -            | -        | -          | 5,132  |                |
| Infiltration (m <sup>3</sup> /yr)          | 1,047       | -            | -        | -          | 1,047  |                |
| Rooftop Infiltration (m <sup>3</sup> /yr)  | 1,0 //      | _            |          | _          | 1,0 // |                |
| Total Infiltration (m <sup>3</sup> /yr)    | 1,047       |              |          |            | 1,047  |                |
| Run-off Pervious Areas                     | 1,928       | -            | -        | -          |        |                |
| Run-off Impervious Areas                   | 1,928       | -            | -        | -          | 1,928  |                |
| Total Runoff (m <sup>3</sup> /yr)          | 1.020       |              |          |            | 4 020  |                |
|                                            | 1,928       | -            | -        | -          | 1,928  |                |
| Total Outputs (m <sup>3</sup> /yr)         | 8,107       | -            | -        | -          | 8,107  |                |
| Difference (Inputs - Outputs)              | (28)        | -            | -        | -          | (28)   |                |

# Table F-4: Water Balance - Post DevelopmentProject No.: 21BF049Project: 125 Simcoe Road, Bradford

| Catchment Designation                                  | Cultivated        | Paved        | Building | Open Water | Total |              |
|--------------------------------------------------------|-------------------|--------------|----------|------------|-------|--------------|
| Area (m <sup>2</sup> )                                 | 4,163             | 3,293        | 1,725    | -          | 9,181 |              |
| Pervious Area (m <sup>2</sup> )                        | 4,163             | -            | -        | -          | 4,163 |              |
| Impervious Area (m <sup>2</sup> )                      | -                 | 3,293        | 1,725    | -          | 5,018 |              |
|                                                        | Infiltration      | n Factors    |          |            |       |              |
| Topography Infiltration Factor                         | 0.3               | 0            | 0        | 0          |       |              |
| Soil Infiltration Factor                               | 0.2               | 0            | 0        | 0          |       |              |
| Land Cover Infiltration Factor                         | 0.1               | 0            | 0        | 0          |       |              |
| MECP Infiltration Factor (Total)                       | 0.6               | 0            | 0        | 0          |       |              |
| Actual Infiltration Factor (Total)                     | 0.6               | 0            | 0        | 0          |       |              |
| Run-off Coefficient                                    | 0.4               | 1            | 1        | 1          |       |              |
| Run-off from Impervious Surfaces                       | 0.0               | 0.8          | 0.8      | 0.8        |       |              |
|                                                        | Inputs (per       | Unit Area)   |          |            |       |              |
| Precipitation (mm/yr)                                  | 858               | 858          | 858      | -          |       |              |
| Run-On (mm/yr)                                         | -                 | -            | -        | -          |       |              |
| Other Inputs (mm/yr)                                   | 22                | 22           | 22       | -          |       | snow storage |
| Total Inputs (mm/yr)                                   | 880               | 880          | 880      | -          |       |              |
|                                                        | Outputs (per      |              |          |            |       |              |
| Precipitation Surplus (mm/yr)                          | 190               | 686          | 686      | -          |       |              |
| Net Surplus (mm/yr)                                    | 190               | 686          | 686      | -          |       |              |
| Evapotranspiration (mm/yr)                             | 559               | 194          | 194      | -          |       |              |
| Infiltration (mm/yr)                                   | 114               | -            | -        | -          |       |              |
| Rooftop Infiltration (mm/yr)                           | -                 | -            | -        | -          |       |              |
| Total Infiltration (mm/yr)                             | 114               | -            | -        | -          |       |              |
| Run-off Pervious Areas                                 | 210               | -            | -        | -          |       |              |
| Run-off Impervious Areas                               | -                 | 686          | 686      | -          |       |              |
| Total Runoff (mm/yr)                                   | 210               | 686          | 686      | -          |       |              |
| Total Outputs (mm/yr)<br>Difference (Inputs - Outputs) | 883               | 880          | 880      | -          |       |              |
| Difference (inputs - Outputs)                          | (3)<br>Inputs (by | -<br>Volume) | •        | -          |       |              |
| Precipitation (m <sup>3</sup> /yr)                     | 3,572             | 2,825        | 1,480    |            | 7,877 |              |
|                                                        | 5,572             | 2,025        | 1,480    | -          | 7,077 |              |
| Run-On (m <sup>3</sup> /yr)                            | -                 | -            | -        | -          | -     |              |
| Other Inputs (m <sup>3</sup> /yr)                      | 91.6              | 72.4         | 38.0     | -          | 202   |              |
| Total Inputs (m³/yr)                                   | 3,663             | 2,898        | 1,518    | -          | 8,079 |              |
|                                                        | Outputs (by       |              |          |            |       |              |
| Precipitation Surplus (m <sup>3</sup> /yr)             | 791               | 2,260        | 1,184    | -          | 4,235 |              |
| Net Surplus (m³/yr)                                    | 791               | 2,260        | 1,184    | -          | 4,235 |              |
| Evapotranspiration (m <sup>3</sup> /yr)                | 2,327             | 638          | 334      | -          | 3,299 |              |
| Infiltration (m <sup>3</sup> /yr)                      | 475               | -            | -        | -          | 475   |              |
| Rooftop Infiltration (m <sup>3</sup> /yr)              | -                 | -            | -        | -          | -     |              |
| Total Infiltration (m <sup>3</sup> /yr)                | 475               | -            | -        | -          | 475   |              |
| Run-off Pervious Areas                                 | 874               | -            | -        | -          | 874   |              |
| Run-off Impervious Areas                               | -                 | 2,260        | 1,184    | -          | 3,444 |              |
| Total Runoff (m <sup>3</sup> /yr)                      | 874               | 2,260        | 1,184    | -          | 4,319 |              |
| Total Outputs (m <sup>3</sup> /yr)                     | 3,676             | 2,898        | 1,518    | -          | 8,092 |              |
| Difference (Inputs - Outputs)                          | (12)              | -            | -        | -          | (12)  |              |



# APPENDIX G

Statement of Limitations



# **STATEMENT OF LIMITATIONS**

This report is prepared for and made available for the sole use of the client named. Peto MacCallum Ltd. (PML) hereby disclaims any liability or responsibility to any person or entity, other than those for whom this report is specifically issued, for any loss, damage, expenses, or penalties that may arise or result from the use of any information or recommendations contained in this report. The contents of this report may not be used or relied upon by any other person without the express written consent and authorization of PML.

This report shall not be relied upon for any purpose other than as agreed with the client named without the written consent of PML. It shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. A portion of this report may not be used as a separate entity: that is to say the report is to be read in its entirety at all times.

The report is based solely on the scope of services which are specifically referred to in this report. No physical or intrusive testing has been performed, except as specifically referenced in this report. This report is not a certification of compliance with past or present regulations, codes, guidelines and policies.

The scope of services carried out by PML is based on details of the proposed development and land use to address certain issues, purposes and objectives with respect to the specific site as identified by the client. Services not expressly set forth in writing are expressly excluded from the services provided by PML. In other words, PML has not performed any observations, investigations, study analysis, engineering evaluation or testing that is not specifically listed in the scope of services in this report. PML assumes no responsibility or duty to the client for any such services and shall not be liable for failing to discover any condition, whose discovery would require the performance of services not specifically referred to in this report.



# STATEMENT OF LIMITATIONS (continued)

The findings and comments made by PML in this report are based on the conditions observed at the time of PML's site reconnaissance. No assurances can be made and no assurances are given with respect to any potential changes in site conditions following the time of completion of PML's field work. Furthermore, regulations, codes and guidelines may change at any time subsequent to the date of this report and these changes may affect the validity of the findings and recommendations given in this report.

The results and conclusions with respect to site conditions are therefore in no way intended to be taken as a guarantee or representation, expressed or implied, that the site is free from any contaminants from past or current land use activities or that the conditions in all areas of the site and beneath or within structures are the same as those areas specifically sampled.

Any investigation, examination, measurements or sampling explorations at a particular location may not be representative of conditions between sampled locations. Soil, ground water, surface water, or building material conditions between and beyond the sampled locations may differ from those encountered at the sampling locations and conditions may become apparent during construction which could not be detected or anticipated at the time of the intrusive sampling investigation.

Budget estimates contained in this report are to be viewed as an engineering estimate of probable costs and provided solely for the purposes of assisting the client in its budgeting process. It is understood and agreed that PML will not in any way be held liable as a result of any budget figures provided by it.

The Client expressly waives its right to withhold PML's fees, either in whole or in part, or to make any claim or commence an action or bring any other proceedings, whether in contract, tort, or otherwise against PML in anyway connected with advice or information given by PML relating to the cost estimate or Environmental Remediation/Cleanup and Restoration or Soil and Ground Water Management Plan Cost Estimate.